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Abstract—Drought forecasting provides an early warning for
the effective management of water resources to avoid or mitigate
drought damage. In this study, the prediction of droughts is
carried out in the department of Alibori in Benin republic using
the standardized precipitation index (SPI) where two Machine
Learning approaches were used to set up the drought prediction
models which were Random Forest (RF) and Extreme Gradient
Boosting (XGBOOST). The performance of these models was
reported using metrics such as: coefficient of determination (R2),
root mean square error (RMSE), mean square error (MSE),
and root mean absolute error (MAE). The results revealed that
XGBOOST models gave better prediction performance for SPI
3, 6, 12 with coefficients of determination of 0.89, 0.83 and
0.99, respectively. The square root mean square error (RMSE)
of the models gives 0.29, 0.40 and 0.07, respectively. This work
demonstrated the potential of artificial intelligence approaches in
the prediction of droughts in the Republic of Benin.
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I. INTRODUCTION

Droughts come after floods and represents one of the
most dangerous natural disasters affecting many countries
in the world, especially the countries of West Africa which
includes Benin republic [1]. Generally caused by a lack control
over precipitation, droughts are very complex and difficult
to identify because of their ability to occur in any climate,
anywhere on earth [2]. Losses caused by droughts between
1900 and 2013 worldwide are estimated at 135 billion dollars.
Moreover, in 2018, a total of 281 climatic and geophysical
events were recorded with 10,733 deaths and more than 60
million people affected worldwide [3]. According to [4] and
[5], climate change would be a factor in the aggravation of
drought situations and their frequency in the world. Several
vital sectors such as agriculture sectors, food security, hy-
droelectricity production, human and animal health, industrial
activities [2] are seriously affected by the adverse effects of
droughts.

Benin republic, like the other West African countries, is
not on the sidelines and has suffered the harmful consequences
of climate change. According to [3], Benin has recorded more
than half a dozen droughts with ever-increasing disasters, from
the 1960s to date. One of the most impacted sectors of the
economy is the agricultural sector, which contributes 1/3 of the
Gross domestic product (GDP) and holds up to nearly 70% of
jobs in Benin republic [6]. Despite the significant impacts of
drought, Benin republic, like most African countries, has no
tool to either monitor or predict it’s occurrence.

According to their effects and duration, droughts are clas-
sified into three categories: meteorological, agricultural and
hydrological droughts. Several indices have been developed to
predict and forecast the different types of drought. Gokhan
et al. [7] drew up in their bibliometric analysis an exhaustive
list of the various indices used in the literature as well as
the conditions in which to use them. We can mention: the
Standardised Precipitation Evapotranspiration Index (SPEI)
dedicated for determining the onset, duration and magnitude
of drought conditions; the Standardized Precipitation Index
(SPI) to monitor and predict droughts on several timescales
including 3, 6 and 12 months corresponding to SPI 3, SPI
6 and SPI 12, respectively. The SPI 3 is dedicated for the
meteorological drought prediction, the SPI 6 is used to predict
agricultural drought and the SPI is dedicated to the prediction
of hydrological drought.

Abhirup et al. [8] also used artificial neural networks
to understand the effect of droughts in New South Wales
(NSW) using the SPEI drought index. The performance results
revealed a coefficient of determination of 0.86. On the other
hand, Abhirup et al. [9] used Long Short Term Memory
(LSTM) to predict SPEI at 1 and 3 months time scales in New
South Wales. The results of this study revealed a coefficient
of determination of more than 0.99 for SPEI 1 as for SPEI 3.
Poornima et al. [10] on the other hand compared the predictive
capacities of SPI and SPEI in China by the LSTM and the
model ARIMA at time scales of 1, 3 and 6 months. In all cases,
the LSTM outperformed the capabilities of the ARIMA model.
Other studies such as [11] have used Random-Forest to predict
SPI at 3 and 12 month timescales in the Haive River Basin
in China. These models showed good prediction accuracy.
Lotfirad et al. [12] also used Random-Forest to predict SPI
and SPEI at time scales of 3, 12, 48 months in Iran. The
results obtained showed that in temperate climates, such as
northern Iran, the correlation coefficients of SPI and SPEI were
0.94, 0.95 and 0.81 at time scales of 3, 12 and 48 months,
respectively while it was 0.47, 0.35 and 0.44 in arid and hot
climates.

In spite of the multitude of works, Africans are less con-
cerned and among them we can cite the work of Mulualem et
al. [13] where they used Artificial Neural Networks to predict
the Normalized Precipitation and Evapotranspiration Index
(SPEI) for seven stations in the upper Blue Nile (UBN) basin
in Ethiopia. The results obtained found that the coefficient of
determination and root mean square error of the best model
ranged from 0.820 to 0.949 and 0.263 to 0.428, respectively. As
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in the most studies on drought forecasting, they use satellite
data sources without first assessing their reliability; satellite
data may not reflect the reality.

The objective of this work is to propose a prediction tool of
meteorological, hydrological and agricultural droughts in the
Alibori department (BENIN), using the SPI 3 SPI 6 and SPI
12 indicators respectively. The first time we focus on using
satellite sources. Indeed, in the concern to have a model close
to reality, we carried out an analysis of similarities between
satellite data and measured data. We then proposed two models
based on the algorithms random forest and XGBoost. Finally,
we presented a technique to improve the performance of the
model based on the XGBOOST, by combining the different
variables present in our dataset.

The rest of the document is organized as follows: Section II
presents study area and drought indicators. Then we described
our prediction approach in Section III. In Section IV we
presented and discussed our results then we concluded with
Section V

II. BACKGROUND

In this section, we first presented our study area followed
by the description of the indices chosen for the prediction of
drought in our study area. Then, we presented the algorithms
used for the implementation of the different models.

A. Study area

Fig. 1. Cartography of the alibori department (6)

Geographically located between 11°19′ north latitude and
2°55′ east longitude, Alibori is a department located in the
northeast of the Republic of Benin. It is bordered to the north
by the Republic of Niger, to the northwest by the Republic of
Burkina Faso, to the east by the Federal Republic of Nigeria,
to the west by Atacora and to the south by the department
of Borgou [14]. Covering an area of 26 242 km2 (nearly 23%
of the national territory), Alibori is subdivided into six (06)
municipalities as shown in Fig. 1 . These are: Malanville, Kari-
mama, Segbana, Gogounou, Banikoara and Kandi, comprising
41 districts and 229 villages and city districts [14]. According

to [6], the department of Alibori is the area most vulnerable
and most at risk to droughts in Benin republic. [15] confirms
this finding by stating that drought is more recurrent in the
northern part of Benin, particularly in the municipalities of
Karimama, Malanville and Segbana.

B. Standardized Precipitation Index (SPI)

The standardized precipitation index was developed in
1993 by Mc Kee, N.J. Doesken and J. Kleist of Colorado State
University. Its role is not only to determine rainfall deficits for
a given period [16] but also to improve the detection of drought
episodes at both local and regional scales [17]. Its calculation
is based solely on historical rainfall data. To calculate the
SPI more efficiently, [2] suggests that it is desirable to have
monthly precipitation data over a period of 20 to 60 years.
The mathematical expression for calculating the standardized
precipitation index is as follows:

SPI =
Pi − Pm

σ
(1)

with:
Pi : the total rain of month i;
Pm : the average rainfall of the series on the time scale

considered;
σ : the standard deviation of the series on the time scale

considered.

The seasons can be classified according to the values of the
SPI as shown in Table I.

TABLE I. CLASSIFICATION OF SEASONS BASED ON SPI VALUES [18]

SPI values Season classes
2.0 and more Extremely wet
from 1.5 to 1.99 Very humid
from 1.0 to 1.49 Moderately humid
from -0.99 to 0.99 Near normal
from -1.0 to -1.49 Moderately dry
from -1.5 to -1.99 Very dry
-2 and less extremely dry

C. Machine Learning Approaches

1) Random forest: Random forests represent a supervised
learning method based on decision trees [19]. This method
generates multiple trees for prediction. Thus, at the end of
the individual predictions, these are averaged to give a final
prediction of the model. Each tree being weak, the aggregation
of all the weak trees compensates for this shortcoming [20]
and creates a more robust model. According to [21], the
mean makes a random forest better than a single decision
tree, thus improving its accuracy and reducing overfitting. The
functioning of Random Forests is illustrated by Fig. 2.

www.ijacsa.thesai.org 988 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

2) Extreme gradient boosting: Extreme Gradient Boosting,
also called XGBOOST, is an optimized implementation of the
gradient boosting tree algorithm [22]. It is often the winning
algorithm in competitions on Kaggle [23]. Unlike the Random
Forest, the XGBOOST works sequentially. In other words,
the algorithm is based on previous predictions to improve the
results of other estimators. Thus, we rely on the predictions of
the “weak learners” to build a “strong learner” [23]. XGBoost
minimizes a regularized objective function (L1 and L2) that
combines a convex loss function (based on the difference
between predicted and target outputs) and a penalty term for
model complexity. The training proceeds iteratively, adding
new trees that predict the residuals or errors of the previous
trees which are then combined with the previous trees to make
the final prediction [24]. Fig. 3 further illustrates how the
XGBOOST algorithm works.

Fig. 2. Structure of a random forest (Random forest) [25]

Fig. 3. How XGBOOST works [24]

3) Performance assessment: The mean absolute error
(MAE), mean square error (MSE), root mean square error
(RMSE) and coefficient of determination (R2) are five typical
performance indicators used to assess the models performance.
The following mathematical expressions illustrate how to cal-
culate these metrics.

MAE =
1

n

n∑
i=1

|Actual − Predicted| (2)

MSE =
1

n

n∑
i=1

(
Actual − Predicted

)2
(3)

RMSE =

√√√√ 1

n

n∑
i=1

(
Actual − Predicted

)2
(4)

R2 = 1− Squared sum error of regression line

Squared sum error of mean line
(5)

with n : The number of samples.

III. PREDICTION APPROACH

A. Methodology

Fig. 4. Methodology of the study conducted

Our solution consists in predicting droughts in the depart-
ment of Alibori using the drought index SPI{3, 6, 12}. The
prediction is performed using machine learning algorithms, as
shown in Fig. 4. First, we collected satellite data covering our
entire study area over a period of 30years. Then, we carried
out the validation of these data using observation data from
a station of the AMMA-CATCH program (Multidisciplinary
Analysis of the African Monsoon-Coupling of the Tropical
Atmosphere and the Hydrological Cycle) [26]. After that,
we built our dataset and our models based on the Random
Forest and XGBOOST algorithms. Finally we selected the
best of the models and tried to improve them using a variable
scenario method described in [27]. It consists of identifying
the most useful variables when predicting indicators. First,
we determined the correlation between the variables using
the Pearson correlation matrix, then we defined the different
combinations of variables, starting with the most correlated
variables. After construction of the variable scenarios, the
models were retrained and re-evaluated on the basis of each
variable scenario.

B. Data

The use of Machine Learning in the prediction of drought
indicators requires data over a period of at least 30 years.
Unfortunately, we do not have any data for such a period.
So as an alternative, we therefore opted for the use of
satellite data from NASA’s Power Data Access Viewer plat-
form(https://power.larc.nasa.gov/) which has data over a period
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of 36 years (1985-2021), covering the entirety of our study
area and containing all the variables allowing the calculation
of the SPI: Temperature, total precipitation, wind speed, wind
direction, surface pressure, relative humidity, cloud amount,
soil moisture, Top-Of-Atmosphere Shortwave Downward Irra-
diance and all sky and All Sky Surface Shortwave Downward
Irradiance. In addition to this, its use is reported in several
works [28], [29], [30] to quote only those.

1) Validation: It consists in evaluating the reliability of
satellite data before using them. To this end, we considered
the Bellefoungou station (Benin) [31] for which we already
had in situ data over (08) years and we collected satellite data
corresponding to this region and the same period. We then used
the Taylor diagram and the Pearson correlation matrix to study
the similarity between in situ and satellite data.The results of
this validation phase are presented in Fig. 5 and 6. As shown in
Fig. 5, there is a strong correlation (0.91) between observation
data and satellite data. Fig. 6 also reveals that there is a strong
correlation (0.91) between observation data (represented by the
white circle on the x-axis) and satellite data (represented by
the blue dot). This figure also shows that the difference in
the standard deviation between the observation data and the
satellite data is not very high (approximately equal to 0.3)
and the error between these data is above 0.5. From all the
above, it can be seen that there is a strong similarity between
observational data and satellite data.

Fig. 5. Correlation matrix of the
total precipitation variable

Fig. 6. Taylor diagram of the total
precipitation variable

2) Construction of the dataset: By exploiting the precipi-
tation data, the calculation of the SPIs at the time scales of 3,
6 and 12 months corresponding respectively to SPI 3, SPI 6
and SPI 12 has been implemented according to the formula 1
presented in the Section II.

After calculating the different SPIs, observations with
missing data were removed. Once the datasets were purged
of missing values, the data from the (06) municipalities were
merged together in order to have a single dataset (Table II).

C. Model Building

We used the approaches described in the subsection II-C to
implement models for the prediction of SPI 3 (meteorological
drought), SPI 6 (agricultural drought), SPI 12 (hydrological
drought). The different models have been implemented using
the python programming language as well as different data sci-
ence libraries such as: NumPy, Pandas, Scikit-learn, Matplotlib
and Seaborn.

TABLE II. DETAILS OF THE SATELLITE DATASET

VARIABLES UNITS TIME SCALE
Surface Pressure KPa Monthly
Total Precipitation mm Monthly
Air Temperature at 2 meters C Monthly
Relative Humidity at 2 meters % Monthly
Wind Speed at 2 meters m/s Monthly
Wind Direction at 2 meters Degree (◦) Monthly
Soil Moisture - Monthly
Cloud Amount % Monthly
Top-of-Atmosphere Shortwave Down-
ward Irradiance

MJ/m2/day Monthly

All Sky Surface Shortwave Downward
Irradiance

MJ/m2/day Monthly

In order to effectively train and validate the developed
models, the dataset was divided into two parts: the training data
(77%) and the test data (23%). We also used GridsearchCV to
obtain the best hyperparameters for the models (see Tables III
and IV).

TABLE III. RANDOM FOREST MODEL HYPERPARAMETER VALUES

Index Hyperparameters Values
SPI 3 n estimators 70

random state 15
SPI 6 n estimators 100

random state 9
SPI 12 n estimators 100

random state 9

TABLE IV. XGBOOST MODEL HYPERPARAMETER VALUES

Hyperparameters Values
Subsample 0,7
colsample bytree 1
eta 0,1
max depth 10
n estimators 100
booster gbtree
verbosity 0

IV. RESULTS AND DISCUSSION

We first evaluated the different models based respectively
on Random-Forest and XGBOOST to identify the best models
and then we improved them using variable scenario.

A. Random Forest Evaluation

Considering all the variables whose data were collected,
prediction models for SPI 3, 6 and 12 were implemented and
evaluated using the performance metrics presented in Section
II. As it can be seen in the Table V, the models gave SPI 3,
SPI 6 and SPI 12, respectively for performance R2 of 0.832
(83%), 0.742 (74%) and 0.992 (99%).

After evaluating the models, it can be seen that the SPI
3 prediction model gives errors RMSE = 0.379, MAE =
0.276 and MSE = 0.143 respectively. As for the prediction
model of SPI 6, we had the following errors: RMSE=0.479,
MAE=0.344 and MSE=0.230. The SPI 12 prediction model
gave the lowest errors with RMSE= 0.082, MAE = 0.041
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and MSE = 0.006 values, respectively. This would mean
that the variables considered are more relevant for predicting
hydrological drought (SPI 12).

B. XGBOOST Evaluation

The Table VI presents the evaluation results of the pre-
diction models of SPI 3, 6 and 12 based on the XGBOOST
algorithm. This table shows good performance for all models
with coefficient of determination R2 respectively equal to: 88%
for the SPI 3 prediction model, 81% for the SPI 6 prediction
model and 99% for that of the SPI 12.

As for the errors made by the models, the results of the
evaluation revealed that the prediction model of the SPI 3 gave
the values RMSE = 0.317, MAE = 0.221 and MSE = 0.100,
respectively. The SPI 6 prediction model gave the following
results: RMSE = 0.423, MAE = 0.301 and MSE = 0.179. The
SPI 12 prediction model provides the best performance and
minimizes all errors the most with errors RMSE = 0.076, MAE
= 0.041 and MSE = 0.005.

By comparing the performances of the Random Forest
models and those of XGBOOST, we find that the XGBOOST
algorithm is much more efficient in the case of the present
study.

TABLE V. RANDOM FOREST MODEL EVALUATION RESULT

Index R2 RMSE MAE MSE
SPI 3 0.832 0.379 0.276 0.143
SPI 6 0.742 0.479 0.344 0.230
SPI 12 0.992 0.082 0.041 0.006

TABLE VI. XGBOOST MODEL EVALUATION RESULT

Index R2 RMSE MAE MSE
SPI 3 0.882 0.317 0.221 0.100
SPI 6 0.817 0.423 0.301 0.179
SPI 12 0.993 0.076 0.041 0.005

C. Variable Scénario

Fig. 7. Correlation matrix between input variables and SPI 3

According to the Fig. 7, the highest correlation is equal
to 0.2 and this corresponds to the correlation between the
total precipitation and the SPI 3. We also note a correlation

of 0.17 between the humidity of the ground and SPI 3. Then
follow weaker positive correlations respectively equal to 0.038,
0.026 and 0.014 corresponding respectively to the correlations
between SPI 3 and surface pressure, relative humidity and
wind speed. In addition to the positive correlations, some
variables have a negative correlation with the SPI 3. These
are the amount of cloud (-0.036), All Sky Surface Shortwave
Downward Irradiance (-0.05), wind direction (-0.057), Top-
Of-Atmosphere Shortwave Downward Irradiance (-0.066), Air
temperature (-0.15). This correlation matrix made it possible to
identify the variables that have a strong correlation with the SPI
3. This is the variable: total precipitation. It can be deduced
that the total precipitation represents a relevant variable for
the prediction of SPI 3 (meteorological drought). The same
approach was adopted for the cases of SPI 6 (agricultural
drought) and 12 (hydrological drought).

The Tables VII, VIII and IX respectively present the differ-
ent variable scenarios according to the type of drought. Indeed,
these scenarios are only combinations of the variables obtained
from the Pearson correlation matrices. For the experimentation
phase, they were successively used as input parameters to
the XGBOOST models. These matrices made it possible to
construct 11 scenarios per type of drought. The presence of a
(✓) symbol in the cell of a column means that the variable
concerned is part of the scenario corresponding to this column.
For illustrative purposes, scenario 1 of the Table VII consists
only of the Total precipitation variable. Scenario 3 consists
of the variables: soil moisture, total precipitation and surface
pressure.

TABLE VII. SCENARIOS OF VARIABLES FOR THE PREDICTION OF SPI 3
(METEOROLOGICAL DROUGHT)

Variables
Scenarios

1 2 3 4 5 6 7 8 9 10 11

Soil moisture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total recipitation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Relative humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind direction ✓ ✓ ✓ ✓

Surface pressure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cloud amount ✓ ✓ ✓ ✓ ✓ ✓

Top-Of-Atmosphere Shortwave Downward Irradiance ✓ ✓ ✓

Wind speed ✓ ✓ ✓ ✓ ✓ ✓

All Sky Surface Shortwave Downward Irradiance ✓ ✓ ✓ ✓ ✓

Air temperature ✓

TABLE VIII. SCENARIOS OF VARIABLES FOR THE PREDICTION OF SPI 6
(AGRICULTURAL DROUGHT)

Variables
Scenarios

1 2 3 4 5 6 7 8 9 10 11

Soil moisture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total precipitation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Relative humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind direction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Surface pressure ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cloud amount ✓ ✓ ✓ ✓ ✓ ✓

Top-Of-Atmosphere Shortwave Downward Irradiance ✓ ✓ ✓ ✓ ✓

Wind speed ✓ ✓

All Sky Surface Shortwave Downward Irradiance ✓ ✓

Air Temperature ✓

Once the variable scenarios were established, the XG-
BOOST models were trained and validated by considering
each variable scenario. Then, these models were evaluated
using previously used performance metrics to identify not only
the most accurate model but also the scenarios that provide
better prediction performance. The performance results of the
models according to each scenario of variables for each SPI
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TABLE IX. SCENARIOS OF VARIABLES FOR THE PREDICTION OF SPI 12
(HYDROLOGICAL DROUGHT)

Variables
Scénarios

1 2 3 4 5 6 7 8 9 10 11

Soil moisture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total precipitation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Relative humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind direction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Surface pressure ✓ ✓ ✓ ✓ ✓ ✓

Cloud amount ✓ ✓ ✓ ✓ ✓ ✓ ✓

Top-Of-Atmosphere Shortwave Downward Irradiance ✓ ✓ ✓ ✓ ✓

Wind speed ✓ ✓ ✓

All Sky Surface Shortwave Downward Irradiance ✓ ✓

Air temperature ✓

(SPI 3, SPI 6 and SPI 12) are presented in the Tables X,
XI, XII. The Table X, reveals that scenario 9 is the one that
provides the best results with a determination coefficient R2

equal to 0.898 (89%), an RMSE of 0.29, an MAE of 0.211
and an MSE of 0.087. This table also reveals two important
elements. First, it can be noticed that the more one adds a
variable to a scenario, the more the precision of the model
increases (even the variables having a weak correlation with
the SPI 3) with the exception of the variables soil humidity and
air temperature . Secondly, when we use as input parameters,
scenario 2 which contains only the variables most correlated
to SPI 3, the performance of the model deteriorates completely
with a negative R2 (-0.241). This actually means that the fact
that the variables are the most correlated to the SPI 3, does
not necessarily mean that they are the most essential for the
prediction of the SPI 3. Moreover, a variable having a negative
correlation (quantity of cloud for example) with SPI 3 can
increase the predictive performance of the model. As for the
Table XI, it shows that scenario 9 is still the one that provides
the best results for the prediction of SPI 6 with a coefficient of
determination R2 equals to 0.830 (83%), an RMSE of 0.408,
an MAE of 0.289 and an MSE of 0.167. This table also
shows two other key pieces of information. We can also notice
that the more we add a variable to a scenario, the precision
of the model increases (even the variables having a negative
correlation with the SPI 6) with the exception this time of
the temperature variable of the air whose addition lowered
accuracy and increased errors. Although the total precipitation
and soil moisture variables constituting scenario 2 are the
most correlated with SPI 6, the performance of the model was
only 0.017 for this scenario. This actually shows that the fact
that the variables are the most correlated to the SPI 6, does
not necessarily mean that they are the most essential for the
prediction of the SPI 6. Moreover, a variable having a negative
correlation (wind speed per example) with SPI 6 can increase
the predictive performance of the model.

The performance results of the XGBOOST model for the
prediction of SPI 12 are presented in the Table XII. Unlike SPI
3 and SPI 6, this time it is scenario 8 that gives the best results
with a determination coefficient R2 equal to 0.994 (99%), an
RMSE of 0.073, an MAE of 0.039 and an MSE of 0.005.
Several other relevant information can be extracted from this
table. Firstly, as in the case of SPI 3 and SPI 6, it can also be
seen that the more a variable is added to a scenario, the more
the precision of the model increases (even the variables having
a negative correlation with the SPI 12) with the exception
this time variables: Top-Of-Atmosphere Shortwave Downward
Irradiance, wind speed, air temperature, the addition of which
decreased accuracy and increased errors. Secondly, considering

the three variables most correlated to SPI 12 which are:
total precipitation, soil moisture and relative humidity forming
scenario 3, the performances are already starting to be good
(R2 = 86%) . This is not the case for the prediction of SPI
3 and 6. This actually shows that the total precipitation, soil
moisture and relative humidity have a strong influence on the
prediction of SPI 12.Having a negative correlation with the SPI
12, only the addition of the variable All Sky Surface Shortwave
Downward Irradiance slightly increased the performance of the
model 0.994 (99%).

The variation of predicted SPI values and calculated SPI
values is illustrated in Fig. 8, 9 and 10. As it can be seen,
the predicted SPI (in blue) have a similar variation as the
calculated SPIs 3 (in red). By considering these three figures,
it can be noticed that the predicted SPI 12 is very close to the
calculated SPI 12. This justifies the 99% accuracy of the SPI 12
prediction model. It can therefore be said that the XGBOOST
is better suited to the prediction of hydrological drought in the
department of Alibori.

TABLE X. PERFORMANCE RESULTS OF THE SPI 3 PREDICTION MODEL
BASED ON THE XGBOOST ALGORITHM

Métrique
Scénarios

1 2 3 4 5 6 7 8 9 10 11

R2 -0.0005 -0.241 0.200 0.449 0.526 0.636 0.646 0.665 0.898 0.884 0.874

RMSE 0.926 1.032 0.828 0.687 0.637 0.558 0,551 0.536 0.295 0.314 0.328

MAE 0.712 0.722 0.567 0.463 0.441 0.393 0.391 0.374 0.211 0.226 0.225

MSE 0.859 1.065 0.686 0.472 0.406 0.311 0.303 0.287 0.087 0.176 0.107

TABLE XI. PERFORMANCE RESULTS OF THE SPI 6 PREDICTION MODEL
BASED ON THE XGBOOST ALGORITHM

Métrique
Scénarios

1 2 3 4 5 6 7 8 9 10 11

R2 0.015 0.017 0.317 0.458 0.519 0.572 0.784 0.813 0.830 0.810 0.327

RMSE 0.985 0.984 0.189 0.730 0.688 0.649 0.460 0.428 0.408 0.432 0.814

MAE 0.792 0.722 0.136 0.532 0.480 0.452 0.315 0.294 0.289 0.304 0.656

MSE 0.971 0.969 0.035 0.534 0.474 0.421 0.212 0.183 0.167 0.187 0.663

TABLE XII. PERFORMANCE RESULTS OF THE SPI 12 PREDICTION
MODEL BASED ON THE XGBOOST ALGORITHM

Métrique
Scénarios

1 2 3 4 5 6 7 8 9 10 11

R2 0.663 0.780 0.860 0.896 0.913 0.994 0.993 0.994 0.993 0.993 0.993

RMSE 0.559 0.451 0.360 0.310 0.283 0.07 0.075 0.073 0.077 0.075 0.076

MAE 0.398 0.300 0.197 0.173 0.157 0.044 0.040 0.039 0.042 0.041 0.041

MSE 0.313 0.204 0.129 0.096 0.080 0.005 0.005 0.005 0.005 0.005 0.005

Fig. 8. Comparison of predicted SPI 3 and target SPI 3

V. CONCLUSION

This study consisted in designing prediction models of SPI
3 (meteorological drought), SPI 6 (agricultural drought) and
SPI 12 (hydrological drought) in the department of Alibori
based respectively on the Random forest and Extreme Gra-
dient Boosting (XGBOOST) algorithms. Performance results
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Fig. 9. Comparison of predicted SPI 6 and target SPI 6

Fig. 10. Comparison of predicted SPI 12 and target SPI 12

indicated that XGBOOST performs better than Random forest
in predicting SPI 3, SPI 6 and SPI 12 with respectively the
coefficients of determination R2 équal to 88%, 81% and 99%.
To further improve the performance of XGBOOST models, 11
variable scenarios were designed. These scenarios were then
used respectively to train, validate and evaluate the models
in order to identify the scenarios that allow good prediction
performance. At the end of this improvement step, the best
performances obtained are respectively 89% for SPI 3, 83%
for SPI 6 and 99% for SPI 12. The use of this technique based
on the scenarios of variables allowed to deduce that the air
temperature was not relevant for the prediction of the SPI 3.
Similarly the variables air temperature and wind speed were
not essential for the prediction of SPI 12. Future prospects
consist of using other drought indices like SPEI in order to
compare their results with those obtained in the present study
in order to see the drought index that lends itself to drought
prediction in Benin in general and in the Alibori in particular).

VI. PERSPECTIVES

In the future works, historical data will be used to predict
future droughts, which would be useful to meteorological
decision makers in developing drought mitigation measures
and actions.
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