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Abstract—Deep Learning algorithms have become more popu-
lar in computer vision, especially in the image classification field.
This last has many applications such as moving object detection,
cancer detection, and the classification of satellite images, also
called images of land use-land cover (LULC), which are the scope
of this paper. It represents the most commonly used method
for decision making in the sustainable management of natural
resources at various geographical levels. However, methods of
satellite images analysis are expensive in the computational time
and did not show good performance. Therefore, this paper, on
the one hand, proposes a new CNN architecture called Modified
MobileNet V1 (MMN) based on the fusion of MobileNet V1 and
ResNet50. On the other hand, it presents a comparative study of
the proposed model and the most used models based on transfer
learning, i.e. MobileNet V1, VGG16, DenseNet201, and ResNet50.
The experiments were conducted on the dataset Eurosat, and they
show that ResNet50 results emulate the other models.
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I. INTRODUCTION

Nowadays, the artificial intelligence domain is knowing an
important development, especially in image classification. It is
one of the most common challenges in computer vision [1].
Indeed, it refers to the categorization of images into one of
many predetermined classes. A single image can be classified
into a number of different categories. However, manually
inspecting and classifying images can be time-consuming,
especially when the images have a large size. Thus, automating
the process would be extremely beneficial [2].

Image classification is used in several domains [3], [4] e.g.
medicine, videos surveillance, economy, and agriculture espe-
cially for the classification and categorization of Land Use-
Land Cover (LULC) images. Moreover, at the local, regional,
and national levels, the LULC classification plays an important
role in program planning, management, and monitoring [5]. On
the one hand, The LULC information helps in understanding
the land occupation issues, and on the other hand, it is crucial
in the constitution of policies and programs that are necessary
for development planning. Furthermore, it is important to
track the LULC pattern’s evolution throughout time in order

to ensure long-term development. To accomplish sustainable
urban growth and to control the random expansion of cities,
urban development authorities need such planning models that
allow every available piece of land to be used in the most
reasonable and optimal way possible. It requires knowledge
of the area’s current and previous LULC. In addition, the
LULC maps can be used to track changes in our ecosystem
and environment [6], [7], [8].

Currently, image processing of LULC using deep learning
algorithms is gaining more attention [9], [10], [11]. Since, they
outperformed the classical approaches, even if the interpreta-
tion of LULC images requires good agricultural experience.

The main objective of this work is to study the efficiency
of deep convolutional neural network (CNN) architectures for
LULC image classification. Thus, our work aims to solve the
following research questions: (1) Is there any deep learning
technique that consistently outperforms the other ones? (2) Is
it possible to use deep learning to correctly categorize LULC
images and surpass previous methods? (3). What is the highest
level of accuracy that DL can attain with LULC images ?

The contributions of our paper are the following: we design
a comparison between different fine-tuned DL architectures
(VGG16, DenseNet201, ResNet50 and MobileNet V1) and a
Modified MobileNet V1 (MMN) architecture that combines
MobileNet V1 and ResNet50 on several levels namely: per-
formance, and amount of parameters etc. Since there is a lack
of LULC image datasets, the different models were evaluated
on the Eurosat dataset [4] of LULC images and on the same
dataset using data augmentation techniques. The rest of this
paper is organized as follows: The second section presents the
literature review, the section three provides the used methods
and materials. Section four exposes the experimental results.
Section five provides the discussion, and the paper is concluded
in the last section.

II. LITERATURE REVIEW

A. LULC Classification Datasets

There are several LULC classes, such as developed or
urban areas, farmland, and wooded areas, and so on. LULC
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maps have many applications such as conservation of natural
resources, entry of GIS data, delineation of tax and property
boundaries, etc. Unfortunately, the existing and published
datasets are rarely labeled, which makes the classification
process very challenging. Thus, some datasets have been
proposed, but each of them has a disadvantage. For example,
the UC Merced dataset [12], [13], [14], [15], [16], which
has been suggested by [16], contains 21 land use land cover
classes with 100 images per class and is extracted from USGS
National Map Urban Area Imagery. However, this dataset is a
bad choice for a comparison based on deep learning models
because it has a very small number of images.

Although PatternNet [17] and NWPU-RESISC [18] have
high resolutions, they share the same issue of having 100
images per class. Additionally, SAT-6, which was developed by
[19], has six classes: barren land, trees, grassland, roads, build-
ings, and water, and has a resolution of 1 m/pixel and a size
of 28×28 and the images were produced using imagery from
the National Agriculture Imagery Program (NAIP). Moreover,
the AID Dataset, which was first presented by [15], includes
30 classes with 200-400 images each with a size of 600×600.

B. LULC Classification Methods

Several methods have been proposed in the field of LULC
classification. There are the traditional methods based on
color analysis, shape and texture, or a combination of all
this information [20], [21], but their effectiveness in the real
world is still constrained. To solve the limitations of the old
methods, numerous modeling tools, including dynamic, statis-
tical methodologies, have been employed to create accurate
simulations that consider economic, spatiotemporal and social
factors [22]. Remote sensing imaging classification, anomaly
detection, and prediction issues can be resolved using machine
learning modeling. Maximum likelihood classifiers, Markov
chain models, support vector machines, Markov chain models
and other machine learning algorithms have been historically
used to classify images [23], [7], [8], [11], [24]. But, in recent
years, with the advancement in the performance of computing
units, several approaches in the context of deep learning have
been used. In order to provide superior performance for the
treatment and classification of images (categorical image map-
ping and classification using convolutional neural networks
(CNN)), deep learning models outperform traditional models
in extracting spatial characteristics at various levels of remote
sensing images [25]. A method in [10] presents an architecture
called Joint Deep Learning (JDL), which integrates a multi-
layer perceptron (MLP) and a convolutional neural network
(CNN) and is implemented via a Markov process.

In [6], Scale Sequence Joint Deep Learning (SS-JDL) is
introduced as a new DL method for LULC classification. The
effectiveness of this SS-JDL method has been tested on the
digital aerial photography of three complex and heterogeneous
landscapes. Thus, In [26] a simple discriminative CNN (D-
CNN) method is proposed to improve the performance of
remote sensing image scene classification. Furthermore, the
spectral and spatial information content of remote sensing
images is captured and utilized in [27] and employing a
multi-attention method using a bidirectional long-term memory
network. To address the imbalance in LULC classes, a recent
work in [28] recommended the use of oversampling, while in

[29], the authors suggest using consensus-based collaborative
multi-label learning to balance labels. To explain the model
predictions in [30], the authors tested various interpretable
artificial intelligence methodologies while using the DenseNet
model [31]. The framework for learning deep representations
of spectral bands for the same purpose is finally proposed in
[32].

The deep CNNs utilized in this paper were improved using
a pre-trained network in the context of deep learning. The
ILSVRC-2012 image classification challenge dataset served as
the main source of pre-training data for the networks. Even
though these pre-trained networks were developed on images
from a completely unrelated field, the features generalized
effectively [33], [34]. As a result, it was discovered that the
pre-trained networks were appropriate for classifying remote
sensing images. Consequently, we use for comparison some
deep CNN models like VGG16 [35], ResNet50 [36], Mo-
bileNet V1 [37] and DenseNet201 [31] which represent the
state of the art for the classification of the introduced LULC
classes.

III. MATERIALS AND METHODS

Recent studies have proved that DL algorithms are very
efficient in image processing and computer vision [38].
They have been applied in various remote sensing imaging
modalities with high performance [39] in segmentation,
detection and classification. Although these technologies
have shown promising results in remote sensing, they
require a lot of data. Motivated by the success of DL and
remote sensing image processing, our work will present a
comparative study between a new CNN architecture that
combines the MobileNet V1 architecture with the concept
that characterizes the ResNet50 architecture and different
DL architectures (VGG16, ResNet50, MobileNet V1 and
DenseNet201) (application in the LULC domain).

Dataset Data Preprocessing
and Splitting

Image
Processing

Data
Augmentation

Training and
Classification

Deep Learning
Architectures.

Proposed CNN
Architecture

Results Identify
Class

Image Acquisition

Fig. 1. Process of LULC Classification

Fig. 1 illustrates the used processes to compare the
various models. The first step is image acquisition. Then,
the preprocessing and splitting of data. Finally, training, and
classification.

A. LULC classification

LULC data indicates the extent of an area covered by
forests, wetlands, impervious surfaces, agriculture, and other
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land and water types [40]. It refers to the categorizing or clas-
sification of human activities and natural landscape elements
over a period of time using scientific methodologies.

With this information, it is possible to better understand the
effects of natural phenomena and human use of the landscape
[40]. Maps can be also used to assess urban growth, model
water quality issues, predict flood and storm surge impacts,
track wetland loss and potential sea level rise impacts, priori-
tize conservation efforts, and compare land-cover changes with
environmental effects or linkages in socioeconomic changes
like population growth [23].

In the literature, there exist several approaches of features
extraction from remote sensing images. In this context, CNNs
are a sort of neural network [16], that is considered as the
state of the art of image classification approaches [4] due to
its good results.

B. Data Preprocessing

Even if some DL architectures can handle 13 bands of
images as an input, they can not use the TIFF files. Therefore,
all the images should be converted to RGB format. In order
to avoid over-fitting, data augmentation was applied after the
preprocessing and only to the training data. Additionally, some
geometrical transformations were included i.e. rescaling, rota-
tions, shifts, shears, zooms, and flips. We also used multiple
augmentation approaches to build a new image from each input
image.

C. Training and Classification

1) Convolutional neural network: CNN is not merely a
deep neural network with many hidden layers. It is a deep
network that analyses and recognizes images based on the
brain’s visual cortex. This is how CNN differs from previous
neural networks in terms of idea and function [41]. It also
gets its name from an operation called convolution, a linear
mathematical action involving matrices. CNN has several
layers, including a convolutional layer, a non-linearity layer,
a pooling layer, and a fully-connected layer [1].

The pooling and non-linearity layers do not contain any
parameters, while the convolutional and fully-connected layers
do. In terms of machine learning issues, CNN performs excep-
tionally well. Specifically, in applications dealing with high
resolution images [42]. CNN collects features from images
automatically by constructing many convolution layers [43]
resulting in a feature hierarchy. The shallower front convolu-
tion layer employs a smaller perceptual domain, allowing it
to learn some features of the local image, whereas the deeper
back convolution layer employs a broader perceptual domain,
allowing it to learn more features [1].

2) Deep learning architectures:

a) VGG16: Simonyan and Zisserman proposed the Vi-
sual Geometry Group (VGG) CNN architecture in 2014, and
it won the ILSVR competition. VGG16 enhances the decision
function by replacing the huge filters with numerous 3 × 3
filters one after the other and 2×2 for max pooling, resulting
in a more discriminative decision function (decrease in the
number of parameters). VGG16 is easy to understand and
utilize because it only has two layers: convolution and pooling

[35], [44]. There are a total of 16 weighted layers, as indicated
by the number 16.

b) ResNet50: ResNet50 is a deep residual network
created by K. He, X. Zhang, S. Ren, and J. Sun in 2015, and it
won the ILSVRC 2015. It’s a model that tackles the problem
of disappearing gradients (gradient tends to zero quickly) by
using a novel notion called skip connection (stacking convo-
lution layers and adding the original input to the convolution
block’s output). ResNet50 is made up of five stages, each with
a convolution and identity block and three convolution layers.
ResNet50 uses images with a resolution of 224× 224 pixels
and has 50 residual networks [45], [36].

c) MobileNet V1: MobileNet V1 is a 28-layer archi-
tecture that accepts input images that are 224×224×3 pixels
in size. It introduced the notion of Depthwise Separable
Convolution, in which two 1D convolutions with two kernels
are used instead of a single 2D convolution to minimize
the model’s size (fewer parameters) and complexity (fewer
multiplications and additions). MobileNet V1 also adds two
new global hyperparameters (width multiplier and resolution
multiplier) that allow model developers to trade latency or
accuracy for speed and compact size based on their needs [37],
[46].

d) DenseNet201: The dense convolutional network
(DenseNet201) is a CNN with 201 depth layers that takes a
224×224 input image. DenseNet201 is a ResNet improvement
that incorporates dense layer connections. Each layer receives
more inputs from the all preceding layers and delivers its own
feature maps to the layers below it. Concatenation is used by
each layer to obtain ”collective knowledge” from all previous
layers. DenseNet outperforms ordinary networks by reducing
processing requirements, reducing the number of parameters,
encouraging feature reuse, and improving feature propagation
[31], [47].

D. Proposed Architecture Modified MobileNet V1 (MMN)

The input layer, convolutional layers, pooling layers, fully
connected layers, and the output layer are the five layers that
make up a CNN model. Furthermore, a CNN model can be
trained from end to end to enable feature selection, extraction
and prediction or classification. It’s difficult to figure out how a
network understands and analyzes an image. However, features
extracted by layers of a network have been demonstrated to
outperform human-built features [48].

Our model is a combination of the MobileNet V1 and
ResNet50 architectures. We took the same architecture of the
MobileNet V1 which uses the notion of depthwise separable
convolution, and we optimized it by adding the notion of
skip connection, which characterizes the ResNet50 model. It
means that we add the output of a layer to the next one. This
is to try to improve the results of MobileNet V1 by providing
an alternate gradient path, and it has been experimentally
proven that these additional paths are frequently beneficial for
model convergence.
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Fig. 2. Architecture of proposed CNN MMN

The proposed CNN MMN has the following architecture
(Fig. 2):

• Input layer: the inputs are images with dimension
(244×244).

• Convolutional layers: a convolution is a linear process
that involves the input and a set of weights. It’s made
for two-dimensional inputs, with multiplication taking
place between a two-dimensional array of weights
(filters) and an array of input data. We have three sorts
of layers in the proposed architecture MMN : one with
a 3× 3 size filter and the same padding, one with a
1× 1 size filter and the same padding, and one with
a 1×1 filter and valid padding.

• Depthwise separable convolution : This layer was
employed in our architecture with the same padding
and a 3×3 filter.

• Pooling layers: a technique for subsampling feature
maps by aggregating the presence of features across
feature map patches. Average pooling and maximal
pooling are two different types of pooling algorithms.
To calculate the average value in each patch for each
feature map in the proposed design, we used avg-
pooling.

• BatchNormalization: This method involves refocusing
and rescaling layer inputs to normalize them and
makes artificial neural networks faster and more sta-
ble.

• After each BatchNormalization, we employed Recti-
fied Linear Unit Layers (ReLU).

• Fully connected layers: they treat input data as a single
vector and produce a single vector as output.

IV. RESULTS

A. The Used Dataset

Fig. 3. Dataset classes [4]

TABLE I. EUROSAT DATA DISTRIBUTION

Class name Number of images

Annual Crop 3000
Forest 3000

Herbaceous Vegetation 3000
Highway 2500
Industrial 2500
Pasture 2000

Permanent Crop 2500
Residential Buildings 3000

River 2500
Sea and Lake 3000

In this study, We used the EuroSAT database of Sentinel-
2 images of differents European cities. It contains 27000 of
64× 64 images. It covers several classes [4] i.e., Industrial
Buildings, Residential Buildings, Sea and Lake, Herbaceous
Vegetation, Annual Crop, Permanent Crop, River, Highway,
Pasture, Forest (Fig. 3, Table I).

TABLE II. SENTINEL-2 BANDS, WAVELENGTH, AND RESOLUTION [4]

Sentinel-2 Bands Central Wavelength (µm) Resolution (m)

Band 1 – Coastal aerosol 0.443 60
Band 2 – Blue 0.490 10

Band 3 – Green 0.560 10
Band 4 – Red 0.665 10

Band 5 – Vegetation Red Edge 0.705 20
Band 6 – Vegetation Red Edge 0.740 20
Band 7 – Vegetation Red Edge 0.783 20

Band 8 – NIR 0.842 10
Band 8A – Vegetation Red

Edge
0.865 20

Band 9 – Water vapour 0.945 60
Band 10 – SWIR – Cirrus 1.375 60

Band 11 – SWIR 1.610 20
Band 12 – SWIR 2.190 20

Sentinel-2 data is multispectral, with 13 bands covering
the visible, near-infrared, and shortwave infrared spectrum
(Table II). Since these bands are available in various spatial
resolutions ranging from 10 m to 60 m, the images can be
classified as high-medium resolution. Although data from other
satellites with higher resolution (1 m to 0.5 cm) is available.
Sentinel-2 data is free and has a long revisit duration (5 days),
making it a good choice for LULC monitoring.
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B. Evaluation Metrics

After training the various architectures, the final step is to
evaluate the performance of the used architectures. Among the
various classification performance properties, our research uses
the following benchmark metrics: Accuracy (ACC), Precision
(PRE), Recall, F1-score (F1) [49].

– Accuracy :
Accuracy is the proportion of true results among the total
number of cases examined.

ACC =
(T P + T N)

(T P+ FP+ FN + T N)
(1)

– Precision:
Precision is the proportion of predicted positives that are
actually positive.

PRE =
(T P)

(T P+ FP)
(2)

– Recall:
Recall is the proportion of actual positives that are correctly
classified.

PRE =
(T P)

(T P+ FN)
(3)

– F1-score:
The F1-score is a number between 0 and 1 and is the harmonic
mean of precision and recall.

PRE = 2× (precision× recall)
(precision+ recall)

(4)

Where: TP stands for: True Positive. FP: False Positive.TN:
True Negative, and FN: False Negative.

C. Results without Data Augmentation

Our research was conducted on a publicly available image
dataset of LULC images (Eurosat Dataset [4]) and on the
same dataset using data augmentation. During the experimental
study, 80% of images were used for training and 20% for
testing and validation, and this operation was repeated 20 times
randomly, the average of the results was retained. This using
the following experimental parameters for classification: All
images in the dataset were 64×64 pixels, with the exception
of the proposed model image, which was scaled to 224×224
pixels. Thus for the data augmentation techniques, we trained
the different models with an image size of 224 × 224. We
used a batch size of 32 and a total of 20 epochs to train
the models. For optimization, Adam is used with β1 = 0.9,
β2 = 0.999, and the learning rate is set to 0.0001. As a
result, a ReduceLROnPlateau with a min lr of 1e-20 and
val accuracy as the monitor is employed. We utilized the
ReLU to train a fully connected layer, and we changed the last
dense layer in all models to yield 10 classes corresponding
to the distinct classes in the Eurosat database [4], rather
than the 1000 classes used by ImageNet. The results of the
Eurosat image classification with the following architectures
(Proposed Architecture, Fine–tuning the top layers of VGG16,
ResNet50, DenseNet201, and MobileNet V1) are shown in
this section. Several experiments were carried out to evaluate
the performance and resilience of each given model, based on
the cited metrics in Section IV-B and the confusion matrix.

TABLE III. DIFFERENT METRICS OF THE PROPOSED ARCHITECTURE
MMN

Metrics Training Testing

Accuracy 99.09% 94.01%
F1-Score 99.08% 94.02%

Recall 98.96% 93.9%
Precision 99.2% 94.8%

Loss 0.03 0.18

1) Proposed Architecture Modified MobileNet V1 (MMN):
According to Table III, we observe that the accuracy of the
training data is remarkably high compared to testing, with
values of 99.09% and 94.01% respectively, and this is the case
for all the other metrics (F1-score, Recall, Precision). However,
the loss metric has been significantly increased from training
to testing with values of 0.03 and 0.18, respectively.

Fig. 4. Confusion matrix of proposed architecture MMN

From the confusion matrix (Fig. 4), we note that the most
recognized class is “Residential” with 607 images. Therefore,
for “Pasture” the model was able to identify just 373 images.

TABLE IV. DIFFERENT METRICS OF VGG16

Metrics Training Testing

Accuracy 100% 96.9%
F1-Score 100% 96.87%

Recall 100% 96.84%
Precision 100% 96.89%

Loss 2.8e-05 0.18

2) VGG16: Table IV shows the Accuracy, F1-score,
Recall, Precision, and loss of VGG16. Indeed, the accuracy
decreased from training to testing with a différence of -3.1%.
The same was noticed in the other metrics except for the loss
which increased from the value of 2.8e-05 for training to 0.18
for testing.
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Fig. 5. Confusion matrix of VGG16

Fig. 5 shows the confusion matrix of the VGG16 model,
which illustrates that 609 images were correctly labeled as the
“Residential” class, but only 378 images for “Forest” were
classified by the model.

TABLE V. DIFFERENT METRICS OF RESNET50

Metrics Training Testing

Accuracy 100% 96.31%
F1-Score 100% 96.34%

Recall 100% 96.28%
Precision 100% 96.4%

Loss 1.55e-05 0.17

3) ResNet50: Table V presents the obtained results with
the Resnet50 classifier. We observe an increase in the accuracy
of the training compared to the testing where its values are
equal to 100%, 96.31% respectively, and it is the same for the
other metrics. The value of F1-score for the training is equal
to 100%, while for the testing it is 96.34%. We also observe
that the recall and the precision have increased from the
training (100%, 100%, respectively) in comparison with the
testing (96.28%, 96.4%, respectively). For the loss function,
its value is equal to 1.55 e-05 for training and 0.17 for testing.

Fig. 6. Confusion matrix of ResNet50

As shown in Fig. 6, the most identifiable class is “Resi-
dential”, whereas the model was capable to predict only 377
images as “Pasture”.

TABLE VI. DIFFERENT METRICS OF MOBILENET V1

Metrics Training Testing

Accuracy 99.91% 76.31%
F1-Score 99.89% 76.37%

Recall 99.87% 74.96%
Precision 99.91% 77.88%

Loss 0.01 0.9

4) MobileNet V1: Table VI illustrates the obtained results
of MobileNet V1. The table shows a remarkable difference
between the results of the different metrics for the training data
compared to the testing data with values of 99.91%, 99.89%,
99.87%, 99.91% and 0.01 (Accuracy, F1-score, Recall, Pre-
cision, and Loss, respectively) for the training and for the
testing (76.31%, 76.37%, 74.96%, 77.88% and 0.9). According
to these results we can distinguish that the model overfit.

Fig. 7. Confusion matrix of MobileNet V1
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Fig. 8. Confusion matrix of DenseNet201

TABLE VIII. THE RESULTS OF THE PROPOSED CNN ARCHITECTURE
MMN WITH DATA AUGMENTATION

Metrics Training Testing

Accuracy 91.89% 90.79%
F1-Score 91.89% 90.79%

Recall 90.52% 89.75%
Precision 93.34% 91.91%

Loss 0.23 0.27

The confusion matrix (Fig. 7) indicates that the model can
correctly predict 550 images of the “SeaLake” class and just
255 images of the “Pasture” class.

TABLE VII. DIFFERENT METRICS OF DENSENET201

Metrics Training Testing

Accuracy 100% 94.07%
F1-Score 100% 94.11%

Recall 100% 93.98%
Precision 100% 94.24%

Loss 8.72e-05 0.25

5) DenseNet201: As shown in Table VII, we can observe
that accuracy, F1-score, recall and precision have remarkably
high values for training (100%, 100%, 100%, 100%) compared
to testing (94.07%, 94.11%, 93.98%, 94.24%), as well as for
loss which has decreased from testing (0.25) to training (8.72e-
05).

Concerning the confusion matrix (Fig. 8), the model was
able to correctly identify 609 images of the class “Residential”,
however only 364 images were correctly labeled as “Pasture”.

D. Results with Data Augmentation
In this section, we present the different results of the trained

models, but this time using data augmentation techniques on
the same dataset.

1) Proposed Architecture Modified MobileNet V1 (MMN):
According to Table VIII, we can see that the different metrics
do not vary remarkably from training to testing. There is a

Fig. 9. Confusion matrix of proposed CNN MMN

TABLE IX. DIFFERENT METRICS OF VGG16

Metrics Training Testing

Accuracy 96.87% 96.01%
F1-Score 96.87% 96.09%

Recall 96.49% 95.71%
Precision 97.26% 96.5%

Loss 0.09 0.12

TABLE X. DIFFERENT METRICS OF RESNET50

Metrics Training Testing

Accuracy 99.97% 97.59%
F1-Score 99.97% 97.61%

Recall 99.97% 97.59%
Precision 99.97% 97.63%

Loss 0.001 0.17

small decrease in the accuracy, the F1-score, the recall, and
the precision. However, the loss function was increased from
0.23 in training to 0.27 in testing.

From the confusion matrix (Fig. 9), we note that the model
correctly recognizes 595 images of the class “River”,the model
was also able to identify only 366 images of “Forest” and
“Pasture”.

2) VGG16: Table IX shows the accuracy, f1-score, recall,
precision and loss of the VGG16 model on the training data
and on the testing data. We notice that for all the metrics, there
is an insignificant difference between training and testing.

Concerning the confusion matrix (Fig. 10), the model was
able to classify 600 images of “Residential” as well as 367
images of the “Forest” class.

3) ResNet50: As shown in Table X, the different evalua-
tion metrics decreased from training to testing, with values of
more than 97% for testing and more than 99% for training.
The loss function showed a remarkable increase between the
two cases with 0.001 for training data and 0.17 for testing data.

For the confusion matrix (Fig. 11), the most recognized
class by ResNet50 is the “SeaLake” class with 599 images,
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Fig. 10. Confusion matrix of VGG16

Fig. 11. Confusion matrix of ResNet50

TABLE XI. DIFFERENT METRICS OF MOBILENET V1

Metrics Training Testing

Accuracy 97.18% 96.59%
F1-Score 97.17% 96.64%

Recall 97.03% 96.56%
Precision 97.32% 96.73%

Loss 0.08 0.12

therefore the least classified class is the “Forest” with just 392
images.

4) MobileNet V1: Table XI represents the evaluation
result of MobileNet V1 architecture. It shows that there is
a small difference between training and testing i.e. accuracy,
f1-score, recall, precision and loss.

As shown in Fig. 12, the model was able to recognize
correctly 596 images of the class “River” and only 375 for the
class “Forest”.

Fig. 12. Confusion matrix of Mobilenet V1

TABLE XII. DIFFERENT METRICS OF DENSENET201

Metrics Training Testing

Accuracy 98.77% 97.24%
F1-Score 98.74% 97.27%

Recall 98.62% 97.18%
Precision 98.87% 97.36%

Loss 0.03 0.09

Fig. 13. Confusion matrix of DenseNet201

5) DenseNet201: All metrics have a minimal variation
between training and testing, as shown in Table XII, with the
exception of loss, which has a small increase between training
and testing.

Fig. 13 shows that 593 images were correctly marked as
“SeaLake” and “River”, but the model was able to identify just
389 images of “Forest”.
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E. Results on Real Images

The satellite image was acquired in the surroundings of
Berrechid, Morocco, in May 2022, we took two patches from
it to test several classifiers.

Fig. 14. The results of the different models

The Fig. 14 shows the results of the different models
on two real images. We notice that for the proposed archi-
tecture MMN, the model gave as classification for the first
image “Herbaceous Vegetation” and for the second image
“Residential”. For VGG16 and ResNet50, we got “Highway”
for the first image which is clearly wrong classification, and
“Industrial” for the second, while MobileNet V1 has classified
the first and second image as “AnnualCrop”, which can not
be possible for the second one. Finally, for DenseNet201,
the model gave an erroneous classification for the first image
(SeaLake) and classified the second as “Industrial”.

Fig. 15. The results of the different models with data augmentation

The obtained results with data augmentation are shown
in the Fig. 15. We can observe that the proposed method
identified the first image as “Herbaceous Vegetation” and
the second as “Industrial”, while VGG16 classified the 2
images as “Industrial” which can’t be true for the first image.
For ResNet50 and MobileNet V1, they recognized the first
image as “Permanent Crop” and the second as “Industrial”.
DenseNet201 identified the first and second image as “Resi-
dential”, it gave wrong classification for the first image.

V. DISCUSSION

In this study, we addressed the multiclass classification
of the LULC domain, based on the Eurosat dataset [4]. The
training was applied using transfer learning, in order to identify
the best architecture. The experimental study proved that the
neural networks architectures are very useful for LULC image
classification since they have shown high performance.

TABLE XIII. EVALUATIONS METRICS OF DIFFERENT ARCHITECTURES

Models Accuracy F1-Score Recall Precision Loss parameters
number

MMN 94.01% 94.02% 93.9% 94.8% 0.18 6402506

VGG16 96.9% 96.87% 96.84% 96.89% 0.18 15768906

ResNet50 96.31% 96.34% 96.28% 96.4% 0.17 27787658

MobileNet-
V1

76.31% 76.37% 74.96% 77.88% 0.9 3239114

DenseNet-
201

94.07% 94.11% 93.98% 94.24% 0.25 22259786

Table XIII compares the performance of each architec-
ture based on the mentioned metrics in Section IV-B, and
the number of parameters. From the results, it can be seen
that accuracy, F1-score, recall and precision when using the
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MobileNet V1 model are remarkably lower than the other
models, with values of 76.31%, 76.37%, 74.96% and 77.88%,
respectively, and this is due to the minimum number of
parameters (3.2 M). Furthermore, the DenseNet201 and the
proposed model showed the same performance except for
the loss function, which has a value of 0.18 for the pro-
posed architecture and 0.25 for DenseNet201. This with a
too small number of parameters (6.4 M) in comparison with
DenseNet201 (18.35 M), It is due to the fact that the extracted
features from the previous layer have been added to the next
layer. The main advantage of our architecture is that it needs
a small number of parameters.

Both the VGG16 and ResNet50 architectures perform well,
with 96% accuracy, F1-score, recall, and precision, which is
expected considering ResNet50’s depth and VGG16’s usage
of small filters. It can be seen that the MMN architecture is
almost as accurate compared to the other architectures while
being smaller in terms of parameters.

TABLE XIV. EVALUATIONS METRICS OF DIFFERENT ARCHITECTURES
WITH DATA AUGMENTATION

Models Accuracy F1-Score Recall Precision Loss parameters
number

MMN 90.79% 90.79% 89.75% 91.91% 0.27 6402506

VGG16 96.01% 96.09% 95.71% 96.5% 0.12 15768906

ResNet50 97.59% 97.61% 97.59% 97.63% 0.17 27787658

MobileNet-
V1

96.59% 96.64% 96.56% 96.73% 0.12 3239114

DenseNet-
201

97.24% 97.27% 97.18% 97.36% 0.09 22259786

Table XIV shows the obtained results of the different
architectures with the use of data augmentation. Based on the
presented results, ResNet50 and DenseNet201 showed good
performance with an accuracy of more than 97%. Thus, we
notice that data augmentation has improved the results for both
architectures. Then we have the MobileNet V1 and VGG16
with an accuracy of more than 96%. We also have for the loss
function, 0.09 for the DenseNet201 model, 0.12 for VGG16
and MobileNet V1, and an increase for ResNet50 with 0.17.
Therefore, we can see that MobileNet V1 with a lower number
of parameters was able to achieve such remarkable results
compared to the other models. Generally, this is expected since
data augmentation is one of the best techniques for reducing
overfitting. Table XIV shows that the MMN architecture was
able to achieve an accuracy of 90.79% which is a reduced value
compared to other architectures. This is most likely due to the
model’s limited capacity, which prevents it from learning all
of the patterns in the data, or because some architectures are
very sensitive to data augmentation.

VI. CONCLUSION AND PERSPECTIVES

In this work, we evaluated the performance of the auto-
mated methods used to classify LULC images into 10 classes
on the Eurosat dataset using four DL architectures (VGG16,
ResNet50, MobileNet V1 and DenseNet201) and a proposed
CNN architecture MMN based on a combination of the two
methods MobileNet V1 and ResNet50. Comparing the results,
we found that our architecture proved good performance but

performs poorly using data augmentation compared to the
other architectures. Therefore, our model needs to be adjusted
to get better performance on the dataset with data augmenta-
tion. We also found that the performance of the DenseNet201
model and the proposed architecture is equivalent but the
proposed model involves fewer parameters, which means it
requires less memory consumption. In the experiment, we
found that with and without the use of data augmentation, the
VGG16 and ResNet50 models perform well (accuracy greater
than 96%) compared to the other architectures. Moreover,
we noticed that MobileNet V1 can efficiently classify LULC
images in the case of data augmentation, but with the original
dataset its results were poor.

The proposed model will be improved by applying pa-
rameter tuning and studying the loss function. In addition,
the used dataset in the training phase has a high impact on
the efficiency of the model, thus it is very important to test
the model with another dataset. Since each model has its
own method to extract features, which highly influences the
classification accuracy, we aim to study deeply the layers of
feature extraction in order to improve the proposed model
efficiency.
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APPENDIX

APPENDIX A. TERMS AND THEIR ABBREVIATIONS

LULC: Land Use and Land Cover.
DL: Deep Learning.
CNN: Convolutional Neural Network.
GIS: Geographic Information System.
MMN: Modified MobileNet V1.
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