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Abstract—Fault detection is an important issue for early
failure revelation and machine components preserving before
the damage. The processes of fault detection, diagnosis and
correction especially in oil heating reactor sensors are among
the most crucial steps for reliable and proper operation inside
the reactor.The fault detection in sensors array of heating
reactor is considered as an important tool to guarantee that the
controller can take the best possible action to insure the quality
of the output. In this paper, fault detection for the temperature
sensor in oil heating reactor using different types of faults
with different levels is addressed. Multiple approaches based
on Neural Network (NN)s such as the classical Fully Connected
Neural Network (FCNN), Bidirectional Long Short Term Memory
network (BiLSTM) based on Recurrent Neural Network (R.N.N.)
and Convolutional Neural Network (CNN) are suggested for this
purpose. The suggested networks are trained and tested on real
dataset sequences taken from sensors array readings of real
heating reactor in Egypt. The performance comparison of the
suggested networks is evaluated using different metrics such as
“confusion matrix”, accuracy, precision, etc. The various NN
are simulated, trained and tested in this paper using MATLAB
software 2021 and the advanced tool of “DeepNetworkDesigner”.
The simulation results prove that CNN outperforms the other
comparative networks with classification accuracy reached to
100% with different levels and different types of faults.

Keywords—Fault detection; sensor array; oil heater reactor;
confusion matrix; neural network; recurrent neural network; con-
volution neural network; bidirectional short term memory

I. INTRODUCTION

Sensor faulty readings is considered one of the major
source of industries inefficiencies, detection and diagnosis have
a strong ability to improve the operational precision and pro-
cesses stability inside factories and reduce any inefficiencies in
the production cycle. Therefore the objective of fault detection
and diagnosis is to reduce the production losses, while assuring
the safety to both human and devices.

With the high number of sensors used in monitoring indus-
trial operation, it is very time consuming and a large number
of labor is needed to follow whether they work properly or
not.

Automatic fault detection is one stage of multi-stage pro-
cesses system to detect-diagnose-correct any fault at sensors
array in a complex control systems. Literature review to some
techniques was presented to detect the faults such as serial
principal component analysis (SPCA) [1], Decision Tree, Ran-
dom Forest, Nearest Neighbors [2] Support-Vector Machine

(SVM) [3], [4], Fuzzy Deep N.N (FDNN) [5], principal com-
ponent analysis (PCA) [6], independent component analysis
(ICA) [7], Serial Principal Component Analysis [8], lossless
compression method [9], KNN rules [10], Kalman Filter [11],
and hidden Markov models (HMM) [12],

and other methods [13], [14], [15] , [16], [17], , [18], [19]
and [20].

In oil heating reactor many sensors are used to monitor
and control the processes inside it because any malfunctions
in processes inside the heating reactor may lead to the non-
quality production and high cost.

Therefore, it is very crucial to detect any sensor anomalies
as early as possible to avoid any product defect.

The stages of detection, diagnosis and correction for a
faulty sensor reading using N.N-based classification are shown
in Fig. 1 and are illustrated as follows:

Fig. 1. Sensor array reading possessor

1) Fault detection: in this stage, the sensor array processor will
review all sensors readings by using a trained NN based
classification to determine if there is a fault in the sensor
readings or not and define the faulty sensor if there is a
fault.

2) Fault diagnosis: in which the sensor array processor will
use the number of the faulty sensor from the previous stage
to compare its reading with all other sensors readings to
determine the type of the fault using trained classification
NN.

www.ijacsa.thesai.org 944 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

3) Fault correction: in this stage, the sensor array processor
will utilize the type of fault from the previous stage and
the other sensor readings to predict the true reading value
of this sensor and send the corrected value to the controller.

This papers presents three N.Ns for fault detection of
temperature sensor from sensors array in oil heating reactor
and evaluate their performance through comparison using
different metrics. The suggested networks are Fully connected
neural network (FCNN),Bidirectional long short term mem-
ory(BiLSTM) based on recurrent neural network(RNN) and
Convolution neural network (CNN). Where, from the simula-
tion results comparison will be used to assess the best per-
formance one of the suggested networks to be recommended
in future work in detecting the faulty sensor.The remaining of
this paper is organized as follows:

Section II introduces oil heating reactor and description to its
physical functions.
Faults types and their mathematical models are displayed in
Section III.
Section IV discuss the suggested networks for fault detection,
data sets used and how the data is Prepared to be used
Section V is show the construction of the NNs, training
parameter and training/test data.
The simulation results of comparing the suggested networks
with their performance evaluation using different metrics are
displayed in Section VI.
Finally, Section VII concludes the work and discusses the
future work.

II. OIL HEATING REACTOR AND ITS PHYSICAL
FUNCTION DESCRIPTION

This section will discuss the physical construction of the
reactor, sensor array, and control system. The physical system
consists of heating element for oil before it is separated in
later stages.the System also has multiple numbers of sensors
- for monitoring the temperature and the flow of natural gas -
which are illustrated in the following section. The construction
of oil heating reactor and the schematic diagram of its control
system are shown in Fig. 2 and Fig. 3.

Fig. 2. Oil heating reactor

1) Sensor array: The sensor array consists of 37 sensors
in total divided into:

i- 1 oil flow Sensor
ii- 34 Temperature sensors

iii- 1 Gas flow Sensor
iv- 1 Gas Pressure Sensor

Fig. 3. Control system schematic diagram

All these sensors are installed in various places to monitor
the temperature and flow of oil and natural gas through the
reactor to help the controller to control the flow of natural gas
that will be burned to heat the oil that exits the reactor to be
at specific temperature.

2) Heating element: The heating element consists of two
stages:-

i- Preheating: where the exhaust of heater is used to preheat
the oil.

ii- Main heating:burning natural gas to heat oil passing
through some pipes.

III. FAULT TYPES MATHEMATICAL MODELS

This section will discuss the mathematical model of the
various types of faults [21], [22], [23], [24].

A. The drift fault

As shown in Fig. 4,

Fig. 4. The drift fault sensor reading

the value of sensor reading will increase in positive feed-
back loop, so the faulty sensor reading X will be modeled by
the following equation:

X = Xo + δX.t (1)
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Where δX
X̄

called fault level, X is the sensor reading, X̄
is the average of Sensor readings, t is the time stamp, and Xo

is the true reading.

B. The Bias Fault

As shown in Fig. 5,

Fig. 5. The bias fault sensor reading

the value of sensor reading will increase by constant value,
so the faulty sensor reading will be modeled by the following
equation:-

X = Xo + δX (2)

Where δX
X̄

called fault level, X is the sensor reading, X̄
is the average of sensor readings, and Xo is the true reading.

C. The Precision Degradation Fault

As shown in Fig. 6,

Fig. 6. The precision degradation fault sensor reading

the value of sensor readings will be mixed with white
Gaussian noise (WGN), so the faulty sensor reading will be

corresponding to the following equation:

X = Xo + δX.W.G.N (3)

Where δX
X̄

called fault level, X is the sensor reading, X̄ is
the average of sensor readings, WGN is white Gaussian noise
with value varying form (0 to 1), and Xo is the true reading.

D. The Spike Fault

As shown in Fig. 7,

Fig. 7. The spike fault fault sensor reading

the value of sensor readings will be mixed with spike noise
[22], [23], [24], so the faulty sensor reading will be modeled
according to the following equation:

X = Xo + δX.W.G.Nδ(t− t0) (4)

Where δX
X̄

called fault level, X is the sensor reading, X̄ is
the average of Sensor readings, WGN is white Gaussian noise
with value varying form (0 to 1), t is time Stamp Xo is the
true reading, and t0 is the time of the spike.

E. The Stuck Fault

As shown in Fig. 8

the value of sensor reading will be stuck in a certain value,
so the faulty sensor reading will be calculated according to the
following equation:

X = δX (5)

Where δX
X̄

called fault level and X is the sensor reading,
and X̄ is the average of sensor readings.

IV. THE PROPOSED NETWORKS FOR
CLASSIFICATION-BASED FAULT DETECTION

In this paper, fault detection stage is implemented by NNs
based-classification. After training the networks on series data-
set of sensors readings,the network classifies the readings into
faulty or non-faulty. The suggested NNs are described in the
following section.
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Fig. 8. The stuck sensor reading

A. Description of Suggested Networks

This part is dedicated to show the construction of the used
NNs in this Paper.

1) FCNN: A FCNN [25] consists of a series of fully
connected layers as demonstrated in Fig. 9.

A fully connected (FC) layer is a function from multiple
inputs to one output.

Each output dimension depends on each input.

Fig. 9. FCNN construction

2) BiLSTM: BiLSTM network has the ability to learn
bidirectional long-term dependencies between time steps of
time series data which is helpful for a network to learn at
each time step from the total time series data.

BiLSTM handles input sequences in two directions using
two sub-layers.

It includes two recurrent network layers, in which the first
one processes the sequence of inputs in forwards direction
while the second processes the inputs sequence in backwards.

Both layers are connected to the same output layer. Thus,
BiLSTM network captures the total information about preced-
ing and future sequence of data points [26], [27], [28], [29].

BiLSTM network utilizes the past states to determine the
output of the current states as shown in Fig. 10.

Fig. 10. BiLSTM NN construction

3) CNN: The structure of CNN is depicted in Fig. 11,
which consists of convolution layers, pooling layers, and
FCL where these layers adaptively learn spatial hierarchies
of features through the back-propagation learning [30], [31],
[32] and [33].

Fig. 11. CNN construction

B. Data sets

The real non-faulty data set collected from sensors array
of real oil heating reactor in Egypt over a period of one month
is used for training the suggested networks.

This stage of the work in this paper focuses on the
temperature sensors readings of 34 sensors arranged in a matrix
of 42660 rows and 34 columns.

The Faulty data is created using the different types of faulty
models mentioned previously. Thus, the suggested network
will be trained for classifying the sensor readings into faulty
or non-faulty class.
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C. Processing Data

The following procedures are conducted for preparing the
data-set for classification:

1- The data will be divided into test and training data, in which
the test data is 25% from the total data.

2- Choosing the fault type that will be used to test the NN,
where the faulty data is detected from this type.

3- Choosing the fault level that will be used to test the NN,
where the faulty data is detected from this fault level.

4- Label both of the training and test data without and with
the corresponding type of fault and its level by using two
classes to be inputs to the suggested N.Ns

V. CONSTRUCTION OF USED NN

In this paper, the performance of three types of neural
networks based-classification (FCNN, BiLSTM and CNN) are
compared for detecting the faulted temperature sensor using
various fault types with different levels .

A. FCNN

FCNN used in this paper is consist of the following layers
as shown in Fig. 12:

• Input layer consist of 34 input nodes; one for each
sensor reading.

• Hidden layer has 70 nodes.

• Output layer consist of 1 output (label) node for the
(+ev) result which means that the sensor is faulty and
(-ev) result which means that the sensor is not faulty.

Fig. 12. Proposed FCNN construction

The training parameter used in the FCNN will be as
follows:-

• Scaled conjugate gradient back propagation “trainscg”
[34] is used as the training function.

• Mean Square Error “mse” [35] is used to evaluate the
training result by calculating the error between actual
and network outputs.

• Maximum of 1000 epoch will be applied.

• 6 validation checks will be used.

The FCNN have 31995 non-faulty readings and 31995
faulty readings.

In test phase, 10665 faulty readings and 10665 non-faulty
readings are used for testing each sensor.

Fig. 13. Proposed BiLSTM RNN construction

B. BiLSTM

BiLSTM is used to classify a Sequence of data as shown
in Fig. 13. The BiLSTM network consists of sequence input
layer, two BiLSTM layers, two fully connected layers, soft-
max layer and finally classification layer.

1) The data sequences of sensors readings is divided into
batches; each batch consists of 15 consecutive readings.

2) Thus, the input data to BiLSTM network consists of array
of size (15x1) to each sensor reading where for all sensors
are (15x34).

3) 2133 non-faulty and 2133 faulty readings are used for
training the network, while 711 readings from each of
the faulty and non-faulty data are utilized for test phase.

• There are 34 input nodes; one for each sensor; 15
consecutive reading.

• The BiLSTM NN uses 200 BiLSTM nodes in one
hidden layer.

• The BiLSTM NN uses 68 BiLSTM nodes in one
hidden layer.

• The BiLSTM NN uses 34 nodes in FCL.

• The BiLSTM NN uses 2 output nodes; one for (+ve)
Faulty sensor and one for (-ev) non faulty sensor.

The training parameter used in the FCNN will be as
follows:

• “adam” is used as the training function.

• 40 epochs maximum will be used.

• 30 iterations per epoch applied.

For the BiLSTM training there is 2133 non-faulty reading
runs and 2133 faulty reading runs.

For each sensor test there is 711 faulty reading runs, and
711 the non-faulty runs.

C. CNN

The inputs to CNN must be of two dimension matrix as
the gray scale picture shown in Fig. 15. The data sequences of
sensors readings are divided into batches; each batch consists
of 15 consecutive readings. Thus, the input data to CNN
network consists of matrix of size (15x34).
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Fig. 14. Input picture to CNN

Fig. 15. Proposed CNN construction

Consequently, 2133 non-faulty and 2133 faulty readings
are used for training the network while 711 faulty readings
and 711 non-faulty readings are utilized for test phase.

The CNN construction is shown in Fig. 14.

so there is 2133 non-faulty and 2133 faulty training runs
and 711 non-faulty and 711 faulty test run each consist of
(15X34) Reading.

• The CNN has 15×34×1 images as input.

• The CNN has 8 (2×2) convolutions.

• The CNN has (2X2) Max Pooling.

• The CNN has 16 (2×2) convolutions.

• The CNN has (2X2) Max Pooling.

• The CNN has 32 (2×2) convolutions.

• The CNN has (2X2) Max Pooling.

• The CNN has 35 nodes in F.C.L.

• The CNN has 2 nodes in F.C.L.

• The CNN has Softmax Layer.

• The CNN has 2 output nodes one for (+ve) Faulty
sensor and one for (-ev) non faulty Sensor.

The training parameter used in the CNN will be as follows:

• The Optimization algorithm named stochastic gradient
descent with momentum “sgdm” is used for more
efficient neural network weights during the network
training [36] is used as the Training Function.

TABLE I. NETWORK PARAMETERS COMPARISON

Parameter FCNN BiLSTM N.N CNN
Input Type Value Matrix Picture

Number Of Layers 3 5 11
Input Layer 34 Node 34 Node 1 Node

Layer-2 F.C BiLSTM Convolution
Layer-3 BiLSTM Max Pooling
Layer-4 F.C Convolution
Layer-5 Max Pooling
Layer-6 Convolution
Layer-7 Max Pooling
Layer-8 F.C
Layer-9 F.C
Layer-10 Soft Max

Output Layer 2 node 2 node 2 node
Maximum Epoch 1000 40 100
Validation Check 6
Iteration/epoch 1 30 16
Training Points 63990 4266 4266

Training Function trainscg adam sgdm
Test Points 21330 1422 1422

Fig. 16. FCNN performance

• 100 epoch maximum is used.

• 16 iteration per epoch is used.

D. Parameter comparison

Summary combining the comparison between the different
neural networks constructions is shown in Table I.

Fig. 17. FCNN training result
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Fig. 18. FCNN confusion matrix

Fig. 19. BiLSTM performance

VI. NETWORK RESULTS COMPARISON

This section is dedicated to discuss the results of training
the N.Ns used in this paper.

A. Performance Metrics for the Suggested Network

The performance of the suggested N.Ns is compared and
evaluated using the following metrics [37]:

Fig. 20. BiLSTM training result

Fig. 21. BiLSTM confusion matrix

Fig. 22. CNN performance

Fig. 23. CNN confusion matrix
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Fig. 24. CNN training result

Fig. 25. 1% fault level comparison for all NNs

1- Accuracy: It is the ratio of correct predictions to total
predictions.

2- Precision: the ratio of correct fault detection to all fault
predictions.

3- Recall:It is the ratio of correct fault detection to all true
fault readings.

4- F-Score:It is the harmonic mean of precision and recall

The results of NNs classification include four types of data
samples which are described as follows:

I) True positive (TP): is the number of samples that the
network label as faulty while they are in-fact a faulty
readings.

II) True negative (TN): is the number of samples that the
network label as non-faulty while they are in-fact a non-
faulty readings.

III) False positive (FP): is the number of samples that the
network label as faulty while they are in-fact a non-Faulty

readings.
IV) False negative (FN): is the number of samples that the

network label as non-Faulty while they are in-fact a faulty
readings.

The aforementioned metrics according to the four types of
classified data are calculated by the given equations as follows:

1- Accuracy

=
TP + TN

TP + TN + FP + FN
(6)

2- Precision
=

TP

TP + FP
(7)

3- Recall
=

TP

TP + FN
(8)

4- F-Score
=

1
1

Percition
+

1

Recall

(9)

5- False positive rate (FPR)

=
FP

TN + FP
(10)

6- False negative rate (FNR)

=
FN

TP + FN
(11)

B. Results and Discussion Simulation

The suggested networks are trained by all types of fault
with different levels which are: [1%, 10%, 50% and 90%].
The performance results of the suggested networks for detect-
ing all types of fault with there different levels in metrics of
accuracy, precision and recall are given in Table II:

C. Results

The following results is obtained after the training and
testing of the N.Ns

1) FCNN performance: The comparison of classification
accuracy of FCNN for detecting the different fault types with
its different levels is shown in Fig. 16.

As shown above the FCNN is very weak in detecting spike
fault with accuracy of 50% while its good in detecting the other
faults with their different levels where the results of detection
are acceptable with accuracy ranges from 96% to 100%.

While the mean square error versus the number of epochs
in training FCNN is shown in Fig. 17, confusion matrix is
shown in Fig. 18.

2) BiLSTM performance: The comparison of classification
accuracy of BiLSTM network for detecting the different fault
types with its different levels is shown in Fig. 19.

As shown above, the accuracy of BiLSTM in detecting
Basie, stuck and P.D.E faults is weak at fault levels (1%).On
contrast, the accuracy results are acceptable with other faults.

While the network accuracy and the losses versus the
number of epochs in training BiLSTM network are shown in
Fig. 20, confusion matrix is shown in Fig. 21.
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TABLE II. NN RESULTS COMPARISON

NN Fault Fault Accuracy Precision F-score
TYPE Type Level
CNN Bias 90% 100% 100% 100%
CNN Bias 50% 100% 100% 100%
CNN Bias 10% 100% 100% 100%
CNN Bias 1% 100% 100% 100%
CNN Drift 90% 100% 100% 100%
CNN Drift 50% 100% 100% 100%
CNN Drift 10% 100% 100% 100%
CNN Drift 1% 100% 100% 100%
CNN Spike 90% 96.9% 100% 100%
CNN Spike 50% 96.8% 100% 100%
CNN Spike 10% 97.1% 100% 100%
CNN Spike 1% 96.6% 100% 96.8%
CNN Stuck 90% 100% 100% 96.7%
CNN Stuck 50% 100% 100% 97%
CNN Stuck 10% 100% 100% 96.5%
CNN Stuck 1% 100% 100% 100%
CNN P.D.E 90% 100% 100% 100%
CNN P.D.E 50% 100% 100% 100%
CNN P.D.E 10% 100% 100% 100%
CNN P.D.E 1% 100% 100% 100%
BiLSTM Bias 90% 100% 100% 100%
BiLSTM Bias 50% 100% 100% 100%
BiLSTM Bias 10% 100% 100% 100%
BiLSTM Bias 1% 50% 0% 0%
BiLSTM Drift 90% 100% 100% 100%
BiLSTM Drift 50% 100% 100% 100%
BiLSTM Drift 10% 100% 100% 100%
BiLSTM Drift 1% 100% 100% 100%
BiLSTM Spike 90% 96.9% 100% 96.8%
BiLSTM Spike 50% 96.8% 100% 96.7%
BiLSTM Spike 10% 97.1% 100% 97%
BiLSTM Spike 1% 96.6% 100% 96.5%
BiLSTM Stuck 90% 100% 100% 100%
BiLSTM Stuck 50% 100% 100% 100%
BiLSTM Stuck 10% 100% 100% 100%
BiLSTM Stuck 1% 50% 0% 0%
BiLSTM P.D.E 90% 100% 100% 100%
BiLSTM P.D.E 50% 100% 100% 100%
BiLSTM P.D.E 10% 50% 0% 0%
BiLSTM P.D.E 1% 50% 0% 0%
F.C.N.N Bias 90% 100% 100% 100%
F.C.N.N Bias 50% 100% 100% 100%
F.C.N.N Bias 10% 100% 100% 100%
F.C.N.N Bias 1% 100% 100% 100%
F.C.N.N Drift 90% 100% 100% 100%
F.C.N.N Drift 50% 100% 100% 100%
F.C.N.N Drift 10% 100% 100% 100%
F.C.N.N Drift 1% 100% 100% 100%
F.C.N.N Spike 90% 53.1% 100% 11.6%
F.C.N.N Spike 50% 53.1% 100% 11.5%
F.C.N.N Spike 10% 53.2% 100% 11.9%
F.C.N.N Spike 1% 53.1% 100% 11.7%
F.C.N.N Stuck 90% 100% 100% 100%
F.C.N.N Stuck 50% 100% 100% 100%
F.C.N.N Stuck 10% 100% 100% 100%
F.C.N.N Stuck 1% 100% 100% 100%
F.C.N.N P.D.E 90% 98.5% 100% 98.4%
F.C.N.N P.D.E 50% 99.2% 100% 99.2%
F.C.N.N P.D.E 10% 98.6% 100% 98.6%
F.C.N.N P.D.E 1% 96.4% 99.8% 96.2%

3) CNN performance: The comparison of classification
accuracy of CNN for detecting the different fault types with
there different levels is shown in Fig. 22.

As shown above the result of the CNN is accepted even at
spike fault and low level faults.

While the network accuracy and the losses versus the
number of epochs in training CNN network are shown Fig.
23, confusion matrix is shown in Fig. 24.

4) The networks accuracy comparison at 1% fault level::
The comparison between all NN performance at various fault
types and 1% fault level is shown in Fig. 25.

As shown in this figure, the results demonstrate that the
CNN has the best performance in detecting all fault types and
levels.

VII. CONCLUSION

In this paper, different neural networks are suggested for
detecting the fault in temperature sensor of sensors array in
oil heating reactor.

From the given results in this paper, the networks perfor-
mance in metrics of Accuracy, Precision and Recall are varying
depending on the network type, fault type, and fault level.

The CNN performance for fault detection outperforms the
other networks, and it is the best so far to detect even very
low level faults such as 1% fault level with accuracy reached
to 97%.

This results show that the CNN is the best candidate to be
implemented for fault diagnosis in future works, that will be
focused on fault diagnosis and fault elimination.
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