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Abstract—The manufacture of plastic parts requires a rigor-
ous visual examination of its production to avoid the shipment of
some that would be defective to its customers. In an attempt to
ease the detection of scratches on plastic parts, the prototype of
a computer-assisted visual inspection system was developed. The
aim of this paper is to introduce how we explored ways to design a
semi-automatic system comprising of a lamp whose orientations
and intensities help in revealing irregularities on subjects that
would have been missed with a unique light configuration. This
process was qualified as “hardware data augmentation”. The
pictures collected by our system were then used to train several
convolutional neural networks (YOLOv4 algorithm/architecture).
Finally, the performances of their models were confronted to
evaluate the effects of the different light settings, and deduce
which parameters are favourable to capture datasets leading to
robust defect detection systems.

Keywords—Augmentation technique; deep neural network; im-
age processing; light emission; object detection

I. INTRODUCTION

The appearance of a product is the first and foremost
characteristic that will attract, or repel, a customer. One of
the key factors for an “appealing aspect” is the lack of flaws
in the final product. Indeed, if defects are visible on an item,
it will be considered poorly made. Therefore, it is essential
for a manufacturer to carefully design its processes so that
irregularities become as rare as possible.

Companies have been striving to produce quality products
by implementing verification procedures in crucial stages of
their production. In the plastic industry, for example, it is
frequent for operators to be tasked with observing the surfaces
of plastic parts under some light and comparing them with
typical flawless pieces as validation standards. These pieces
are moved to different positions, so the incident light may
expose defects that would otherwise have remained invisible.
However, visually inspecting parts is a fairly laborious and
time-consuming burden for a human and the accuracy of its
outcome may be unreliable. Among the few factors that can
alter the judgment of an operator, their lack of experience or
assiduity may certainly be the most common [1].

With the advent of artificial intelligence (AI), mostly deep
learning techniques, applied to the detection of elements in
pictures or video streams, industries have been trying to
develop systems that would automatically notify the presence
of defective items in their production lines. Nowadays, the
popular method to implement such an Al is via the usage
of Convolutional Neural Network (CNN) models [2], [3], [4],
whose algorithms and architectures enable them to extract

features from pictures (or videos) and classify their content
through pattern matching.

Although current CNNs are quite efficient in detecting
familiar categories of objects within pictures, they are still
perfectible when used for specific tasks in specialized fields.
For example, when integrated as monitoring tools on pro-
duction lines of plastic or metallic parts, the scarcity of
defective training data may lead to poor model performances.
A substantial and diverse dataset is often required for a deep
learning algorithm, such as CNNs, to produce an efficient
model [5]. Moreover, another problem comes from the fact
that an operator has to move and orientate the pieces in
different positions to reveal flaws that would not be noticeable
with a unique point of view and light incidence, since these
movements are hardly ever performed automatically by an
inspection system.

It is not rare for studies to explore ways that would expand
limited datasets or boost the efficiency of deep learning mod-
els, but these researches generally involve software solutions
revolving around image processing [6], [7]. In our case, we
looked into a hardware method to enhance the quality of
artificial networks’ trainings through the acquisition of datasets
whose elements have undergone physical data augmentations,
as opposed to artificial data augmentations. These physical
“data augmentations” come as fluctuations of both the bright-
ness and the orientation of a light exposing a target (i.e. the
object to be represented in the sets). This concept also aims to
be useful to help models in detecting defects, as the visibility
of the details of an item may vary with the intensity and the
angle of incidence of its illuminating lamp. These multiple
lighting conditions act as the movements an operator performs
during their inspection: moving items into different positions
and adjusting the brightness to facilitate their judgment, but
unlike these manual inspections, our concept aims to perform
these operations automatically.

II. RELATED WORK

Researchers have investigated numerous means of perform-
ing data augmentations for both the expansion of insufficient
assortments of pictures and for the creation of robust models.
Our study investigates yet another novel approach to collecting
and exploiting data targeting computer-assisted visual inspec-
tion of surfaces.

In deep learning, the size and diversity of a dataset are
critical to creating a decent model [5], in case of a restricted
set of training samples circumventing these limitations may
be required. Therefore, resorting to data augmentation is a
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common preprocessing step in deep learning [6], [7] (geo-
metric transformation, noise addition, mix of images, etc.).
Granted that the affinity of the new samples estimates them
close to the originals, this artificial inflation of a dataset’s
population permits reducing the risks of a model overfit while
improving its feature extraction capabilities, thus enhancing its
adaptability to new data [8].

Data augmentation involving synthetic manipulations of
the illumination of a picture is not unusual, whether it be
by modifying their “general” brightness [9], or by adding a
“synthetic” light source and shifting its position [10]. How-
ever, the majority of previous works revolve around software
augmentation to generate their data, which often results in
unnatural representations that may not be relevant to the
models.

Moreover, some softwares and appliances aiding in the
inspection of plastic parts already exist, such as the SavvyIn-
spector™ [11] from Savvy Optics Corp., but they often do not
include automatic image processing technologies nor consider
different lighting configurations. Several studies also aimed at
facilitating the examination of surfaces, but their experiments
often did not take the orientation of the light into consideration
[12], [13], [14].

Our study focused on the creation of a simple system
that made possible the acquisition of data that are physically
“augmented” through the different light settings used during
their capture. This method is useful to generate specimens
that are representative of occurrences a model will face in a
live setting. Pictures of defective plastic parts were collected
to train models, and the performances of these models on
common test samples have subsequently been compared.

III. IMAGE CAPTURING SYSTEM

In current industrial environments, visual inspections ne-
cessitating rigorous examinations are still predominantly per-
formed manually. So as to expose as many potential defects as
possible on products, the common procedure is to scrutinise
them under multiple lighting configurations. Operators are
required to adjust the positions of the objects’ surfaces, such
as in Fig. 1, so the angles of incidence of the rays emitted by
the light source can reveal deficiencies [15]. They may also
modify the brightness of the source, since it has an obvious
influence on the global visibility of the subjects they observe.
Nevertheless, an equilibrium is to be found: while a dim light
makes it difficult to distinguish details -if anything-, a bright
light can also alter vision by flooding a defective area, covering
its flaws with interfering glares.

In order to observe the effects distinct illumination settings
of samples have on the efficiency of a CNN model’s training,
we have developed a semi-automatic device equipped with a
light that automatically rotates around a subject while taking
pictures as it reaches a designated set of positions. Its diagram
is illustrated in Fig. 2 and its prototype is shown in Fig. 3.
However, the current system version still needs the user to
change the intensity of the light manually.

This system enables the capture of pictures with subjects
illuminated from multiple angles and with different lighting
brightness. The current prototype allows 256 levels of lumi-
nosity and has an amplitude of about 270°, since the support
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of the camera makes a full revolution impossible (as it gets
in the way of the arm holding the bar light as it rotates).
Because the target observed persists over a given set of light
configurations, we qualified the process by which the variety
of images was captured using our system as “hardware data
augmentations”, as opposed to a regular collection of pictures
that would have been taken in a unique light setting. The
augmentations thus engendered by our system took various
forms: appearances/disappearances of scratches, variations of
their shapes as well as shifts of their colors (or that of
their supports). Several images were thereby collected to train
multiple models on data having different light exposures. Their
incorporations into datasets are detailed further in a subsequent
section.

A. Hardware Components

Our device measures 50 by 50 by 50cm. Its constituting
elements, visible on the photograph in Fig. 3, are the following:

e A camera that collects shots of plastic pieces. Created
by Logitech, the C920 is a 1080p webcam that permits
a stream of 30 frames per second.

e An electrical motor that orientates the light. The
KM-1U is manufactured by Keigan Motor. It can be
controlled programmatically and has a step resolution
of about 0.05°.

e A light that illuminates the subjects that are observed.
This light bar, model TLB245x25-22WD-4, is made
by Aitec System. It can accept up to 24V and 0.3A,
which results in a maximum power of 7.2W.

e An adjustable power supply that regulates the light
intensity. The TPDP1B-2450NCW is made by Aitec
System. It has 256 (16*16) gradations and it can
output up to 24V+0.5V and 1.85A.

Thanks to its 256 gradations, the power supply made it
possible to fine-tune the luminosity level of the light. Since
the latter can accept up to 7.2W, each gradation of the power
supply represents a fluctuation of 0.028125W (7.2W / 256).

Finally, to run the software that operates our prototype and
to carry the CNN trainings, we used a laptop whose operating
system was Windows 10 and which included an Intel i17-8750H
@2.20GHz CPU, an NVIDIA GTX 1060 GPU and 16GB of
RAM.

B. Operating Software

A custom software had to be developed to enable a user
to control the acquisition device we created. Considering that
the operating system of our working station was Windows,
we thought that designing a program in C# on Visual Studio
was the most practical. The User Interface (UI) of the current
version is shown in Fig. 4. This Ul is divided into three main
sections:

e  Configuration: in this column are listed the elements
related to the establishment of connections with the
external peripherals (motor and camera) and the cre-
ation of the base file structure where captures will be
stored.

Configuration Parameters and controls Data visualisation
Serial port Motor parameters Motor data
Port name v Rotation type  Speed [deg/s]  Step [deg] Speed [deg/s] o
Disciete L s s
pum
Band rate 115200 | R Position [deg] o©
Bax
i tor cont
Data bits & Motor controls Yoeque [N [o
e Calibration
Camera Camera view
Source o v
Colensnen [
Flip  Original
rer R [ —
Storage
—r Shots parameters
Base name Format
C:\Users\fukulabo\}
‘ @ Placeholder_base_name BMP Shots taken
Root name
Placeholder_root_name Shots controls
Rotation folder
[7] enable creation
OK ERROR

Fig. 4. Interface of our image acquisition software

e Parameters and controls: this column contains the
components that enable the user to parameterize the
motor, select how the captures are to be taken (auto-
matically or manually) and control the motor manually
(if desired).

e Data visualisation: data coming from the system
(motor and camera) are shown within this space, so
the user can monitor the acquisition process.

This program allowed us to capture a lot of pictures
with ease and speed. Indeed, within the Parameters and
controls division, it is possible to specify the angular spacing
appropriate between two successive captures and to define the
movement of the camera as “automatic”’. However, as stated
previously, the current prototype necessitates the intensity
of the light to be set manually. Despite its resulting semi-
automatic nature, the device still fulfils the incommodious task
of rotating the light on its own, only leaving a simple punctual
intensity tuning to the operator, which makes for a prompt
acquisition process.

IV. EXPERIMENTS

In this section, we will specify the content of the datasets
that were gathered thanks to our system and how they were
used for experimental purposes. The objective of the tests
was to assess the performances of CNN models when the
parameters of physical light sources varied during the acquisi-
tion of the population of their training/validation sets. From
here onward, since each couple of training and validation
collections contain similar data, to facilitate the reading, they
will be referred to as a single entity: “training datasets”.

A. Experimental Conditions

The variables of our experiments were as follows:

e Independent variables: The effects of different illu-
mination settings, such as their brightness and their
orientation, were observed.
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Fig. 5. Samples of training and testing pieces with their lines distributions

e Dependent variables: The detection abilities of the
different models were measured thanks to the number
of True Positives (TP), False Negatives (FN) and False
Positives (FP) they output when handling testing data.
We also evaluated them through their precision and
recall, which are metrics derived from TP, FN and FP.

e  Control variables: Throughout our experiments, the
sizes of the training and validation datasets have been
kept at respectively 40 and 5 images. Every model has
been trained for 3000 iterations in Darknet, a neural
network framework used to train YOLO [16] models.
Furthermore, every model has been tested on the same
set of 24 pictures to ensure a consistent and reliable
baseline to confront the results.

B. Dataset Compositions

We formed 5 datasets based on photographs of six different
plastic parts created by cutting sheets of acrylic resin into 100
by 100mm squares. Lines have been etched onto the surfaces
of these pieces with a laser engraver, so that they mimic
scratches that can usually be found on items on a production
line, for example. Every piece comes with its own pattern of
lines, carved with determined sets of laser parameters (power,
speed and repetition), repeated in four different areas but with
decreasing lengths. The lines within the training pieces were
20mm, 15mm, 10mm and Smm long, while that of the testing
pieces were 7mm, 5.25mm, 3.50mm and 1.75mm long. The
aim was to obtain synthetic flaws that had different aspects.
A visual explanation of the line distributions can be found in
Fig. 5, in which features highlighted with a common color
were traced with the same laser configurations.

The pictures have all been collected by our semi-automatic
visual inspection system. In order to minimize the risks of
getting biased datasets, the pictures have been taken at night
time when no external source could interfere with the light
exposure of the pieces intended by the system.

1) Training data’s characteristics: Four pieces comprising
16 scratches each, listed in Fig. 6, were used to take 784
photographs. This amount of data is due to the number of
combinations possible with:

e 4 pieces whose scratches are tilted: 0°, 45°, 90°, 135°

e 7 light intensities: 0.45W, 0.9W, 1.35W, 1.8W, 2.25W,
2.7W, 3.15W

e 28 light positions: 0°, 10°, 30°, ..., 250°, 260°, 270°

Vol. 13, No. 12, 2022

OO

45°

¢ N
. .

135°

Laser engraver
templates

Engraved pieces
of acrylic resin
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Fig. 7. Training pieces with different light intensities

Fig. 7 presents one of the plastic parts under different
illuminations, while Fig. 8 shows the same sample brightened
from distinct angles.

Before being incorporated into any training datasets, these
data had to be annotated. Since some of them had scratches
difficult to see clearly, especially those taken in low brightness,
it was decided to create an algorithm that created copies of
the images and turned their pixel black if their respective
luminance values were below a given threshold, and white
otherwise. This way, we were able to use the black and
white pictures to consistently classify what scratch should be
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270°

Fig. 8. Training pieces with different light orientations

Fig. 9. Scratch annotation based on their luminance value

annotated (white pixels) or which one should be considered
“invisible” (black pixels), as shown in Fig. 9. In our case, a
value of 30 for the luminance was chosen, as it was below this
point a scratch became hardly perceptible to the naked eye.

2) Test data’s characteristics: Two pieces comprising 96
scratches each, listed in Fig. 10, were used to take 24
photographs. This amount of data is due to the number of
combinations possible with:

e 2 pieces: test_A, test_B
e 4 light intensities (in watts): 0.45, 1.322,2.25, 3.122
e 3 light positions (in degrees): 0, 100, 200

3) Overview of the datasets: Four training datasets were
assembled, whose structures are summarised in Table I. The
formations of those batches aimed at getting models trained
on images captured in specific light conditions, so as to try
to perceive which setting may be the most efficient, when
opposing their results. In addition, 1 testing dataset of 24

TABLE I. OVERVIEW OF THE TRAINING DATASETS’ CONTENTS

Dataset name Light intensities | Light orientation | Size
(in watts) (in degrees)
TRAIN_intLow_oriQuad 0.45/0.9/1.35 0/90/180/270 | Train: 40
Valid: 5
TRAIN_intHigh_oriQuad | 2.25/2.7/3.15 0/90/180/270 | Train: 40
Valid: 5
TRAIN_intMix_oriQuad 0.4570.9/1.35 0/90/180/270 | Train: 40
1.8 Valid: 5
2.25/27/3.15
TRAIN_intMix_oriMix 0.4570.9/1.35 0. Train: 40
1.8 (increments of | Valid: 5
10°)
225/27173.15 .270

TABLE II. OVERVIEW OF THE TESTING SUB-DATASETS, ORGANISED BY
LIGHT INTENSITY

Dataset name Light intensities | Light orientation | Size
(in watts) (in degrees)
TEST_intVeryLow 0.45 0/ 100 / 200 6
TEST_intLow ~1.322 0 /100 / 200 6
TEST_intHigh 2.25 0 /100 / 200 6
TEST_intVeryHigh ~3.122 0 /100 / 200 6

distinct pictures was gathered to assess the performances of the
models. During the computation of the metrics, to emphasise
the hypothetical discrepancies between the models (especially
the brightness represented in their training images), it has been
considered as 7 sub-datasets: 4 organised by light intensity,
outlined in Table II, and 3 organised by light orientation,
depicted in Table III. The performances of the models are
confronted and reviewed in the next section.

C. CNN Trainings

Finally, once the data was collected, annotated and put
together, they were used to train models. For our project, the
neural network framework named Darknet, and most especially
its algorithm/network architecture YOLOv4 [16], has been
chosen to assist in the generation of models. This end-to-
end learning algorithm is well-known in the field of image
processing, its speed and accuracy held it as a reference among
CNNs. Every one of the 4 datasets was fed into the algorithm
to output its corresponding model, so experiments could be
conducted to analyze their respective abilities to find defects
within pictures. The training phases were not started from
scratch, yolov4.conv.137 pre-trained weights were chosen as
a base. Since the evolution of the average training loss curves
indicated that the models had converged by 3000 iterations, a
training session stopped when this count was reached.

TABLE III. OVERVIEW OF THE TESTING SUB-DATASETS, ORGANISED BY
LIGHT ORIENTATION

Dataset name Light intensities | Light orientation | Size
(in watts) (in degrees)

TEST _ori0O 045/ ~1.322/ 0 8
225/ ~3.122

TEST _oril00 045/ ~1.322/ 100 8
225/ ~3.122

Fig. 10. Testing pieces TEST_ori200 045/ ~1.322 / | 200 8
225/ ~3.122
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TABLE IV. METRICS RESULTING FROM THE TESTS CONDUCTED ON
EACH MODEL, ON THE ENTIRE TESTING DATASET (24 PICTURES)

Model TP FN FP Precision| Recall
TRAIN_intLow_oriQuad 597 1707 2 0,997 0,259
TRAIN_intMix_oriQuad 447 1857 9 0,98 0,194
TRAIN_intHigh_oriQuad | 502 1802 | 6 0,988 0,218
TRAIN_intMix_oriMix 644 1660 3 0,995 0,28

V. INTERPRETATION OF THE RESULTS

As a first step to confront the ability of the models to
spot irregularities, we had trained TRAIN_intLow_oriQuad,
TRAIN_intMix_oriQuad and TRAIN_intHigh_oriQuad so tests
could be conducted with the brightness as an independent
variable, as their pictures were taken with similar light orien-
tations. Based on the 24 photographs of test plastic pieces, the
total number of True Positives (defects found), False Negatives
(defects unexposed) and False Positives (regular areas inferred
as abnormal) were counted. Then, the precisions and recalls
were derived from these TPs, FNs and FPs.

The precision, whose formula is shown in (1), describes
the proportion of “positive identifications” that were actually
correct.

TP

Precision = ———— 1
rectsion TP+ FP (D)

The recall, whose formula is shown in (2), describes
the proportion of correct “positive identifications” that were
successfully identified.

TP

= 2
Recall TP+ FN 2)

The values of the various metrics are transcribed in the
Table IV. If the header of this table is coloured green, it
translates a positive metric for classification of a model, while
a red-coloured header is for a negative one. When a metric’s
value is written in green, it means that this value is the best of
those recorded; if it is red, it is the worst (it takes into account
the positive/negative nature of the metric).

When analysing the measures, it has been noticed that the
outcomes of the models were relatively close to one another,
nonetheless, TRAIN_intLow_oriQuad was the most efficient
and TRAIN_intMix_oriQuad was the less effective. In order
to examine the impact of light orientation, it was attempted
to increase the diversity of the less reliable dataset: instead of
only including images of pieces that were enlightened from a
source positioned at either 0°, 90°, 180° or 270°, we decided
to pick from 28 angles. In this way, TRAIN_intMix_oriMix
has been constituted, as TRAIN_intMix_oriQuad was the most
lacking. The TPs, FNs, FPs, precision and recall obtained are
also reported in Table IV. From this new array of values, it has
been noted that TRAIN_intMix_oriMix not only outperformed
TRAIN_intMix_oriQuad, it also seemed to slightly surpass the
results of the other models.

Though there were differences between the models, they
were rather limited and based on a single set of data, which
did not reflect their effectiveness at handling data according to
their attributes. It was conjectured that it would be pertinent to
underline the capabilities of the models at processing images
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Fig. 11. Comparisons of the average number of TPs on the test subsets
arranged by brigthness, grouped by light intensities within their training data
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Fig. 12. Comparisons of the average numbers of TPs on the test subsets
arranged by brigthness, grouped by light orientations within their training
data

taken in specific light conditions. Thus, the former test dataset
was split into several subgroups consisting of images sorted
either by intensity (Table II) or by orientation (Table III).
For these new comparisons, it was decided to restrict the
metrics to the average of True Positives: within the scope
of our experiments, the significance of this measure makes
it sufficient to gain a decent appreciation of the quality of a
neural network’s training.

The new arrangements of data corroborated the previ-
ous experience. Indeed, for the sets containing photographs
classified by their luminosity, TRAIN_intLow_oriQuad was
more efficient than TRAIN_intHigh_oriQuad and even
more than TRAIN_intMix_oriQuad, as shown in Fig. 11.
TRAIN_intMix_oriMix obtained more satisfactory results than
its counterpart trained with four different light orientations,
yet again, as visible in Fig. 12. The reason why the models
struggled to detect scratches in the case of very low light
intensities is that even though most of them were barely
discernible, they were annotated as ground truths within the
test data, which led to a lot of False Negatives (and, conversely,
hardly any True Positives) during the tests that included them.
The purpose of these data was to challenge the models on
confounding specimens.

Furthermore, similar observations were made for the sets
containing photographs classified by the angular positions of
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Fig. 14. Comparisons of the average numbers of TPs on the test subsets
arranged by orientation, grouped by light orientations within their training
data

their light source, as shown in Fig. 13 and Fig. 14.

A few examples of images with their correspond-
ing inferences, output by TRAIN_intMix_oriQuad and
TRAIN_intMix_oriMix, are displayed in Fig. 15.

VI. CONCLUSION

Our study involved the conception of an automatic system
that facilitates the acquisition of pictures intended for train-
ing/testing datasets, while adding physical data augmentation
in the form of variations of light brightness and orientation.

This device was used to gather our own images, which
were assembled into datasets that were fed to CNNs. These
neural networks generated multiple models, each trained on
photographs taken under specific lighting conditions. These
models were then opposed to one another to observe if the
parameters of their illumination had some effects on their
ability to handle new data.

It has been noted that both the independent variables (light
intensity/light position) that were experimented on influenced
the outcome of the training processes. For instance, a model
based on data whose illumination varied, but was limited to
four positions, obtained worse results than another model based
on data whose illumination also fluctuated, but had a broader
array of angular positions.

Vol. 13, No. 12, 2022
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Fig. 15. A few inferences produced by intMix_oriQuad and intMix_oriMix

Since the pieces involved in this research have been created
to suit a specific scenario: scratches detection on plastic parts,
our “hardware data augmentation” technique might only be
relevant to this test case. For that reason, future work reiterat-
ing the experiments, with larger and more intricate datasets, is
expected to confirm (or disprove) the conclusions drawn from
the current study. Additionally, the implementation of an auto-
matic light intensity controller, along with the incorporation of
YOLO into our software, are objectives envisaged to make our
system a fully independent computer-assisted visual inspector.
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