
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

The Impact of Peer Code Review on Software
Maintainability in Open-Source Software: A Case

Study

Aziz Nanthaamornphong1, Thanyarat Kitpanich2
College of Computing, Prince of Songkla University, Phuket, Thailand

Abstract—Recently, open-source software (OSS) has become
a considerably popular and reliable source of functionality
corrections. OSS also allows software developers to reduce tech-
nical debt in software development. However, previous studies
have shown that the main problem within OSS development
is the lack of systematic processes and formal documents re-
lated to system development, such as requirements, designs,
and testing. This feature of OSS development causes problems
in the software quality, such as those related to security and
maintainability. In this research, the authors focused on the
software’s maintainability because this attribute has to greatest
potential to reduce the cost and increase the productivity of
the software development process. There is currently no existing
research that examines whether OSS developers pay attention
to software maintainability. To better understand how OSS
developers improve software maintainability, this research aims
to answer the question: “Are developers interested in software
maintainability under the modern code review of open-source
software projects?” To answer the research question, the authors
investigated the code review process in which the OSS developers
changed the code based on a review of code comments related to
maintenance and collected the sub-characteristics associated with
software maintainability from the existing literature. The authors
examined the review comments from two OSS projects: Eclipse
and Qt. The results suggest that the number of code revisions
due to maintenance issues was moderate and that the OSS
developers tend to improve source code quality. This direction
could be observed from the increasing number of modifications
on given maintenance-based comments over the years. Therefore,
an implication of this is the possibility that OSS project developers
are interested in software maintainability.

Keywords—Open-source software; software maintainability;
code review

I. INTRODUCTION

Open-source software (OSS) has received considerable at-
tention from users worldwide, especially among organizations
and commercial industries that widely utilize OSS. Notably,
OSS is often a key to organizational success for entrepreneurs.
OSS can create the opportunity for organizational growth,
enhance performance, increase the options for software use,
and decrease operating costs. Moreover, users from around
the world can use OSS freely without fees, allowing software
developers to access the OSS code repository [1] and jointly
develop software [2]. OSS projects are being continuously
developed and improved by software developers with expertise
and experience in system development. Therefore, OSS has
become popular and credible in terms of effectiveness and
functionality.

A previous study [3] noted that OSS development lacks
systematic processes or procedures and formal documents
related to system development, such as requirements, design,
testing, etc. Considering the aforementioned problems, most
software developers working on OSS projects solve relevant
problems when they are reported by users or software develop-
ers on the same team. One frequent problem is the occurrence
of a defect or bug in the system. When the source code
is frequently modified, the size of the code increases, and
it generally becomes more complex. Moreover, some source
codes can be difficult to understand. These issues can lead
to serious problems, such as increases in time and develop-
ment costs. Additionally, software developers and commercial
entrepreneurs who want to develop software often cannot
comprehend old codes that are complex and poorly described.
Thus, accessibility may be poor, and call functions may fail. In
addition, poor results or inaccurate information may not meet
user expectations, and possible vulnerabilities in the system
may lead to the pirating of information or viruses. All of these
issues can cause software project development to ultimately
fail. The quality of the source code of OSS projects could be
improved [4], in particular, the relevant software security and
maintainability of these projects [5].

Software maintainability can improve product quality at
a low cost and ensure that software development meets the
intended objective. Therefore, software maintainability is one
of the most important steps in the software development life
cycle because most software developers spend approximately
40-50% of their time identifying defects or errors during the
development process or after product delivery [6]. Notably,
maintainability can solve OSS quality issues and prevent
problems that may affect the system in the future. The code
review process is an important part of the software develop-
ment process that ensures the creation of high-quality software
and the implementation of successful OSS projects [7]. Thus,
many OSS projects use “peer code review” or “modern code
review” [8] as a guideline for developing and improving code.

Peer code review is commonly used in software engineer-
ing for quality control [9]. Generally, a code change must be
reviewed by the software developers on the same development
team or reviewers other than the code editor. Generally, the
code review process does not have a fixed format, but it
prevents problems associated with patch files and helps avoid
bugs or errors that can influence the long-term applicability of
the software. Moreover, the comments from reviewers can be
used to identify bugs or defects in the source code, improve the
source code, modify the source code to meet certain standards,

www.ijacsa.thesai.org 954 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

and improve code readability [10]. However, some comments
may not be directly related to software quality improvements.

A review of studies on software development in OSS
projects indicated that the comments provided via peer code
review have not been extensively investigated. Developers
should review comments related to software maintainability in
OSS projects. These comments are often collected in the Gerrit
system, which provides services related to the code review
process and facilitates communication and the exchange of
ideas about software development among software developers.
In this study, two OSS projects: Eclipse (https://eclipse.org/)
and Qt (https://www.qt.io/), are investigated. These projects
were selected because they have different purposes and have
already been completed. Therefore, extensive comment infor-
mation is available for both projects. The projects provide the
opportunity for researchers in the field of software engineering
to access this information and study code reviews. The main
research questions posed in this study are as follows:

1) How many sub-characteristics are related to software
maintainability?

2) Are the developers of OSS projects interested in
software maintainability under the peer code review?

3) What characteristics of software maintainability have
the developers considered?

In order to answer these questions, text mining was applied
to identify the sub-characteristics related to software main-
tainability that appear in comments provided by peer code
review, and the latent Dirichlet allocation algorithm (LDA)
was applied to develop new characteristics related to software
maintainability. Quantitative data analysis was performed to
identify the trends of developers in software maintainability
for OSS projects. In addition to answering the main research
questions, the results were used to determine the factors that
affect the number of comments related to maintainability, and
statistical analysis was conducted to answer the following
research questions:

1) Does the size of the reviewer pool influence the
comments related to maintainability?

2) How many comments related to maintainability are
given by code reviewers each day?

The results of this study will provide empirical evidence
for the research community regarding the software quality
of OSS projects. Moreover, this study will shed light on
the importance of software maintainability and help software
developers understand sub-characteristics related to software
maintainability, which usually appear in OSS projects.

The remainder of this paper is organized as follows. Section
II provides the necessary background and related work. Section
III describes the research methodology. Section IV shows the
results of this study. Section V discusses the results. Section
VI concludes the paper and outlines our future work.

II. RELATED WORK

In this section, the theories and methodologies used to
conduct the research are summarized, including the literature
review, which provides the basic framework of this study.

A. Peer Code Review for OSS Projects

Code review is a way to reduce the risk of error and
improve the quality of software by checking the source code
to identify defects or bugs that may occur during software
development. Moreover, such a review can standardize the
source code [11]. When organizations or projects that require
software development use this code review process, it ensures
that the developed code will meet the specifications or needs of
the user and that the impacts of source code modifications are
minimized. Therefore, code review has been a best practice
in software engineering for over 35 years [12]. “Peer code
review,” or “modern code review,” is applied by open-source
organizations and communities to improve the quality of
source code [13]. The source code is standardized by deleting
duplicate functions and removing irrelevant or unnecessary
code. Moreover, the code review process allows detailed com-
ments from experienced reviewers that can improve the source
code. Additionally, peer code review facilitates the sharing
of knowledge about system development [11] because code
review services often utilize specific communication tools.
The most common tools are CodeFlow, Gerrit, Collaborator,
Crucible, Review Board, and Upsource.

B. Software Maintainability

ISO/IEC 25010 is the model used by organizations around
the world because it has set the software quality standard for
code review based on system and software requirements. Fur-
thermore, ISO/IEC 25010 was selected in this study because
it includes both quality evaluation for a system or software
and the corresponding effects on stakeholders or users. The
international standards that are used to assess quality include
requirement definition and quality measurement and evalua-
tion [14].

ISO/IEC 25010 defines software maintainability as “the
degree of effectiveness and efficiency with which a product
or system can be modified to improve it, correct it or adapt
it to changes in the environment, and in requirements.” In a
previous study on software maintainability, Ghosh et al. [15]
identified the 40 sub-characteristics that impact maintainability.
These sub-characteristics are used as keywords in this study
to obtain comments related to software maintainability.

C. Literature Review

Bakar and Arsat [16] studied the factors that affect the
quality of OSS by measuring the quality of the source code
using McCall’s Quality Factor model. This model considers
maintainability, accuracy, reliability, efficiency, and ease of
use. The results indicated the relationships among lines of
code and the complexity of the source code based on corre-
lation analysis. The most influential factors were correctness,
maintainability, efficiency, and usability. Related research on
complexity measurements for source code generally uses Cy-
clomatic Complexity (CC) as an indicator, although there are
newer indicators as well. For example, Walden et al. [17]
analyzed code and used complexity metrics to predict the
possible density gaps in 14 web applications. The study results
could be used by software developers in OSS projects to create
a simple system structure and clearly illustrate the development
of software, especially security, because the number of gaps

www.ijacsa.thesai.org 955 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

was decreased. Norick et al. [18] studied OSS projects devel-
oped in C/C++ to determine whether the number of revisions
affected the quality of the source code. This analysis used the
CC of each coded function and the density of comments as
representatives of source code quality. However, the study did
not find a correlation between the number of software develop-
ers and the software quality, and the average software quality
was satisfactory for all the studied OSS projects. Schmidt and
Porter [19] studied the software development process of the
“Skoll” OSS project and of closed-source projects. They found
that the community of OSS developers could control long-term
maintainability procedures and development costs, and these
characteristics created confidence and a level of acceptance in
the quality of the software. Specifically, users had confidence
in the software and corresponding system. Such practices are
easier to implement in OSS projects compared to closed-source
projects because the disclosure of sources allows software
developers who are interested in OSS projects to voluntarily
participate in quality improvement tasks.

Successful OSS projects usually participate in peer code
reviews to assess the quality of the software [20]. The code
review process begins with the software developers creating
patch files, which add value to a project. Rigby [21] stated
that using supportive tools for peer code review could affect
the progress of OSS, and there was a subsequent push for
software development that facilitates code review. As noted
by Bosu and Carver [7], review tools have been widely used
to study comments via platforms such as ReviewBoard. The
researchers analyzed the number of participants in the project,
the number of requests for code review, and the response time
after a request for code review was submitted by comparing
MusicBrainz Server and Asterisk. However, Bacchelli and
Bird [22] studied motivation and challenge in searching for
defects in Microsoft projects using the CodeFlow tool, which
records data from code reviews. The comments aiming to guide
code modification during the peer code review process were
investigated. The results showed that reviewers with expertise
in system development and reading and reviewing source code
provided the most useful comments for developers.

Baysal et al. [10] sstudied the factors that affect the
modification of patch file defects by extracting code review
information for the WebKit project from Bugzilla. Most re-
viewers denied large patch files because developers modified
or developed source code that was too complex, included
unnecessary components, and/or affected other functions or
modules. Tao et al. [23] proposed a method for developers to
code patch files that were accepted by reviewers. They verified
the causes of rejected patch files by collecting rejection infor-
mation for Eclipse and Mozilla patch files. The information
was collected and stored based on an online survey of 246
software developers. Considering the issues that caused a code
fix to be accepted or rejected, the community can determine
how to optimize the peer code review process.

fBosu et al. [10] searched for ways to improve the effi-
ciency of peer code review, which was useful for system devel-
opment. They analyzed 1.5 million comments from Microsoft
projects to identify the characteristics of useful and useless
comments. Some comments that software developers received
contained incorrect information or comments unrelated to
system development, and software developers took time to

respond to these questions and discuss why they did not modify
the source code accordingly. Moreover, the study identified the
factors that were correlated to beneficial comments, such as
review experience, organizational experience, and being on the
same team as the code developers. Czerwonka and Greiler [24]
found that up to 50% of the comments provided via the peer
code review process were related to software maintainability
and that very large patch files decreased the benefit of reviewer
comments and increased the review time by six hours to a
week. Nonetheless, they found that reviewer comments are
beneficial and reflect the overall view of software develop-
ment. Such a review system promotes cooperation in problem
resolution and expedites the development and improvement of
software. Such systems provide a standardized framework for
researchers to better understand peer code review.

Maintainability is a very important factor because software
maintenance accounts for 66% of the life cycle and 40-80% of
the cost of development [25]. Code smells are among the most
important problems that must be urgently solved. A code smell
is any characteristic in a source code, such as a poorly designed
structure or poor organization, that can lead to larger issues.
These factors decrease the quality of software maintainability.
Wagey et al. [26] presented a model of software maintain-
ability and applied it to six OSS projects. The results showed
that the model improved the structures of the OSS projects.
Refactoring [27], a process that involves shortening lines of
code or combining similar functions to reduce the complexity
of the code [28], has also been used to improve software
functionality. Rizvi and Khan [29] used regression analysis to
develop a class-level maintainability estimation model called
MEMOOD, which facilitated development and reduced the
time required to improve or edit code before delivery. This
model used the features of understandability and modifiability,
which were calculated based on object-oriented metrics, to
estimate the maintainability of the code considering its size and
structural complexity. Khan and Khan [30] developed a model
that was used to measure the quality of analyzability. Multiple
linear regression was conducted for the structural design of
a system in which complexity might affect the quality of
software maintainability, especially its analyzability. However,
they found that other factors, such as the size of a file or
program, may also make maintainability difficult.

III. RESEARCH METHODOLOGY

This study analyzes the comments related to software
maintainability from the peer code review of OSS projects
using text mining techniques. The main procedure consists of
two parts, as described in the subsequent subsections.

A. Development of Software for Searching and Storing Data
from Gerrit

Software was developed for searching and storing data
associated with Eclipse and Qt comments that were collected
by Gerrit from 2017 to 2021. Before storing the data from
Gerrit, tables were designed in the database to support the
data used in this study. The stored information is as follows:

• ID - the unique number for each data entry;

• Patch numbers - the number of patches;

www.ijacsa.thesai.org 956 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

• Created on - the review request date;

• Uploader - the uploader’s ID (Gerrit user name);

• Author - the code author;

• Reviewers - the reviewer’s ID (Gerrit user name);

• File - the name of the file with the review request;

• Line - the number of changed lines of code;

• Message - the comment message; and

• Kind - the status of the changed code, such as trivial
rebase, no code change or rework.

B. Analyzing a Dataset

In this step, the sub-characteristics related to software
maintainability that appear in comments provided via the peer
code review of OSS projects were searched using a text-mining
technique. This technique also verifies that the comments were
related to maintainability. This step is shown in Fig. 1, and
each step is shown as follows.

Fig. 1. The data analysis process

Keyword List Building - A set of keywords that are
related to software maintainability, such as modularity, an-
analyzability, and testability, was constructed. These keywords
were selected based on the sub-characteristics that are related
to the definition of “software maintainability”. Previously,
Ghosh et al. [31] used these collected keywords to search for
comments related to software maintainability. However, they
found that the reviewers of OSS projects typically did not use
words in comments that matched these keywords. Therefore,
the sub-characteristics related to software maintainability are
converted to their root forms to reflect the basic meaning of
the term; for example, “modifiability” was shortened to the
root “modify”. Then, synonyms for each root word, such as
“edit”, “improve”, “solve”, and “amend” (for “modify”), were
also added to the search set. The words with the same meaning
as these keywords were identified using WordNet, a website
that provides synonyms for various terms.

Data Cleaning - In this study, R was used for data
cleaning. Specifically, the text mining (tm) package was used
in this step. In data cleaning, the stop word function was
employed to remove terms that were not significant without
changing the meaning of the sentence. For example, pronouns,
conjunctions, and prepositions usually appear in each comment
but could generally be removed. Moreover, whitespace, num-
bers, and special characters, such as special symbols (, ), , *,
#, and ! were deleted. Then, word stemming was performed
by removing prefixes and suffixes. Words with the same
root, such as “compatible” and “compatibility,” have similar
meanings; therefore, “ible” and “ibility” could be removed to
obtain the root “compat”. Another example is “connection”,
“unconnected”, “connective” and “connecting”, for which the
root is “connect”. Moreover, letters were converted from upper
case to lower case to reduce the number of required indices
and the processing time.

Comment Retrieval - In this step, a command set was
developed to search for comments with keywords or meanings
related to software maintainability. At least one word from
the constructed keyword list must be matched, and the search
results were converted into a file format for easy analysis. In
order to search for comments related to software maintainabil-
ity, we developed a command in R that connects to a MySQL
database and searches based on various subcommands. For
example, a set of commands is developed to find the word
“modify,” and words with the same meaning as “modify”
appear in the text of comments in the database.

In order to search for comments containing keywords,
we created a command set for each keyword for the conve-
nience of searching and storing. After the comments related
to software maintainability were obtained, each comment was
reviewed to improve credibility. This check was manually
performed to verify that each comment contained a keyword
or related term. If the text in a comment did not match a
keyword or related word, we deleted the text from the database.
After verification, the results were stored in table format, and
relations were preserved. The table shows the number of terms,
either keywords or related words, that appear in comments and
are related to software maintainability.

Unrelated Comment Removal - We analyzed the results
from step 3 and determined the number of comments in Eclipse
and Qt related to software maintainability. These results could
help answer the question of whether the developers are inter-
ested in software maintainability in OSS projects based on peer
code review. To determine whether a comment was considered
in code modifications, a command set was established in R
by pairing comments related to software maintainability and
comments from Gerrit. Notably, most comments from Gerrit
included both the comments from reviewers and the comments
of software developers who responded. This code modification
assessment considers the type of code modification, such as
trivial rebase or rework.

Additionally, the words in the reply related to code modi-
fications, such as “done”, “finished”, or “edited” (as shown in
Fig. 2), were considered. After checking the comments based
on this procedure, the comments with no replies were removed
from the database.

Maintainability Attribute Discovery - Thirty-three sub-

www.ijacsa.thesai.org 957 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 2. Example of comment related to maintainability and responses of
code authors

characteristics of software maintainability were selected, and
other sub-characteristics of software maintainability hidden in
comments related to Eclipse and Qt projects were searched
using the LDA. This algorithm could be applied to search
for topics related to maintainability. The result of the LDA in
R presented the frequency of occurrence of words that were
related to the keywords, and we were required to determine
whether these words should be new keywords. If the answer
was yes, the term was added to the keyword set, and steps 3
and 4 were repeated until there were no additional keywords.

IV. RESULTS

Based on our research questions (described in Section I),
the results of the analysis are presented.

A. How Many Subs-Characteristics are Related to Software
Maintainability?

In Ghosh [31], 40 sub-characteristics related to maintain-
ability were identified and studied. The following criteria were
used to select sub-characteristics: 1) the definition of the sub-
characteristic must be relevant to the definition of “software
maintainability” according to ISO/IEC 25010, and 2) a sub-
characteristic keyword cannot be a common or general word.
The sub-characteristics of this study that did not meet those
criteria were as follows:

1) Compliance,
2) Conciseness,
3) Delivery,
4) Documentation,
5) Impact Analysis,
6) Programming Language; and
7) Self-descriptiveness.

The obtained sub-characteristics that met these criteria
were converted into verbs or nouns by removing the suffix,
and the final keywords were easy to search for in the com-
ments of reviewers on OSS projects. The results of keyword
determination are shown in Table I.

We then reviewed the keyword search results to identify
potential words that should not be considered keyword syn-
onyms. The criteria for synonym consideration are as follows:

1) Cannot be a common term used in the programming
language, such as class, function, feature, method,
object, or parameter, or a general computer-related

TABLE I. THE LIST OF KEYWORDS

No. sub-characteristics Keyword No. sub-characteristics Keyword

1 Accuracy Accuracy 18 Implementation Implement
2 Adaptability Adapt 19 Instrumentation Instrument
3 Analyzability Analyze 20 Integrability Integrate
4 Augmentability Augment 21 Localization Localization
5 Availability Available 22 Modifiability Modify
6 Changeability Change 23 Modularity Modular
7 Completeness Complete 24 Perfectiveness Perfect
8 Complexity Complex 25 Portability Portable
9 Comprehensibility Comprehension 26 Readability Read

10 Consistency Consistency 27 Reusability Reuse
11 Correctability Correc 28 Simplicity Simple
12 Durability Durable 29 Stability Stable
13 Efficiency Efficient 30 Standardization Standard
14 Effort Effort 31 Testability Test
15 Expandability Expand 32 Traceability Trace
16 Extensibility Extension 33 Understandability Understand
17 Flexibility Flexible

term, such as system, computer, software, file, or
command.

2) For duplicate synonyms, only synonyms from three
root words are selected.

3) For different synonyms, all words from three roots
are used as keywords.

The search process for the keywords and synonyms that
met these criteria is shown in Table II. The software developers
that use Eclipse and Qt can consider all characteristics of soft-
ware maintainability to improve and edit their source codes.
Therefore, in addition to the 33 characteristics identified by
the LDA, the frequent terms in comments related to software
maintainability were also searched. The LDA results in Table
III contain keywords and synonyms such as change, adjust,
test, and improve. Therefore, to choose the new maintain-
ability characteristics from the LDA, we considered the most
frequently used words in each group.

Considering the maintainability characteristic produced by
the LDA, some groups did not contain appropriate words.
However, Eclipse and Qt contained two new characteristics
related to software maintainability: cohesion and duplicate.
To define the new maintainability characteristics, the authors
used comments provided by the reviewers to search and
identify these two maintainability characteristics. The words
that typically appear with “cohesion” and “duplicate” had a
relationship value of 0.6. Thus, those keywords were associated
with software maintainability at least 60% of the time. The
words most highly correlated with the new types of maintain-
ability characteristics in comments are considered to define
the maintainability characteristics and group the synonyms (as
shown in Table IV).

1) The cohesion module identifies the modules that
work together by connecting the components of the
modules. These components may work at the same
time or have the same input but different operations.

2) The duplicate function combines functions with simi-
lar properties or procedures to reduce the duplication
of functionality, which can potentially cause confu-
sion in calling.

www.ijacsa.thesai.org 958 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

TABLE II. THE LIST OF KEYWORD AND SYNONYMS

No. Keyword Synonym

1 Accuracy accuracy, exact, truth, certainty, precision, propriety, recti-
tude, validity, sure, definite, inevitable, rigorous, evident,
categorical, explicit, just, lawful

2 Adapt adapt, adjust, modulate, alter, fine, shape, regulate
3 Analyze analyze, analysis, diagnose, assay, delineate, muse, anato-

mize
4 Augment augment, amplify, spread, inflate, escalate, dilate, enhance,

accumulate, increase, suffuse, raise, mount, aggrandize,
splay, accrete

5 Available available, accessible, handiness, obtainable, satisfactory,
convenient, usable, benefit

6 Change change, vary, remodel, permute, convert, transform, re-
vamp, purge, reform

7 Complete complete, full, absolute, plenary, finish, utter, flawless
8 Complex complex, complicate, sophisticated, elaborate, manifold,

labyrinthine, multiple, confuse, entangle, mix, muddle, dis-
cursive, tangle, intricate, bewildered, imbroglio, intricacy,
jumble, obscurity

9 Comprehension comprehension, finality, inference, conclusion, notion, re-
alization, savvy

10 Consistency consistency, coherence, pertinacity, adhesion, invariability,
tenacity

11 Correct correct, rectify, fit, favorable, appropriate, worthy, deserve,
suitable, due, rightful, infallible, redress, regularize

12 Durable durable, lasting, hardy, imperishable, substantial, perma-
nent, long, immune, indissoluble, enduring, strong

13 Efficient efficient, able, capable, competent, proficient
14 Effort effort, endeavor, fighting, might, stamina, energy, strength,

activity
15 Expand expand, add, accretion, accrue, develop, flatten, grow,

prosper, thrive
16 Extension extension, flare, connect, continue, broaden, enlarge,

widen, magnify, prolong, elongate, protract, proliferate
17 Flexible flexible, elastic, dexterous, limber, resilient, springy, pli-

able, stretch
18 Implement implement, execute, accomplish, achieve, resource, utilize,

apply
19 Instrument instrument, equipment, accessory, apparatus, machinery,

appliance, device, fgadget
20 Integrate integrate, gather, collect, compile, assemble, embody, co-

ordinate, cooperate, harmonize, consolidate, sticking, com-
bination, joining, amassing, hoard, compound

21 Localization localization, limitation, narrowing, restriction, stint, defini-
tion, circumscription

22 Modify modify, customize, edit, improve, solve, repair, amend,
qualify

23 Modular modular, configuration, component, constituent, ingredient,
composition, complement, element, procedure, segment

24 Perfect perfect, excellent, ideal, immense, keen, superb, wonderful,
terrific, fantastic, splendid, magnificent, superior, entirety,
consummate, faultless

25 Portable portable, mild, soft, slight, lightweight, feathery, weak,
mushy, flimsy

26 Read read, peruse, pronounce, extrapolate, imagine, speculate,
surmise, see, view, interpret, transliterate, look

27 Reuse reuse, recycle, reiterate, rehash, reclaim, exploit, revise
28 Simple simple, ease, expedient, facile, easy
29 Stable stable, still, steady, invariable, constancy, endurance, firm-

ness, fastness, indissolubility, sturdily
30 Standard standard, formula, archetypal, representative, typical, char-

acteristic, degree, tier, quality, criterion, measurement, im-
perative, touchstone, property

31 Test test, verify, check, prove, evaluate, examine, assess, at-
tempt, experiment, inspect, trial, proof, tryout, investigate

32 Trace trace, pursue, tag, trail, detect, search, seek, probe, mean-
ing, significance, hint, consequence, point, follow, behave,
track, extract, transcribe

33 Understand understand, explain, fathom, grasp, knowledge, perceive

TABLE III. THE LDA RESULTS

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

change use add work method
convert sure adjust example tool

parameter suggest file make class
patch implement test code review
index cohesion improve model package
name resource worth duplicate commit

TABLE IV. NEW KEYWORDS

No. Keyword Synonyms

1 Cohesion cohesion, sticky, tough, gummy, leathery, tenacious
2 Duplicate duplicate, repetitive, double, copy, transcript, counterpart, facsim-

ile, reproduce, mimeograph, repeat, replicate

B. Are the Developers of OSS Projects Interested in Software
Maintainability Under the Peer Code Review?

The Qt and Eclipse projects had totals of 309,165 and
108,357 comments, respectively. Thirty-five keywords were
identified based on the characteristics that were relevant to
maintainability. These keywords included 33 previously used
terms and two terms obtained from the LDA. A script was
developed in program R for text mining. The results indicated
that 39,638 and 93,629 comments were related to maintainabil-
ity in the Qt and Eclipse projects, respectively, based on the
keywords (36.58% and 30.28% in Fig. 3). In both projects, the
number of comments related to software maintainability was
low compared to the total number of comments.

Fig. 3. Rate of comments are related to maintainability and comments are
not related to maintainability

The keywords were used 64,616 and 149,610 times in
the comments of the Eclipse and Qt projects, respectively. In
order to determine the extent to which software developers
of Eclipse and Qt prioritized software maintainability, the
comments related to software maintainability and code editing
were analyzed. Overall, 36,975 and 94,408 comments led to
source code modifications for Eclipse and Qt, representing
57.22% and 63.10% of all comments, respectively. Fig. 4
shows that the comments provided to the software developers
of Eclipse and Qt resulted in source code edits 50-60% of the
time.

We found that software developers of Eclipse and Qt edited

www.ijacsa.thesai.org 959 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 4. Ratio of comments to modification code

the source code according to the comments related to software
maintainability approximately 50-60% of the time. This result
provides empirical evidence suggesting that the software de-
velopers of Eclipse and Qt prioritized software maintainability
in more than 50% of source code modifications.

The Pearson correlation coefficient was determined in this
study at a 95% confidence interval to obtain the relationship
between comments related to maintainability and comments
related to code changes in these two OSS projects. Based
on an analysis in R, the Pearson correlation coefficients of
Eclipse and Qt were 0.995 and 0.993, respectively. These
coefficients indicate that the number of comments related to
software maintainability and the number of comments related
to code modifications were highly related. In other words,
when the reviewers of Eclipse and Qt provided more software
maintainability comments, the software developers made more
source code edits.

C. What Characteristics of Software Maintainability have the
Developers Considered?

The five most common comments related to software
maintainability were investigated, and the number of code
modifications related to those comments was determined.
Fig. 5 illustrates that the software developers of OSS projects
make the most source code edits based on comments that
discuss readability, and the rates of related changes are

61.44% for Eclipse and 72.14% for Qt.

D. Does the Size of the Reviewer Pool Influence the Comments
Related to Maintainability?

In the two OSS projects, most of the comments that led
to code edits were made by reviewers and other software
developers. Therefore, the number of comments was compared
to the number of comments related to software maintainability
each month. Moreover, the sizes of the groups or teams of
software developers were considered to determine how many
software developers reviewed the code.

R was used to calculate correlation coefficients and obtain
the relationship between the number of software developers
who provided comments related to software maintainability
and the number of comments related to software maintainabil-
ity. The annual Pearson correlation coefficients in the study
period were 0.78, 0.88, 0.72, 0.53, and 0.75 for Eclipse and
0.85, 0.86, 0.57, 0.005, and 0.17 for Qt (as shown in Fig. 6
and 7).

Fig. 6 shows that the group size of reviewers and the
number of comments related to software maintainability were
highly related in the Eclipse project. Fig. 7 illustrates that the
group size of reviewers and the numbers of comments related
to the project maintainability in Qt were highly correlated.

www.ijacsa.thesai.org 960 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 5. The percentage of addressed comments related to sub-characteristics

Fig. 6. The relationship between the number of reviewers and comments related to maintainability of the Eclipse project

The data were further analyzed to determine the trend in the
number of reviewers. Fig. 8 shows that the number of reviewers
who provide comments related to maintainability has increased

annually. As observed in the Eclipse and Qt projects, the new
generation of software developers is interested in developing
high-quality software and providing comments that improve

www.ijacsa.thesai.org 961 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 7. The relationship between the number of reviewers and comments related to maintainability of the Qt project

the quality of OSS projects.

E. How Many Comments Related to the Maintainability are
Given by Code Reviewers each Day?

The working times of reviewers for each project were eval-
uated based on ANOVA and posthoc comparisons considering
Tukey’s honest significant difference (HSD), which compares
the average of multiple data pairs. Tukey’s HSD was used
because hypothesis testing with ANOVA considers multiple
averages. Therefore, the results do not indicate which data pair
is different. Moreover, Tukey’s HSD is a popular statistical test
in software engineering research. In this study, the results of
the posthoc Tukey’s HSD indicate how many comments were
made by reviewers on each day of the week on average.

R was used to perform ANOVA at a 95% confidence level
for the following hypotheses.

H0: The average number of comments related to software
maintainability was the same on each day of the week.

H1: The average number of comments related to software
maintainability differed on each day of the week.

The results indicate that Eclipse has a p-value of 0.000649
and Qt has a p-value of 0.0105. The p-values of both projects
are lower than 0.05, so H0 is rejected. Therefore, it can be
concluded that the average number of comments related to

maintainability provided by reviewers each day varies. To
assess the differences, Tukey’s HSD is calculated.

R was used to perform the variance for Tukey’s HSD
calculation at a confidence level of 95%, and the hypotheses
of the test are as follows.

H0: The average number of comments related to software
maintainability is the same each day.

H1: The average number of comments related to software
maintainability is different each day.

Based on the variance of Tukey’s HSD, the average number
of comments from Monday to Saturday does not vary for
Eclipse. While there is a significant difference between the
comments related to the maintainability on Sunday compared
to those made throughout the rest of the week, the difference is
not significant. Moreover, the values on Saturday and Sunday
are similar. This finding may indicate that the Eclipse code
reviewers usually review code and provide comments related
to software maintainability from Monday to Saturday rather
than on Sunday. Based on the variance of Tukey’s HSD for
Qt, there are no significant differences between the number
of relevant comments on weekdays and weekends. Therefore,
it can be concluded that the reviewers of Qt usually review
code and provide comments related to software maintainability
every day.

www.ijacsa.thesai.org 962 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 8. Boxplot of comments related to the maintainability per day of the week

V. DISCUSSION AND THREATS TO VALIDITY

This section discusses the results and threats to the validity
of this study.

A. Discussion

The comments related to software maintainability from the
reviewers of OSS projects account for approximately 30%
of all comments, and some comments are related to the
development of the main functions and subfunctions of the
system and to other characteristics, such as stability [32].
In addition to maintainability, stability is a very important
characteristic because users around the world want to be sure
that OSS can maintain their confidentiality and integrity and
prevent accessibility issues or allow software editing without
permission. Moreover, published software must be made avail-
able. Therefore, software developers who focus on stability
mainly try to find possible gaps in code or vulnerable code
changes. The results of this study indicate that most comments
led to modifications of the code, which is a good sign for
software quality. Therefore, it is predicted that the software
developer communities of the Eclipse and Qt OSS projects
will continue to focus on maintainability in the future.

The results of this study and the applied methodology are of
interest in assessing software maintainability. This study differs
from other studies in that software engineering researchers
have typically investigated Eclipse and Qt based on other
maintainability topics and methods, such as using indicators
to verify source code and check maintainability. For example,
Yamashita et al. [33] checked for files that were vulnerable
to size increases and analyzed the complexity of the software.
Additionally, Caglayan et al. [34] used indicators to predict

defects in OSS projects, and Counsell et al. [35] calculated the
maintainability index based on coupled factors. Therefore, the
results of this study related to “software maintainability” may
differ from the results of other studies based on various factors,
such as the methods, processes, tools, and environments of
OSS projects.

B. Threats to Validity

Threats to validity can reduce the accuracy and reliability
of studies and lead to inaccurate results. This section presents
the threats to the validity of the current study. The threats in
this study can be categorized into three classes as follows.

Construct Validity - This research compiled OSS com-
ments from the code review system called “Gerrit”. The
storage structure of Gerrit was studied to design and de-
velop searching and storage software. The collected data were
sets of text or characters, and some data, such as symbols
and figures, may be incomplete. However, the collected data
were considered acceptable for analyzing the quality of OSS
projects, especially maintainability, which was the objective
of the research. In the research process, R was used for text
mining, data processing, and data analysis, as well as to search
for comments related to software maintainability. Moreover,
R was used to conduct various statistical methods, such as
variance analysis, correlation analysis, and regression analysis.
Therefore, other programs or tools were used for text mining,
and the results may be different.

Internal Validity - This study presents the comments
related to software maintainability from the code review pro-
cesses of Eclipse and Qt. In the comment search process,
keywords and synonyms related to each sub-characteristic of

www.ijacsa.thesai.org 963 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

software maintainability were selected to provide the support
framework for searching. Only comments with one or more
of the selected keywords or synonyms were analyzed, and
irrelevant comments or those that did not meet specific criteria
were removed. Result verification was performed by manually
reviewing all comments related to software maintainability
before processing. However, this manual may have an inherent
bias, and we attempted to minimize this bias by repeating
the verification process many times. Moreover, expert code
reviewers were asked to verify the results by reading the
comments (approximately 30% of all comments). Currently,
there is no tool available for the automatic review of comments.

External Validity - The results of this study only pro-
vide empirical evidence for the two OSS projects considered.
Therefore, the findings are not applicable to every OSS project
because each project differs in internal structure, and the
code review and software development processes also vary.
However, the results of this study can provide preliminary
guidelines for other studies related to the quality of similar
OSS projects.

VI. CONCLUSION

The objective of this research was to analyze the comments
associated with the Eclipse and Qt projects as part of the code
review process. The analytical results suggest that the number
of changes based on maintainability is moderate. This result
can improve the awareness of software developers regarding
the importance of code modification related to maintainability.
Moreover, the empirical data in this research can benefit source
code improvements made by software developer communities
in OSS projects. Additionally, the code review trends illus-
trated in this study can improve decision-making processes
among software developers of OSS projects, who should pri-
oritize software maintainability. In addition, these developers
should be ready to perform code editing in situations or
environments that may change in the future.

Although the results of this research provide only basic
conclusions, the existing information is sufficient for guiding
the development and improvement of OSS quality. Moreover,
the findings can be used by researchers who are interested in
software maintainability to study related topics, such as plug-
in development, using Gerrit. This comment-related approach
could improve code modification and extend beyond main-
tainability to other topics, such as readability and testability.
Additionally, tools or processes could be developed to assess
the edits of software developers in OSS projects according
to reviewer comments in Gerrit. If such a script or program
was developed to automatically check code edits in the Gerrit
framework, the reviewers who provide the comments could
be notified to facilitate better communication within the soft-
ware development community and allow for faster subsequent
reviews.

REFERENCES

[1] P. C. Rigby, D. M. German, and M. A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 541–550.

[2] M. Aberdour, “Achieving quality in open-source software,” IEEE Soft-
ware, vol. 24, no. 1, pp. 58–64, 2007.

[3] V. Tiwari and R. Pandey, “Open source software and reliability met-
rics,” International Journal of Advanced Research in Computer and
Communication Engineering, vol. 1, no. 10, pp. 808–815, 2012.

[4] B. Norick, J. Krohn, E. Howard, B. Welna, and C. Izurieta, “Effects
of the number of developers on code quality in open source software:
a case study,” in Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,
2010, pp. 1–1.

[5] Y. Zhou and J. Davis, “Open source software reliability model: an
empirical approach,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4. ACM, 2005, pp. 1–6.

[6] G. S. Walia and J. C. Carver, “Using error information to improve
software quality,” in Proceedings of the 2013 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE, 2013, pp. 107–107.

[7] A. Bosu and J. C. Carver, “Peer code review in open source com-
munities using reviewboard,” in Proceedings of the ACM 4th annual
workshop on Evaluation and usability of programming languages and
tools. ACM, 2012, pp. 17–24.

[8] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending
peer reviewers in modern code review,” IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 530–543, 2016.

[9] R. A. Baker Jr, “Code reviews enhance software quality,” in Proceedings
of the 19th international conference on Software engineering. ACM,
1997, pp. 570–571.

[10] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE, 2015,
pp. 146–156.

[11] M. Bernhart, A. Mauczka, and T. Grechenig, “Adopting code reviews
for agile software development,” in Proceedings of the 2010 Agile
Conference (AGILE 2010). IEEE, 2010, pp. 44–47.

[12] M. Fagan, “Design and code inspections to reduce errors in program
development,” in Software pioneers. Springer, 2002, pp. 575–607.

[13] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,”
in Proceedings of the 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE,
2015, pp. 141–150.

[14] International Organization For Standardization, “Software engineering
- Software product Quality Requirements and Evaluation (SQuaRE) –
System and software quality models,” ISO/IEC 25010:2011, 2011.

[15] S. Ghosh and A. K. Rana, “Comparative study of the factors that
affect maintainability,” International Journal on Computer Science and
Engineering, vol. 3, no. 12, pp. 3763–3769, 2011.

[16] N. S. A. A. Bakar and N. Arsat, “Investigating the factors that influence
the quality of open source systems,” in Proceedings of the 5th Interna-
tional Conference on Information and Communication Technology for
The Muslim World (ICT4M). IEEE, 2014, pp. 1–6.

[17] J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of
open source web applications,” in Proceedings of the 3rd International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2009, pp. 545–553.

[18] B. Norick, J. Krohn, E. Howard, B. Welna, and C. Izurieta, “Effects
of the number of developers on code quality in open source software:
a case study,” in Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement.
ACM, 2010, pp. 62–62.

[19] D. C. Schmidt and A. Porter, “Leveraging open-source communities
to improve the quality & performance of open-source software,” in
Proceedings of the 1st Workshop on Open Source Software Engineering
at ICSE 2001, 2001, pp. 1–5.

[20] J. Asundi and R. Jayant, “Patch review processes in open source
software development communities: A comparative case study,” in
Proceedings of the 40th Annual Hawaii International Conference on
System Sciences, 2007. IEEE, 2007, pp. 166–171.

[21] P. C. Rigby, “Understanding open source software peer review: Review
processes, parameters and statistical models, and underlying behaviours
and mechanisms,” Ph.D. dissertation, 2011.

www.ijacsa.thesai.org 964 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

[22] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 international
conference on software engineering. IEEE, 2013, pp. 712–721.

[23] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2014, pp. 271–280.

[24] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: how the current code review best practice slows us down,” in
Proceedings of the 37th International Conference on Software Engi-
neering. IEEE, 2015, pp. 27–28.

[25] R. Glass, “Frequently forgotten fundamental facts about software engi-
neering,” IEEE Software, vol. 18, no. 3, pp. 112–111, 2001.

[26] B. C. Wagey, B. Hendradjaya, and M. S. Mardiyanto, “A proposal
of software maintainability model using code smell measurement,” in
Proceedings of the 2015 International Conference on Data and Software
Engineering (ICoDSE). IEEE, 2015, pp. 25–30.

[27] I. Kádár, P. Hegedűs, R. Ferenc, and T. Gyimóthy, “A manually
validated code refactoring dataset and its assessment regarding software
maintainability,” in Proceedings of the 12th International Conference on
Predictive Models and Data Analytics in Software Engineering, 2016,
pp. 1–4.

[28] K. Stroggylos and D. Spinellis, “Refactoring–does it improve software
quality?” in Proceedings of the 5th International Workshop on Software
Quality (WoSQ’07: ICSE Workshops 2007). IEEE, 2007, pp. 10–10.

[29] S. Rizvi and R. A. Khan, “Maintainability estimation model for object-

oriented software in design phase (MEMOOD),” Journal of Computing,
vol. 2, no. 4, pp. 26–32, 2010.

[30] S. A. Khan and R. A. Khan, “Analyzability quantification model of
object oriented design,” Procedia Technology, vol. 4, pp. 536–542, 2012.

[31] S. Ghosh and A. K. Rana, “Comparative study of the factors that
affect maintainability,” International Journal on Computer Science and
Engineering, vol. 3, no. 12, p. 3763, 2011.

[32] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 257–268.

[33] K. Yamashita, C. Huang, M. Nagappan, Y. Kamei, A. Mockus, A. E.
Hassan, and N. Ubayashi, “Thresholds for size and complexity metrics:
A case study from the perspective of defect density,” in Proceedings of
the 2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS). IEEE, 2016, pp. 191–201.

[34] B. Caglayan, A. Bener, and S. Koch, “Merits of using repository metrics
in defect prediction for open source projects,” in Proceedings of the
2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development. IEEE, 2009, pp. 31–36.

[35] S. Counsell, X. Liu, S. Eldh, R. Tonelli, M. Marchesi, G. Concas,
and A. Murgia, “Re-visiting the’maintainability index’metric from an
object-oriented perspective,” in Proceedings of the 41st Euromicro Con-
ference on Software Engineering and Advanced Applications. IEEE,
2015, pp. 84–87.

www.ijacsa.thesai.org 965 | P a g e


