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Abstract—Software vulnerability detection is one of the key
tasks in the field of software security. Detecting vulnerability
in the source code in advance can effectively prevent malicious
attacks. Traditional vulnerability detection methods are often
ineffective and inefficient when dealing with large amounts of
source code. In this paper, we present the BBVD approach,
which treats high-level programming languages as another nat-
ural language and uses BERT-based models in the natural
language processing domain to automate vulnerability detection.
Our experimental results on both SARD and Big-Vul datasets
demonstrate the good performance of the proposed BBVD in
detecting software vulnerability.
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I. INTRODUCTION

Software vulnerability is security flaw that exists in soft-
ware [1]. When developers develop software, security issues
such as logic error, buffer overflow, array out-of-bound access
and other errors can easily occur in the source code. Vul-
nerability can be exploited for privilege escalation, leakage
of secret data, denial of service and many other types of
attacks [2], which put the integrity and availability of the
software and the computer system at risk. The size and
complexity of modern software are increasing dramatically,
which also diversifies the types and causes of vulnerability.
Thus, the traditional vulnerability detection methods are facing
new challenges.

Traditional source code vulnerability detection depends
on manual code auditing [3], relying on the expertise of
the security personnel to review the software source code.
However, in the face of the massive amount of code in complex
software, the workload of manual audit vulnerability is large
and the effectiveness of detection relies strongly on the amount
of a priori knowledge of security personnel. It is unrealistic
to rely entirely on manual audits to discover existing types
and possible variants of vulnerability types. Now, automated
vulnerability detection is becoming an important supplement
to manual audits.

There are many similarities between high-level program-
ming languages and natural language [4], [5]. High-level
programming languages such as C/C++ that inherit the syntax
of natural language have a defined syntax and semantics. Long
sentences in natural language consist of words and phrases. A
programming language also consists of a series of instructions.
If these instructions are treated as words in a natural language,
different combinations of instructions produce more complex
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operations, which correspond to long sentences in natural
language. The choice of different words, the difference in
word placement and the contextual connection all affect the
semantics of sentences in natural language. In the case of
programming language, the placement and combination of
instructions also affect the logic of the programming language.
Therefore, considering these similarities, we can use language
models in NLP for software vulnerability detection.

The BERT-based model allows for parallelized computa-
tion in the model. Also, multiple experimental results show
that BERT-based models [6]–[9] have outperformed existing
models in natural language processing, including recurrent
neural network (RNN) architectures. Therefore, BERT-based
language models are more effective than RNNs and we choose
to use BERT-based models to detect software vulnerability. Our
contributions in this paper are as follows:

• We propose a method called BBVD for detecting vul-
nerability in C/C++ source code by using BERT-based
models.

• We verify that the BERT-based language models used in
the BBVD approach can be migrated to areas outside
of the natural processing domain such as vulnerability
detection.

• Our experimental results on both SARD [10] and Big-
Vul [11] datasets show that BBVD outperforms the state-
of-the-art method such as SySeVR [12].

The rest of the paper is organized as follows: Section
I presents the related works on BERT-based models and
software vulnerability detection methods. Section III describes
the proposed BBVD method and the flow for the software
vulnerability detection. Section IV describes the experimental
setup of datasets and BERT-based models used in our work.
Section V reports the experimental results and performance of
the BERT-based models. Section VI concludes our paper.

II. BACKGROUND AND RELATED WORK

A. BERT beyond NLP

In recent years, some classical methods have yielded good
performance using model optimization strategies to process
data containing noise and outliers, such as graph-based [13],
[14] and information- and cue-based [15], [16] strategies.
Furthermore, neural networks can be more efficient by fusing
attention mechanisms when processing large amounts of input
information. These networks using attentional mechanisms
have been used in a wide range of tasks such as image text
matching [17], visual sentiment analysis [18], video question
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answering [19], generative adversarial task [20], multi-task
travel route planning [21], etc.

Attention mechanisms are also used in BERT to focus each
element in the input sequence on other elements. The paper [6]
demonstrates that BERT pre-training facilitates almost all types
of NLP tasks (except generative models). The question-and-
answer (QA) domain is an important area of NLP. BERT in
the field of QA is more effective than the previous meth-
ods, and the experimental results of some papers [22]–[25]
in question retrieval and answer determination show that a
significant improvement can be achieved by using BERT or
attention mechanisms. The application of BERT to the reading
comprehension task also had a huge impact on the various
original techniques [26]. The effectiveness of works [27] using
BERT in document retrieval tasks similarly demonstrates the
usefulness of BERT in the field of information retrieval. In
addition to these domains, BERT has also shown significant
enhancements in areas such as text summarization [28], text
classification [29], [30] etc.

The BERT can also be migrated to domains other than
natural language processing. Inspired by pre-training models
in the BERT model, Kanade et al. [31] proposed the CuBERT
(CodeUnderstandingBERT) model designed with two pre-
training tasks of predicting masked tokens and whether two
logical lines of code are related to each other in a contextual
sentence. The CodeBERT model proposed by Feng et al. [4]
used bimodal data of natural and programming languages.
They pre-trained CodeBERT in six programming languages
and showed optimal performance on the NL-PL downstream
task. The above two code pre-training models only consider
codes as token sequences, ignoring the structural information
in the codes. Guo et al. [32] proposed the GraphCode-BERT
model using the data flow information of codes in the pre-
training process, which significantly improved the performance
of four downstream tasks, including code search, code clone
detection, code translation and code summarization.

There have been studies using the BERT model to detect
software vulnerability. Ziems et al. [33] fine-tuned the 100,000
C/C++ source code files on a pre-trained model known as
BERT base and tested the fine-tuned model with over 100 types
of vulnerability. Their work shows the feasibility of BERT
for vulnerability detection. Although our approach is also
based on BERT related model, there are several differences
compared to their approach: (i) Their input is source code
files without comments. Ours is the code slice that can better
represent the syntax and semantic information of the program;
(ii) They use pre-trained model which based on an English
Wikipedia dataset containing 2.5 billion words, we use the
C/C++ code slice to pre-train and then generate a pre-trained
model; (iii) They consider only BERT, we have experimented
on other BERT-based models; (iv) They only experimented on
the synthetic dataset SARD, we do experiments on both the
synthetic dataset SARD and the real dataset Big-Vul.

B. Vulnerability Detection Methods

Source code vulnerability detection methods can be divided
into two categories: static and dynamic methods. Static meth-
ods do not require the execution of source code and can detect
vulnerability by combining information from source code files,

control flow graph [37], program dependency graph [42],
LLVM IR [38], etc. Dynamic methods obtain the execution
path and data flow of program crashes by executing the code
file to obtain the heap, stack, registers and other information
of the actual running program. Typical dynamic methods are
fuzz testing and taint analysis, these methods applied to large
project source code files have problems such as low path cov-
erage and path explosion, which require a lot of computational
resources. Therefore, we focus on static methods.

Static detection methods can be divided into two cate-
gories: traditional methods and machine learning based meth-
ods. Traditional detection methods are mainly based on code
similarity and pattern match. Code similarity-based detection
is suitable for vulnerability caused by code clone. It has
a high false negative when the cloned code itself is not
vulnerable but other code fragments are flawed. There are four
types of code similarity-based detection methods: text-based,
lexicon-based [34]–[36], syntax-based [39]–[41] and semantic-
based [42]–[45]. Text-based and lexicon-based methods are
simple to implement and can detect the source code of almost
all programming languages. However, recognizing only textual
information or lexical information will lose the syntactic and
semantic information of the source code, which leads to a low
accuracy rate. Syntax-based and semantic-based methods can
identify syntactic and semantic information of programs with
high detection accuracy. But as program size increases, the
subtree matching algorithm for detecting abstract syntax tree
similarity and the subgraph matching algorithm for detecting
program dependency graph similarity grow dramatically in
time and space complexity.

In contrast, pattern-based approaches require a large num-
ber of experts to define rules for matching vulnerability
manually. The subjectivity of experts may lead to high false
positives and high false negatives. For a specific vulnerability,
the corresponding vulnerability patterns can be extracted. The
pattern matching method describes these vulnerability patterns
in a specific syntax. Then the source code is compared and
detected after a series of processing. Methods that use pat-
tern matching to detect vulnerability include PMD, Coverity
Prevent [46], etc.

Researchers have started applying machine learning to
detect software vulnerability due to increased computer com-
puting power. Yamamoto et al. [47] applied machine learning
algorithms such as naive bayes model to the vulnerability de-
scriptions of the National Vulnerability Database (NVD) [48]
for vulnerability detection. Their proposed method shows good
prediction performance on a dataset containing more than
6000 vulnerable source codes. Toloudis et al. [49] combine
techniques related to text analysis and principal component
analysis to process the vulnerability descriptions of the NVD
and perform experiments on a large dataset containing 70,678
vulnerable source code. Spanos et al. [50] use classical ma-
chine learning methods on the same dataset to predict software
vulnerability, the experimental results achieved an accuracy of
about 80%.

As the number of public vulnerabilities grow, it becomes
possible to use deep learning models to extract abstract feature
representations from vulnerability samples. Not all information
in the source code file is helpful for software vulnerability
detection. Too much irrelevant information may interfere with
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Fig. 1. Framework of BBVD

prediction. Program slicing techniques are widely used in
vulnerability detection tasks which can obtain code fragments
related to vulnerability. Li et al. [5] proposed the concept
of code gadgets to serve as an intermediate representation
of source code for obtaining semantic information related to
vulnerability. They predicted the existence of vulnerability
related to API and library function calls in programs based on
code gadgets and BiLSTM. Li et al. [12] proposed code slices
based on code gadgets combined with program dependency
graphs. The code slices can represent the vulnerability syntax
and semantic features of the program and fed into the BiGRU
model to obtain vulnerability detection results.

In addition to using models in NLP to detect software
vulnerability, some studies use graph neural networks to de-
tect vulnerability. The Devign model proposed by Zhou et
al. [51] uses an abstract syntax tree as a skeleton. The model
incorporates the control flow and data flow information to
generate a joint graph representation. A gated graph neural
network and a convolutional neural network model are used
for graph classification to detect vulnerable code. Chakraborty
et al. [52] proposed ReVeal using a combination of gated graph
neural networks and multilayer perceptrons. Their experiments
showed that adding multilayer perceptron modules to gated
graph neural networks helps in vulnerability detection.

III. DESIGN OF BBVD

In this section, we present a brief overview of the BBVD
method. Fig. 1 illustrates the detection pipeline which trains
from scratch. We divide the whole process into four phases:
training the tokenizer, pre-training phase, fine-tuning phase and
inference phase. In the first stage, we extract code slices from
the source code files and then train the tokenizer based on
the tokens in the code slices. The second stage converts the
code slices into ids using the tokenizer and pretrains on the
ids using a BERT-based model. The ids are token indices,
numerical representations of tokens building the sequences that
will be used as input by BERT-based models. The third stage
labels the code slices and defines the downstream task as the
classification for fine-tuning. The fourth stage uses datasets not
identified by the model for inference.

A. Train Tokenizer Phase

In the stage of training tokenizer, we need to extract code
slices from the source code files. Specifically, code slices are

syntax-based vulnerability candidates (SyVCs) and semantics-
based vulnerability candidates (SeVCs) which proposed by Li
et al. [12]. In order to get the code slices, we need to use
the open-source code analysis tool joern to parse the source
code files and obtain the corresponding control flow graph
and program dependency graph. Then, parsing out the call
graph of function based on the CFG and PDG to extract array-
related, pointer-related, api-related and arithmetic-related code
slices. Furthermore, keeping the original name of keywords
in the programming language and mapping the user-defined
variable and function names one-to-one to symbolic names
(e.g. “variable 0”, “variable 1”, “func 0”, “func 1”) to reduce
the interference of user-defined function names and variable
names. Fig. 2 shows different types of code slices extracted
from the same source file. Finally, a tokenizer is generated
based on these code slices.

B. Pretrain Phase

During the pre-training phase, the code slices of the pre-
training dataset are transformed into ids using the tokenizer
generated in the first phase. Fig. 3 shows an example of
converting code slices and ids to each other. The ids are filled
or truncated according to the max position embeddings in the
model network parameter config. That is, when the length of
ids is less than the max position embeddings, special token
ids (e.g. “⟨pad⟩” correspond id is 1) are used to fill in the
right side of ids. When the length of ids exceeds the max
position embeddings, the redundant part to the right of the ids
is truncated. The BERT-based model trained with unsupervised
learning to learn the context of code slices and their syntax and
semantics. We use language masking model approach to train
the BERT-based model. The language masking model masks
some of the input locations based on probabilities (the original
token is replaced with “⟨mask⟩”) and trains the model to
predict the masked parts using the remaining parts. Meanwhile,
the model is optimized based on the original masked tokens
and the predicted ones.

C. Finetune and Inference Phase

After pre-training is completed, we need to perform the
downstream task on the pre-trained model. Since vulnerability
detection can be regarded as a binary classification, we define
the downstream task as a classification task. Similarly, the code
slices extracted from the fine-tuned dataset are transformed
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Fig. 2. Code slices

Fig. 3. Interconversion between the ids and code slices

into ids using the trained tokenizer. In order to make the
classification task work properly, we need to add the appropri-
ate labels to the ids at this phase. Label 0 means the code
slice is a normal sample and label 1 means a vulnerable
sample. Then, the fine-tuning dataset is split into a training
set and an evaluation set. The pre-trained model is fine-tuned
on the training set and evaluated on the evaluation set. Finally,
generating the fine-tuned model. Using the fine-tuned model
can inference whether the source code file is vulnerable or not.
Repeat the steps of extracting code slices and transforming
them into ids. Input the ids into the fine-tuned model can get
the detection results.

IV. EXPERIMENT SETUP

We designed follow three Research Questions (RQs).

• RQ1: Do the BERT-based models work better than the
RNN-based models for vulnerability detection?

• RQ2: Do the use of irrelevant datasets in the pre-training
and fine-tuning phases interfere with the detection perfor-
mance of the model?

• RQ3: Do the different value of max embedding lengths
(e.g., the max lengths of ids) have an influence on the
detection effect of BERT-based models?

We implement BERT-based models by using the hug-
gingface [53] with PyTorch 1.8.0. The computer running the
experiment has an NVIDIA GeForce GTX 2080TI GPU and
16 Intel(R) Xeon(R) Gold 5117 CPUs running at 2.00 GHz.

A. Datasets

We experiment on two vulnerability datasets: SARD and
Big-Vul. SARD is a synthetic dataset in which most of the
testcases are written for academic and research purposes to
reproduce specific vulnerability. SARD contains a batch of
testcases composed of code in C/C++. These testcases are
classified into different CWEs (Common Weakness Enumer-
ation) according to the associated vulnerability types. They
are classified into good, bad, and mixed types according to
whether the code file is a vulnerability, among which mixed
means that the code file contains both the vulnerability and the
fix code. For the testcases of bad and mixed types containing
vulnerability, the additional information about the line number
where the vulnerability is located is also given. The entire sard
dataset consists of 10,682 cpp source code and 24,633 c source
code files.

Big-Vul dataset is a real dataset which collects testcases
from the commit records related to CVEs(Common vulnera-
bility and Exposures) that have appeared in the git repositories
of 310 well-known C/C++ open source projects between
2002 and 2019 including Linux, Chrome, etc. All the data
is provided in the form of CSV and each testcase containing
information, such as the project name, associated CVE number,
description, code content, and function differences before and
after the commit. All vulnerability are categorized into ten
types such as denial of service attacks, memory corruption,
and privilege escalation. Each testcase labeled as vulnerable is
one of the combinations of these types. To facilitate extracting
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code slices, the samples in Big-Vul need to be filtered. The
function differences in commit contain the corresponding code
lines which change after the patch. We select the data where
the number of code lines change by less than 100. The total
number of filtered data is 16,608, of which 16,436 are c source
code files and 172 are cpp source code files. Due to the
complexity of the vulnerability types in the Big-Vul dataset, we
called the memory corruption-related vulnerability data from
filtered Big-Vul dataset as Big-Vul-MemCorr and the entire
filtered Big-Vul dataset as Big-Vul-All.

B. Models

We conducted experiments on five models. Specifically, this
experiment contains two RNN-based models (BiGRU and BiL-
STM) and three BERT-based models (RoBERTa, DistilBERT
and MobileBERT). Table I shows some important network
structure-related related parameters of BERT-based models
used in this paper.

TABLE I. NETWORK STRUCTURE RELATED PARAMETERS

Model
Hidden

Size
Hidden
Layers

Attention
Heads

Intermediate
Size

Max
Position

Embeddings

RoBERTa 768 12 12 3072 514
DistilBERT 768 6 12 3072 512
MobileBERT 512 24 4 512 512

RoBERTa. This model mainly based on BERT with several
adjustments: longer training time with larger batch size and
more training data; longer training sequence; dynamic adjust-
ment of masking mechanism.

DistilBERT. It’s proposed for the most popular BERT
pre-training model with a 40% reduction in model size and
60% faster inference operations while retaining 97% of the
performance.

MobileBERT. It compresses the BERT model which re-
duces the model size by a factor of three to four and increases
the speed by a factor of four to five with little loss of effect,
allowing a variety of NLP applications to be easily deployed
on mobile.

C. Evaluation Metrics

The effectiveness of vulnerability detection can be evalu-
ated using the following metrics: accuracy (A), precision (P),
recall (R), F1-score (F1) and Mathews Correlation Coefficient
(MCC). True positive (TP) indicates the number of samples
with vulnerability detected. False Positive (FP) indicates the
number of samples without vulnerability but detected as such.
True Negative (TN) indicates the number of samples without
vulnerabilit detected. False Negative (FN) denotes the number
of samples with vulnerability but detected as not having vul-
nerability. The metric A = TP+TN

TP+FP+TN+FN is the number of
correctly predicted samples out of all the samples. The metric
P = TP

TP+FP represents all the samples that are declared to be
vulnerable but what percentage of them are actually vulnerable.
The metric R = TP

TP+FN represents all the samples that are
actually vulnerable but what percentage declared vulnerable.
The metric F1 = 2 ∗ P∗R

P+R is used to measure test accuracy,

which is a weighted average of the precision and recall. The
F1 score is 1 when it’s best and on 0 when it’s worst. The
MCC = TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
returns a

value between negative one and positive one. A coefficient
of positive one represents a perfect prediction, zero means no
better than random prediction and negative one indicates total
disagreement between prediction and actual label.

V. EXPERIMENTS AND RESULTS

In this section, we conduct experiments on SARD, Big-
Vul-All, Big-Vul-MemCorr datasets based on the design of
BBVD described in section III. Comparative experiments are
conducted using the models and evaluation metrics described
in section IV.

A. Preprocess

1) Code slices:: For the SARD, Big-Vul-All and Big-Vul-
MemCorr datasets, we extracted four types of code slices,
corresponding to the API function call, array usage, pointer
usage and arithmetic expression, respectively.

• The API function call related code slices: We extract
135,145 from SARD, 68,686 from Big-Vul-All and 6,381
from Big-Vul-MemCorr.

• Array usage related code slices: We extract 56,346 from
SARD, 11,566 from Big-Vul-All and 4,953 from Big-Vul-
MemCorr.

• Pointer usage related code slices: We extract 318,912
from SARD, 161,596 from Big-Vul-All and 4,525 from
Big-Vul-MemCorr.

• The arithmetic expression related code slices: We extract
7,810 from SARD, 16,842 from Big-Vul-All and 5,192
from Big-Vul-MemCorr.

Since there are still duplicates in the above extracted code
slices, we need to de-duplicate these data. For the SARD
dataset, the API function call related code slices are reduced
from 135,145 to 69,432; the array usage related code slices
are reduced from 56,346 to 24,680; the pointer related code
slices are reduced from 318,912 to 128,492; the arithmetic
related code slices are reduced from 7,810 to 6,956. The
total number of non-duplicate data in the SARD dataset is
229,560, of which 44,447 are vulnerable and 185,113 are non-
vulnerable. For the Big-Vul-All dataset, the API function call
related code slices are reduced from 68,686 to 29,865; the array
usage related code slices are reduced from 11,566 to 6,151;
the pointer related code slices are reduced from 161,596 to
101,804; the arithmetic related code slices are reduced from
16,842 to 15,476. The total number of non-duplicate data in the
Big-Vul-All dataset is 153,287, of which 19,908 are vulnerable
and 133,379 are non-vulnerable. Table II describes the number
of extracted code slices for the SARD, Big-Vul-All and Big-
Vul-MemCorr datasets.

2) Tokenizer:: Tokenization is an important step in natural
language processing which breaks long texts such as sentences,
paragraphs, and articles down into word-based data structures
for subsequent processing and analysis work. In order to
translate code slices into vectors that can be recognized by
the BERT-based models, we need a tokenizer to translate them
into vectors which can be recognized by BERT-based models.
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TABLE II. NUMBER OF CODE SLICES EXTRACTED FROM DATASETS

Datasets Slices Type Total
Slices

De-duplicated
Slices

Vul
Slices

Non-Vul
Slices

SARD API Related 135145 69432 12786 56646
SARD Array Related 56346 24680 7195 17485
SARD Pointer Related 318912 128492 11680 116812
SARD Arithmetic Related 7810 6956 12786 56646

Big-Vul-All API Related 68686 29865 4919 24946
Big-Vul-All Array Related 11566 6151 325 5826
Big-Vul-All Pointer Related 161596 101804 13406 88398
Big-Vul-All Arithmetic Related 16842 15476 1258 14191

Big-Vul-MemCorr API Related 6381 2064 538 1526
Big-Vul-MemCorr Array Related 4953 1067 204 863
Big-Vul-MemCorr Pointer Related 4525 3154 657 2587
Big-Vul-MemCorr Arithmetic Related 5192 2911 440 2471

Specifically, we used two tokenizers in experiments, one
based on byte-pair encoding and the other based on wordpiece.
DistilBERT and MobileBERT model use tokenizer based
wordpiece. RoBERTa use tokenizer based byte-pair encoding.

• Tokenizer based byte-pair encoding (BPE). BPE is an
algorithm for encoding based on byte pairs. The algorithm
is described as a cascading iterative process in which the
most frequent pair of characters in a string is replaced by
a character that does not appear in the string.

• Tokenizer based wordpiece. The wordpiece method is
very similar to BPE in general, except that when selecting
characters for merging, BPE uses the highest frequency,
while wordpiece uses the highest probability.

B. Experiments for RQ1

To answer RQ1, we use SySeVR to perform the vul-
nerability detection on the SARD and Big-Vul datasets, re-
spectively. We use the detection results as a benchmark. The
BERT-based models are then used to perform the detection
on the same datasets and the detection results are com-
pared with the benchmark. In detail, the BERT-based models
used in RQ1 is the same as that described in section IV.
All BERT-based models used in this paper are pretrained
for 10 epochs with learning rate=1e-04 and fine-tuned for
10 epochs with warmup steps=1000, learning rate=1e-05,
weight decay=0.1. The loss functions used for both pre-
training and fine-tuning phase are cross-entropy loss.

TABLE III. DETECTION RESULTS OF SARD (THE METRICS UNIT: %)

Model Dataset A P R F1 MCC

BGRU(SySeVR) SARD 95.16 89.63 86.36 87.97 84.96
BLSTM(SySeVR) SARD 95.06 88.65 86.99 87.81 84.72
RoBERTa SARD 95.42 85.25 93.90 89.37 86.63
DistilBERT SARD 95.39 88.01 89.73 88.86 85.97
MobileBERT SARD 95.02 84.56 92.56 88.38 85.36

Table III shows the detection results of 2 RNN-based
models and 3 BERT-based models on the SARD dataset. The
entire SARD dataset is divided into a training set and a test set
after randomly sorted, with four-fifths of the training set and
one-fifth of the test set. The RNN-based model is trained with
the training set and tested with the test set. The BERT-based
model is pre-trained with the entire SARD dataset, fine-tuned
with the training set, inferred with the test set, and the inference
results are compared with the benchmark.

In terms of F1, and the MCC metric, all the three BERT-
based models outperform RNN-based models. Among the
BERT-based models, RoBERTa has the best result. The cor-
responding F1 and the MCC metric is 93.90%, 89.37%, and
86.63%, respectively. All the BERT-based models outperform
RNN-based models in accuracy metrics except MobileBERT.
As for the precision metric, although the RNN-based model
exceeds the BERT-based models, the recall rate of BERT-based
models outperform RNN-based models. That is, the BERT-
based model has a lower miss detection rate. Also, considering
the metrics F1 and MCC, the overall detection effect of the
BERT-based model is better than that of the RNN-based model.

TABLE IV. DETECTION RESULTS OF BIG-VUL-ALL (THE METRICS
UNIT: %)

Model Dataset A P R F1 MCC

BGRU(SySeVR) Big-Vul-All 70.69 13.09 14.30 13.67 -3.94
BLSTM(SySeVR) Big-Vul-All 72.41 12.90 12.18 12.53 -3.82
RoBERTa Big-Vul-All 83.96 9.97 9.32 9.63 0.85
DistilBERT Big-Vul-All 84.23 11.16 10.32 10.72 2.09
MobileBERT Big-Vul-All 83.97 9.24 8.46 8.83 0.07

Table IV shows the detection results on the Big-Vul-All
dataset. Compared to the detection results on the synthetic
dataset SARD, the detection results show a huge drop. This
means that real vulnerabilities have complex syntax and se-
mantic infomations and it is impractical to experiment on Big-
Vul-All, which covers multiple vulnerabilities. Therefore, we
focus on one vulnerability type called memory corruption and
perform experiments on the Big-Vul-MemCorr dataset.

TABLE V. DETECTION RESULTS OF BIG-VUL-MEMCORR (METRICS
UNIT: %)

Model Dataset A P R F1 MCC

BGRU(SySeVR) Big-Vul-MemCorr 69.90 42.55 26.08 32.34 15.11
BLSTM(SySeVR) Big-Vul-MemCorr 70.50 44.73 29.56 35.60 18.12
RoBERTa Big-Vul-MemCorr 71.94 48.87 37.82 42.64 24.82
DistilBERT Big-Vul-MemCorr 66.78 39.46 38.26 38.85 16.06
MobileBERT Big-Vul-MemCorr 72.18 49.13 24.78 32.94 19.39

Table V shows the results of several models on Big-
Vul-MemCorr. Because the vulnerability types in Big-Vul-
MemCorr dataset all fall into one category, the detection results
are much better than those for Big-Vul-All. Of these five
models, the one works best is the RoBERTa model. Its accu-
racy reaches 71.94%, precision reaches 48.87%, recall reaches
37.82%, F1 reaches 42.64% and MCC reaches 24.82%. Such
results also illustrate that, despite the complexity of the real
vulnerability types, it is feasible to use the BERT-based model
for detection if only one vulnerability type is targeted.

C. Experiments for RQ2

To answer RQ2, we use different combinations of three
datasets (SARD, Big-Vul-All and Big-Vul-MemCorr) de-
scribed in section IV in the pre-training phase and fine-tuning
phase. Similarly, the BERT-based model is also shown in
sectionIV. The combination of datasets has the following five
combinations (COMBs).

• COMB1: Pre-training phase and fine-tuning phase using
SARD dataset.
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• COMB2: Pre-training phase using Big-Vul-MemCorr
dataset and fine-tuning phase using Big-Vul-MemCorr
dataset.

• COMB3: Pre-training phase using Big-Vul-All dataset
and fine-tuning phase using Big-Vul-MemCorr dataset.

• COMB4: Pre-training phase using SARD dataset and fine-
tuning phase using Big-Vul-MemCorr dataset.

• COMB5: Pre-training phase using Big-Vul-All dataset
and fine-tuning phase using SARD dataset.

TABLE VI. DETECTION RESULTS OF COMBS (THE METRICS UNIT: %)

Max Length COMBs Metrics RoBERTa DistilBERT MobileBERT

512 COMB1

A 95.42 95.39 95.02
P 85.25 88.01 84.56
R 93.90 89.73 82.56
F1 89.37 88.86 88.38

MCC 86.63 85.97 85.36

512 COMB2

A 71.94 66.78 72.18
P 48.87 39.46 49.13
R 37.82 38.26 24.78
F1 42.64 38.85 32.94

MCC 24.82 16.06 19.39

512 COMB3

A 69.42 67.38 69.18
P 43.16 39.60 42.19
R 34.34 34.78 31.73
F1 38.25 37.03 36.22

MCC 18.49 15.21 16.73

512 COMB4

A 70.02 64.14 62.82
P 42.64 35.44 32.75
R 25.21 36.52 33.04
F1 31.69 35.97 32.90

MCC 14.88 11.08 7.19

512 COMB5

A 95.34 95.09 95.16
P 94.11 92.62 90.54
R 82.41 82.59 85.29
F1 87.87 87.32 87.84

MCC 85.29 84.50 84.88

Table VI shows the results of using different combinations
of datasets in the pre-training and fine-tuning phases. For
the comparison of COMB1 and COMB5 or the comparison
of COMB2 and COMB4, we can see that using the same
dataset for the pre-training and fine-tuning phases is helpful
for the vulnerability detection. All three BERT-based models
have slightly higher F1 on COMB1 than on COMB5 and on
COMB2 than on COMB4. In the comparison between COMB2
and COMB3, the two COMBs use different datasets in the
pre-training phase. The COMB2 uses Big-Bul-MemCorr, while
COMB3 uses Big-Vul-All. Both the RoBERTa and DistilBERT
models have better F1 and MCC metrics on COMB2 than
COMB3. This illustrates that the dataset used in the pre-
training phase can affect the detection results. Big-Vul-All
covers multiple vulnerability types, while Big-Vul-MemCorr
covers only one vulnerability type. If the model learns too
many vulnerability features in the pre-training phase it may
affect the detection results of a single vulnerability.

D. Experiments for RQ3

To answer RQ3, we set the maximum sequence length for
the BERT-based model to two lengths: 512 and 1024.

Table VII shows the results of the model for vulnerability
detection using different maximum sequence lengths. For
SARD, the total number of tokens in code slices less than
or equal to 512 is 142,303 and less than or equal to 1024 is

TABLE VII. DETECTION RESULTS WITH DIFFENENT MAX LENGTHS OF
IDS (THE METRICS UNIT: %)

Max Length COMBs Metrics RoBERTa DistilBERT MobileBERT

512 COMB1

A 95.42 95.39 95.02
P 85.25 88.01 84.56
R 93.90 89.73 82.56
F1 89.37 88.86 88.38

MCC 86.63 85.97 85.36

1024 COMB1

A 95.40 95.57 95.25
P 93.33 95.34 93.72
R 83.52 82.41 82.35
F1 88.16 88.40 87.67

MCC 85.52 86.04 85.02

512 COMB2

A 71.94 66.78 72.18
P 48.87 39.46 49.13
R 37.82 38.26 24.78
F1 42.64 38.85 32.94

MCC 24.82 16.06 19.39

1024 COMB2

A 69.30 68.22 64.62
P 43.36 40.93 39.05
R 36.95 34.34 50.43
F1 39.90 37.35 44.02

MCC 19.58 16.39 19.10

144,526. For Big-Vul-MemCorr, the total number of tokens in
code slices less than or equal to 512 is 2,430 and less than
or equal to 1024 is 3,135. If the maximum sequence length is
set to 512, the code slice will be truncated when the number
of tokens in the code slice is greater than 512. As a result,
these code slices lose some of their syntactic and semantic
information. However, the results on COMB2 show that it is
not the case that the larger the maximum sequence length, the
better the detection. The model does not detect as well at a
maximum sequence length of 1024 as it does at a maximum
sequence length of 512. At a maximum sequence length of
1024, the F1 of the RoBERTa model on COMB2 is about 5
percent lower than at a maximum sequence length of 512.

VI. CONCLUSION

In this paper, we propose BBVD by studying BERT-
based models for software vulnerability detection. Specifically,
the proposed BBVD uses C/C++ code for pre-training, fine-
tuning, and inferencing to detect vulnerability. Our results
show that these BERT-based models outperform existing RNN-
based models such as BiGRU and BiLSTM for vulnerability
detection. There are still issues that can be investigated, such
as detection results on real datasets are not as good as on
synthetic datasets. Future work should use more real vulnera-
bility datasets to improve the effectiveness of the BERT-based
models in detecting vulnerability.
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