
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

130 | P a g e

www.ijacsa.thesai.org

A Fast and Effective Method for Intrusion Detection

using Multi-Layered Deep Learning Networks

A. Srikrishnan1, Dr. Arun Raaza2, Dr. Ebenezer Abishek. B3

Dr. V. Rajendran4, Dr. M. Anand5, S. Gopalakrishnan6, Dr. Meena. M7

Research Scholar, Department of ECE, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India1

Deputy Director of CARD, Department of ECE, Vels Institute of Science, Technology and Advanced Studies

(VISTAS), Chennai, India2

Associate Professor, Department of ECE Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College,

Chennai, India3

Director and Professor, Department of ECE, Vels Institute of Science, Technology & Advanced Studies

(VISTAS), Chennai, India4

Professor, Department of ECE, Dr.M.G.R. Educational and Research Institute, Chennai, India5

Assistant Professor, Department of MEE, Sengunthar College of Engineering, Tiruchengode6

Associate Professor, Department of ECE, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India7

Abstract—The practise of recognising unauthorised abnormal

actions on computer systems is referred to as intrusion detection.

The primary goal of an Intrusion Detection System (IDS) is to

identify user behaviours as normal or abnormal based on the

data they communicate. Firewalls, data encryption, and

authentication techniques were all employed in traditional

security systems. Current intrusion scenarios, on the other hand,

are very complex and capable of readily breaching the security

measures provided by previous protection systems. However,

current intrusion scenarios are highly sophisticated and are

capable of easily breaking the security mechanisms imposed by

the traditional protection systems. Detecting intrusions is a

challenging aspect especially in networked environments, as the

system designed for such a scenario should be able to handle the

huge volume and velocity associated with the domain. This

research presents three models, APID (Adaptive Parallelized

Intrusion Detection), HBM (Heterogeneous Bagging Model) and

MLDN (Multi Layered Deep learning Network) that can be used

for fast and efficient detection of intrusions in networked

environments. The deep learning model has been constructed

using the Keras library. The training data is preprocessed and

segregated to fit the processing architecture of neural networks.

The network is constructed with multiple layers and the other

required parameters for the network are set in accordance with

the input data. The trained model is validated using the

validation data that has been specifically segregated for this

purpose.

Keywords—Intrusion detection system; knowledge discovery

and data mining; transmission control protocol; adaptive

parallelized intrusion detection; constrained-optimization-based

extreme learning machine

I. INTRODUCTION

IDS models can serve a wide range of purposes and
requirements when applied in business settings. One of the
most popular applications is the method of intrusion detection
in personal systems or distributed settings [1]. The design of
modern operating systems includes the implementation of
technology that detect and prevent intrusions. However, the

handling capabilities of these systems are currently unknown.
As a consequence of this, the majority of customers choose to
invest in expert intrusion detection solutions for enhanced
levels of protection. In addition, there is a considerable need
for IDS that may be implemented in clustered systems and
used in servers [2, 3]. There are many commercially available
intrusion detection systems, some of which include the Bro
intrusion detection system, which was developed by VISTAS
Labs and the School of Engineering, the Snort intrusion
detection system, which is distributed under the GNU licence
[4], Network Protocol Analyzer [6], Multi Router Traffic
Grapher (MRTG) [7], and a few other options. On the other
hand, the computing requirements of the majority of these
systems, as well as their accuracy, might be enhanced.

A. Motivation of this Research

This research was motivated by the fact that the majority
of currently available intrusion detection systems do not
handle the issues listed above as part of their operational
process. As a result, there is a need to design an effective
intrusion detection system with mechanisms to handle data
imbalance and concept drift while simultaneously achieving
better accuracy and faster detection of intrusions. This
research was carried out to fulfil this need.

B. Objectives

The primary purpose of this work is to create an efficient
intrusion detection system that is capable of the identification
of intrusion signatures in network data in real time. The
secondary goals are as follows:

 To develop a method of intrusion detection that is
capable of dealing with the inherent data imbalance
that is present within the domain in an efficient
manner.

 In order to effectively deal with concept drift, which is
an essential component of the domain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

131 | P a g e

www.ijacsa.thesai.org

 To incorporate feature reduction in order to lessen the
demands placed on the model's computational
resources.

 To enable quicker detection of intrusions,
parallelization is going to have to be incorporated into
the detection process.

 To execute detection of intrusions in real time in order
to minimise financial damage as much as possible.

II. LITERATURE SURVEY

One of the essential components of today's continuously
networked world is the presence of an intrusion detection
system. As a result, there have been a few examination
promises made in this area. In this section, we will discuss
what are the most recent commitments in the field of intrusion
detection. The investigation of the models will be carried out
in three important stages. "The primary section discusses the
function of AI-based models in identifying intrusions, the
subsequent section investigates the significance of component
choice in this space, and the concluding section discusses the
function of adaptable models in the field of intrusion
detection. H. Yang et al. [8] presented a novel and factual
model that makes use of Least Square Help Vector Machines
(LS-SVM) in order to recognise intrusions. This model
divides the data into subgroups that are not consistent with one
another. A delegate test will be selected from within this
subgroup in order to prepare the model. SVM-based intrusion
detection systems are incorporated into another comparative
SVM-based model for network intrusion detection models [9].
The most important AI methods have been implemented in a
number of the models, and those models also demonstrate
intriguing expectations. These models include hereditary and
fluffy calculation based models [10], grouping and k-closest
neighbour based models [11], IDS utilising Backing Vector
Machines (SVM) for preparation [12, 13], and a lot of other
similar models. These models additionally rely on signature-
based detection of intrusions in order to function well. In most
cases, they are made as twofold classifiers, and they are
prepared on both typical and irregular marks. Typical marks
are the ones that are used. It was determined that the models
were computationally incomprehensible, which resulted in
significant time requirements. A model of IDS with several
layers was suggested [14]. This is a component choice based
model, which considers attacks to be layers and selects
highlights for each of the layers in order to construct the
detection model. It was proposed [15] to use an ongoing-based
irregularity detection model for the purpose of network
intrusion detection. Keeping up with adaptive mark databases
that are not difficult to renew and reproduce under continuous
settings is essential to this concept. In addition to this, the
model suggests a multi-objective component determination
method for the practical selection of attributes that will result
in increased levels of precision. An earlier version of this
model that deals with the detection of intrusions on systems
that have been implanted was proposed [16]. The study [17]
presents a proposal for a staggered intrusion detection
paradigm that is based on peculiarity detection. A comparable
methodology for the detection of peculiarities based on trees
was suggested [18]. In order to identify intrusions, this model

relies on a combination of calculations based on the Firefly
and Hereditary algorithms. There was a proposal made for a
grouping-based intrusion detection approach [19]. The Semi-
Directed Multifaceted Grouping Model (SMLC) that was
proposed in this work makes use of named data in some
capacity for the preparation process, which enables an
adjustable detection procedure. Other semi-directed intrusion
detection models include a group-based IDS Al- [21], a
normal neighbour based model [22], and a semi-regulated
model [20].

The models make use of fundamental techniques, which
leads to diminished performance when applied to unbalanced
data. The author [23] made a suggestion for a model that
handled imbalances in the IDS. This is a real-time model that
is based on clustering and use the RIPPER algorithm for the
detection procedure. The research [24] presented a model with
a similar structure that was based on the RIPPER algorithm.
The study [25] presented an idea for an intrusion detection
model that was based on principal component analysis (PCA).
This paradigm is a profiling-based one, and it constructs
profiles by making use of the intrusion signatures. Because
this model is based on several classifications of classes, it is
intended to recognise a wide variety of intrusion signs so that
it can provide accurate categorizations. The study [26]
presented a proposal that included an in-depth investigation of
the classification models that can be utilised for intrusion
detection in the most efficient manner.

An efficient methodology for the selection of features has
been proposed [27] for use with the KDD CUP 99 dataset. The
programme was able to make fairly accurate predictions
despite having only six characteristics to work with. In a
similar vein, the Flexible Neural Trees model [28] was able to
attain an accuracy of 99.19% with just four features. A model
for the identification of intrusions that was written in A C#
was suggested [29]. Using this method results in the creation
of a packet sniffer that has the capacity to effectively gather
packets from an interactive TCP session and inspect them.
Attackers will frequently engage in packet chaffing whenever
they are dealing with models of packet sniffers. Researchers
can more easily identify these types of packets with the help
of the model, which works by injecting more packets into the
network. The study [30] presented a strategy for identifying
stepping stone intruders in their research. This model is
responsible for carrying out the process of intrusion detection
by contrasting the contents of a host's incoming and outgoing
traffic packets. When the contents are examined, the model is
evaluated to determine whether or not it can serve as a
stepping stone. Because of this, it is possible to make a clear
distinction between a typical packet and an invasive packet.
On the other hand, if the packets are encrypted, this paradigm
for detecting intrusions may not be successful. Because of
this, inspecting packets cannot be called a model that is 100
percent reliable for spotting invasions. The research [31]
presented a model for the identification of intrusions that was
very comparable. The stepping stone attack has also been
suggested as being detectable by using this concept. In
contrast, this model identifies the packet source based on the
timestamp, size, and sequence number of the data packets
rather than by inspecting the contents of the packets

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

132 | P a g e

www.ijacsa.thesai.org

themselves. Even after they have been encrypted, these
parameters are still legible; hence, this model is seen to have
superior performance when compared to the model that came
before it. Examining the information included within the
packet header was also the subject of a suggestion made by
[32]. Both [33] and [34] presented an additional method that
makes use of the information regarding the packet count in
order to identify the stepping stone assault. When it comes to
fending off stepping stone attacks, connection chain
difficulties are seen as being among the most important
components. The author [35] presented a model that
determines the stepping stone attack by estimating the length
of the connecting chain as a starting point for the calculation.
The study [36] presented a model with the aim of precisely
determining the connecting chain more of the time. Even
while these methods assist cut down on the amount of time
needed for training and detection, because they are unable to
properly deal with concept drift, they are not ideal for real-
time intrusion detection.

III. METHODOLOGY

Detecting an intrusion into a system typically entails
searching through a vast repository for intrusion signatures
that are particularly sophisticated. For this purpose, a
complicated model that recognises these signatures is
required. This research provides a neural network model that
is based on deep learning and has the capability of performing
efficient intrusion detection on network transmission data. The
Multi Layered Deep Learning Network that has been
suggested is a deep learning network since it is made up of a
number of hidden processing layers at various depths across
the network. It was discovered that detection through the use
of the deep network exhibited effective performances when it
came to detecting the intrusion signatures.

A. Multi-Layered Deep Learning Networks (MLDN)

In this paper, a Multi-Layer Deep Learning Network
(MLDN) model is presented for the detection of intrusions in a
timely and accurate manner. The neural network is one of the
primary models that is utilised in the quest to make accurate
forecasts. Deep network intrusion detection is capable of
identifying a great number of intrinsic patterns, in addition to
addressing issues of data imbalance and concept drift. The
deep learning architecture that has been proposed for use in
intrusion detection is broken down into four distinct stages.
These stages are data pre-processing, data separation, network
development, and model fitting. Fig. 1 illustrates the
suggested model's design, and the corresponding pseudocode
may be found below.

Architecture of the Algorithm for the MLDN:

1) Input transaction data.

2) Perform data pre-processing to eliminate

inconsistencies.

3) Separate the data into three categories: training, testing,

and validation.

4) Construct the neural network using the input data as a

basis.

a) Create Layer and assign activation function.

b) Determine Epoch.

c) Assign Learning rate.

d) Assign Optimizer and Loss function.

e) Data Shuffling.

f) Create Layer and assign activation function b.

5) Get the process of network training off the ground.

6) Validate the trained model by using the data from the

validation.

7) Using the results of the tests, determine the final

forecast.

B. Data Collection

The model has been validated through the utilisation of
industry-standard benchmark datasets such as NSL-KDD,
KDD CUP 99, and Koyoto 2022+ datasets.

C. Data Pre-Processing Phase

In most cases, neural networks are unable to effectively
manage all of the different types of data that are incorporated
into network data. They are only able to deal with data of the
double type, and they require all of the data to fall within the
same range in order for it to be relevant to both sets of
characteristics. These criteria are dealt with during the pre-
processing phase. The procedures that were carried out during
the pre-processing phase are illustrated in Fig. 2. Data
normalisation follows data imputation. One of the necessary
pre-processing steps that must be completed before working
with real-time data is known as data normalisation. The
operational nature of machine learning models makes it
necessary to implement a significant amount of
standardisation.

Fig. 1. Proposed MLDN architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

133 | P a g e

www.ijacsa.thesai.org

Fig. 2. Data pre-processing.

Every machine learning model has the tendency to fit
functions to the data that is provided. In most cases, the
weights that are applied to an attribute are what decide the
level of relevance that the attribute has. The process of fitting
the functions has a tendency to become more difficult when
the training data comprises values that fall within a wide range
of values. If any of the attributes include significant values,
this will ultimately result in the actual value being the one to
determine the significance of the variable. Because of this, the
weights that were assigned are likely to be useless. As a
consequence of this, it becomes vital to transform all of the
data into comparable ranges so that consistency can be
achieved throughout the process of prediction. The three
normalising techniques that are employed the most frequently
and extensively are the min-max normalisation, the z-score
normalisation, and the decimal scaling. The original data
range is transformed in a linear fashion with the application of
the Min-Max normalisation. This is demonstrated by:

 (

) (1)

where "x" represents the normalised value and "x"
represents the actual value of the attribute A. The data will be
scaled between the predetermined limits [C, D], which are
denoted by the letters C and D. Another method that can be
utilised in the normalisation process is known as the Z-score
normalisation method. The data are normalised between the
intervals of 0 and 1 using this model. This follows logically
from the formula.

 ̅

 (2)

where xi' and xi are the normalised and actual values of the
attribute A, A is the mean value for the attribute A, and std(A)
is given by where xi' and xi are the normalised and actual
values of the attribute A.

 √

 ∑ ̅

 (3)

where "n" refers to the total number of rows or instances
contained inside the data. The decimal scaling approach is the
simplest one, and it yields results that are dependent on both
the current value and the highest value that can be found in the
property. This is demonstrated by

 (4)

If x' represents the normalised value, x represents the
actual value of the attribute A, and j represents the number of
digits that make up the highest possible number in the variable
A.

For the purpose of normalisation, this study makes use of
Min-Max Normalization because it provides the benefit of
being able to set both the minimum and the maximum values.

D. Data Segregation Phase

Now that the data have been standardised, the models may
be trained using them. On the other hand, it is essential to keep
in mind that model validation is a requirement that must be
met by any machine learning model. Because of this, the
normalised training data is separated into three distinct
components: the training data, the testing data, and the
validation data. The data is divided in accordance with the
proportions 7:2:1. Seventy percent of the total data set is used
to sample the training set, twenty percent of the total data set
is used to sample the test set, and ten percent of the total data
set is used for validation purposes. After the data have been
separated, the training data will be utilised in order to
construct the trained model.

E. Network Construction Phase

During this phase, a deep neural network model is utilised
to facilitate the efficient identification of intrusion signatures
derived from the transmission data. In order to construct the
neural network, the deep learning library known as Keras was
utilised. A neural network, often called an artificial neural
network, is a network of neurons that collaborates to perform
effective machine learning. Neural networks are also
sometimes referred to by its other name, natural neural
networks. Neurons, often referred to as perception, are the
individual processing pieces that are used to construct neural
networks. As can be seen in Fig. 3, a single neuron has
numerous inputs coming into it, but it only produces a single
output.

Fig. 3. Neuron: A view.

On the other hand, these inputs cannot be independently
acted upon. As a consequence of this, the relative significance
of each input is reflected in the weights that are assigned to it.
Real numbers (w1, w2,...) are the typical notation used to
express weights. The output of a neuron is often a weighted
aggregate of the neuron's input value and the weights that
accompany that value. This is demonstrated by

 ∑

 (5)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

134 | P a g e

www.ijacsa.thesai.org

where “the activation function, w and x are the weights and
inputs of the neuron”, and the symbol for the activation
function. An input layer, one or two processing or hidden
layers, and an output layer are the typical layers that make up
a neural network. In most cases, the network also contains an
output layer. Each layer is made up of multiple neurons, each
of which is responsible for processing the information
received in that layer and producing the appropriate outputs.
Fig. 4 is an illustration that provides a general representation
of a neural network.

Fig. 4. A simple neural network.

Every layer in the network operates based on the input that
was provided by the layer that came before it, carries out
operations as specified by Eq. (5), and then passes along its
output to the layer that comes after it. One variety of artificial
neural network is known as a deep neural network. This
network has several hidden layers within its structure. The
technique of running a deep neural network is identical to the
process of running an artificial neural network; however, the
addition of more layers results in the provision of improved
prediction capabilities on vast and difficult situations. They
are typically utilised in fields that call for the analysis of
massive amounts of complex data that contain a number of
properties. Because the field of network intrusion detection
entails the processing of massive volumes of data with
complicated patterns, a deep neural network would be an
effective solution to the issue. Keras is a deep learning
package that is open source and based on the programming
language Python. It makes it possible to create neural
networks. The fact that Keras is a high-level library means
that it can simply and efficiently integrate with a number of
different low-level systems. This is the primary benefit of
using Keras. In its current state, Keras is compatible with
TensorFlow, Theano, MXNet, and Microsoft Cognitive
Toolkit. Keras is typically combined with low-level base
libraries like as TensorFlow and Theano. These are the two
most popular low-level base libraries. The fact that Keras was
designed from the ground up to be extensible, modulatory, and
minimalistic is undoubtedly its most significant selling point.
When used with TensorFlow, Graphics Processing Units
(GPUs) can also be used in conjunction with Tensor
Processing Units (TPUs) for improved and more rapid
processing. This is yet another advantage of the Keras
framework, which was developed with the facilities to include
GPUs from the start.

Both the sequential API and the functional API can be
used to construct Keras models. The sequential API is the
more traditional method. Models can be built layer by layer
using the sequential application programming interface. This
type is suitable for the vast majority of the applications that

are now available. Nevertheless, the approach does not
perform very well when used to applications that share layers
or that have several inputs or outputs. The functional API
makes it possible to create networks that are more adaptable
and diverse. It enables connections with layers at any level,
which in turn makes it possible to create networks with a
greater degree of complexity. Image processing, audio and
video processing, and natural language processing are just few
of the applications that typically make use of them. To
construct the network, this work makes use of the sequential
Application Programming Interface.

The neural network model is constructed with the help of
the sequential application programming interface. An input
layer, several hidden layers, and an output layer make up the
network. Each of these levels is sandwiched between two
other layers. In this particular investigation, the learning rate is
0.3. The rate at which the model must advance in order to
become closer and closer to the correct response is known as
the learning rate. A slower rate of convergence is indicated by
smaller numbers, while a faster rate of convergence is
indicated by larger values. Larger values may cause the model
to bypass the optimal solution. As a consequence of this, it is
necessary to identify the option that offers the highest value
taking into account the circumstances. At this time, level 50
has been selected for the period. Epochs are the intervals of
time during which the neural network model is provided with
training data so that it can acquire new skills. Higher epochs
produce better models. On the other hand, extreme care needs
to be taken to prevent the model from being overfit. The
parameters that were utilised are detailed in Table I.

TABLE I. NEURAL NETWORK PARAMETERS

Parameter Value

Network Type Sequential

Batch Size 64

Epochs 50

Learning Rate 0.1

Shuffle True

Validation Data Provided

Optimizer Adam

The data that is being sent to the neural network has been
shuffled to ensure that it is not arranged in any particular way
before it is sent there. The network will benefit from this in
the form of generic training. The validation data has been
added to the network in order to ensure accurate prediction
and also to prevent the network model from being overly
tailored to the data. In order to perform the process of
iteratively adjusting the weights of the neural network model
depending on the data, an Optimizer algorithm is required to
be utilised. The Adam optimizer is utilised right here. The
Stochastic Gradient Descent algorithm has been expanded
upon in order to create the Adam optimizer. The learning rate
determines the level of update that is available. In order to
generate adaptable learning rates, the algorithm modifies the
levels of the learning rate at increasingly frequent intervals
throughout the training process. This helps in better

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

135 | P a g e

www.ijacsa.thesai.org

identifying the best possible solution to the problem. As a
result, the Adam optimizer continues to be one of the
optimizer algorithms that is utilised the most in neural
networks.

The neural network that is suggested will have different
layer configurations constructed into it depending on the
dataset that is being analysed. It is intended for each of these
layers to have a substantial thickness. When all of a layer's
nodes are connected to all of the nodes of the layer that
follows it, we refer to that layer as dense. This contributes to
the construction of a network that broadcasts all of its
discoveries to every accessible node on the network.

The input layer is the first layer that is created. The total
number of attributes that are included in the training data is
typically used to determine how many nodes should be present
in the input layer. The model that has been proposed is made
up of two discrete levels. Multiple neurons are incorporated
into the design of the hidden layers. In this particular
experiment, the successive layers each make use of 100 and
50 neurons. One neuron is present in the output layer that
comes last. Since the issue that is being worked on is a binary
classification issue, it would be sufficient to use a single
neuron that was programmed with the output probability.

In addition to these qualities, activation functions are an
extremely important factor in determining the effectiveness of
the neural network. The activation function of a node in a
neural network is what decides what the output of that node
will be given the set of inputs for that node. This output is
used as an input by the node that is located on the layer below.
In most cases, the value that is produced by an activation
function falls somewhere in the range of 0 to 1 or -1 to 1.

The activation function that is used is what determines the
actual output that is produced. Other activation functions are
available, however the sigmoid (Shown in Fig. 5), hyperbolic
tangent (tanh), Rectified Linear Units (ReLU), and linear
activation functions are the most frequent ones used in neural
networks. Other activation functions are also available. In
most cases, the sigmoid activation function has the form of the
equation below:

 (6)

Fig. 5. Sigmoid activation function.

The range of the curve, which is S-shaped, is between 0
and 1, and the range of the curve itself is between 0 and 1. The
fact that this function's range is [0, 1], which makes
optimization more difficult, is the function's primary
drawback. Because of its slow convergence, it is particularly
well-suited for issues involving binary categorization. It has a
problem with the gradient disappearing into nothingness. The
activation function of the hyperbolic tangent, abbreviated as
tanh, takes the form

 (7)

Fig. 6. TanH activation function.

Fig. 7. ReLU activation function.

The ReLU function ranges between 0 and 1 (Fig. 7). It
provides six times better convergence compared to TanH. The
model is recommended for usage in intermediate layers, as it
might lead to dead neurons if the input contains negative
values. In the proposed approach the input and hidden layers
use ReLU activation function, while the output layer uses
linear activation. The S curve can also be seen in this
function's plot. On the other hand, the output values are in the
range of -1 to 1. This makes it much simpler to perform
optimizations. However, this function also has a problem
called vanishing gradient, which makes it difficult to evaluate
(Fig. 6).

The phenomenon known as the "vanishing gradient
problem" typically occurs in models such as neural networks
that permit the backpropagation of errors. The fact that errors
are typically calculated in the final output layer is the most
significant problem. As a result, the layer that comes
immediately before the final layer is responsible for handling
the faults that have the greatest impact. However, despite the
fact that faults are passed on to early layers, each layer is
responsible for handling problems and only passes on errors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

136 | P a g e

www.ijacsa.thesai.org

that are still present to subsequent layers. As a consequence of
this, the earliest layers do not typically get a significant
amount of influence from the faults. Because of this, the early
layers are the ones that take the most time to train. On the
other hand, the early layers are the ones in charge of
recognising fundamental patterns, which serve as the
fundamental constituents of the neural network model. The
whole neural networks model converges more slowly as a
consequence of this issue. This problem was addressed with
the development of the ReLU function. This is the form it
takes.

F. Model Fitting Phase

The building of a functional model or architecture is
required before the neural network can be created in the phase
that came before this one. Fig. 8 depicts the order in which an
artificial neural network model is developed and put into
operation. The process of model fitting is the activity that
actually carries out the training of the network. Before moving
on to the next step, the data is first partitioned into two distinct
sections: the data section and the labels section. The data part
contains the attributes, with the exception of the class
attribute; the class attribute is located in the labels section. The
data from the training session are input into the neural network
model so that it can perform the necessary analysis. The epoch
value determines the total number of training iterations that
the backpropagation network undergoes before being
considered fully trained. The training continues until an error
rate that meets the requirements is achieved. The data that
needs to be forecasted is sent over this network, and then the
conclusions drawn from those predictions are obtained.

Fig. 8. Neural network operational sequence.

IV. RESULTS AND DISCUSSION

Python and the Keras library suite were used to create the
MLDN architecture that has been presented. The model has
been validated through the utilisation of industry-standard
benchmark datasets such as NSL-KDD, KDD CUP 99, and
Koyoto 2022+ datasets. The network is constructed with the
help of Sequential API, and then the layers that make up the
neural network are added. To properly analyse each dataset, a
unique network architecture will need to be developed. Tables

II, III, and IV present the structures that were developed for
each of the datasets that were utilised.

TABLE II. NEURAL NETWORK CONFIGURATION FOR NSL-KDD

Layer

(Type)

Activation

Function

Input

Dimension

Output

Shape

No. of

Parameters

Input

(Dense)
Linear 41 (None,80) 3360

Processing

1 (Dense)
ReLU 80 (None,100) 8100

Processing

2 (Dense)
ReLU 100 (None,50) 5050

Processing

3 (Dense)
ReLU 50 (None,50) 1530

Output

(Dense)
Linear 30 (None,1) 31

Total No. of Parameters 18,071

Trainable Parameters 18,071

Non-trainable Parameters 0

TABLE III. NEURAL NETWORK CONFIGURATION FOR KDD CUP 99

Layer

(Type)

Activation

Function

Input

Dimension

Output

Shape

No. of

Parameters

Input (Dense) Linear 38 (None,50) 1950

Processing 1

(Dense)
ReLU 50 (None,250) 12,750

Processing 2

(Dense)
ReLU 250 (None,100) 25,100

Processing 3

(Dense)
ReLU 100 (None,50) 5050

Output

(Dense)
Linear 50 (None,1) 51

Total No. of Parameters 44,901

Trainable Parameters 44,901

Non-trainable Parameters 0

TABLE IV. NEURAL NETWORK CONFIGURATION FOR KOYOTO 2022+

Layer

(Type)

Activation

Function

Input

Dimension

Output

Shape

No. of

Parameters

Input

(Dense)
Linear 18 (None,50) 950

Processing

1 (Dense)
ReLU 50 (None,200) 10200

Processing

2 (Dense)
ReLU 200 (None,100) 20220

Processing

3 (Dense)
ReLU 100 (None,20) 2020

Output

(Dense)
Linear 20 (None,1) 21

Total No. of Parameters 33,291

Trainable Parameters 33,291

Non-trainable Parameters 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

137 | P a g e

www.ijacsa.thesai.org

Fig. 9 presents the results of an evaluation of how well the
suggested MLDN model performed on the NSL-KDD, KDD
CUP 99, and Koyoto 2022+ datasets in terms of their
respective ROC charts. The False Positive Rate (FPR) is
represented by the x-axis, and the True Positive Rate is
represented by the y-axis in this graph (TPR). It is anticipated
that an effective model will demonstrate high levels of TPR
while exhibiting low levels of FPR. After the points have been
plotted, the graph demonstrates that the suggested model has
ROC curves that are located at the (0, 1) or top-right position.
This indicates that the proposed model is effective. Fig. 10
depicts the PR curve, which represents the accuracy and recall
levels of the proposed model over all three datasets. An
efficient model should display high values on the x-axis for
recall and also display high values on the y-axis for precision
(y-axis). The graph that represents the PR plot demonstrates
that all three datasets have high levels of accuracy and recall,
which demonstrates that the suggested model has a high level
of prediction performance.

On the NSL-KDD, KDD CUP99, and Koyoto 2022+
datasets, the values that were obtained for a variety of
performance measures such as FPR, TPR, Recall, and
Precision, among others, are provided in Table V. The MLDN
model that was proposed has levels of TPR and Precision that
are extremely high, which is an indication of its effectiveness
in predicting intrusion signs. In a similar vein, a high TNR
level is indicative of the fact that the presented model
demonstrates excellent prediction efficiency when it comes to
anticipating normal transmission signals. In a similar vein, low
FPR and FNR levels of less than one percent imply that the
model has exceptionally low levels of incorrect predictions.
As a result of this, it is abundantly clear that the MLDN model
that was proposed is efficient and offers good performance.

Fig. 9. ROC curve comparison of MLDN.

Fig. 10. PR curve comparison of MLDN.

Alterations were made to the settings of the parameters,
and a sensitivity analysis was carried out on each of the three
datasets in order to determine how the learning rate and the
number of epochs affected the results. During the study,
multiple parameter pairs were employed, and the accuracy that
was acquired for each parameter combination was used during
the analysis.

Table VI contains the acquired results for perusal. Within
the first five sets, the learning rate is manipulated while the
epoch is held constant (P1 to P5). It was possible to see that,
as the learning rate was decreased, the performance on all tree
datasets tended to decline to some degree, and this tendency
increased as the learning rate was decreased further (P1 and
P2). The learning rate is decreased, and as a result, the model
takes increasingly minute steps in the direction of the best
answer. As a result, 50 epochs were insufficient to accomplish
the goal of achieving convergence. Taking the example of
P11, where the number of epochs is increased, demonstrates
that the model was able to reach convergence. When the
learning rate is increased, such as in P4 and P5, the results
demonstrate a decrease in performance.

TABLE V. PERFORMANCE ANALYSIS OF MLDN

Measures NSL-KDD KDD CUP 99 Koyoto 2022+

FPR 0.001934 0.001254 0.005605

TPR 0.991718 0.998519 0.93578

Recall 0.991718 0.998519 0.93578

Precision 0.997917 0.995079 0.953271

TNR 0.998066 0.998746 0.994395

FNR 0.008282 0.001481 0.06422

Accuracy 0.995 0.9987 0.988012

F-Measure 0.994808 0.996796 0.944444

AUC 0.994892 0.998632 0.965087

TABLE VI. SENSITIVITY ANALYSIS RESULTS

Parameter

Set

Learning

Rate
Epochs

NSL-

KDD

KDD CUP

99

Koyoto

2022

P1 0.1 50 0.94 0.937 0.913

P2 0.3 50 0.97 0.959 0.944

P3 0.5 50 0.995 0.999 0.979

P4 0.7 50 0.991 0.999 0.973

P5 1 50 0.89 0.926 0.851

P6 0.5 10 0.72 0.69 0.583

P7 0.5 25 0.79 0.829 0.811

P8 0.5 70 0.995 0.999 0.979

P9 0.5 100 0.995 0.999 0.979

P10 0.5 200 0.995 0.999 0.979

P11 0.3 200 0.995 0.999 0.978

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

138 | P a g e

www.ijacsa.thesai.org

This is because an increased learning rate results in big
steps, and as a consequence, the model has a tendency to miss
the ideal convergence point. Epochs are changed while the
learning rate remains the same in parameter sets P6 to P10. It
is clear from the reduced epochs (P6 and P7) that the model is
not being given a long enough period of time to converge. As
a result, the highest possible degree of precision is not
achieved. The highest levels of precision can be attained when
the period is advanced to 50 (P3) and beyond (P8 to P10). It
has been noticed that using 50 epochs provides the highest
level of accuracy. After reaching this point, increasing the
number of epochs will have no effect on the performance
because convergence will have already been reached by that
point.

It is possible to summarise that the rate of learning plays
an essential part in the achievement of successful results. It is
vital to locate the best convergence level and the sweet spot
that corresponds to it. Any number less than this point
necessitates additional time for the model to converge, and
any value greater than this point will cause the model to miss
the point at which it converges. Epochs represent the number
of times that the training data should be iterated through by
the model in order to reach convergence. If there are fewer
epochs than necessary, the model will not have enough time to
converge, and if there are more epochs than necessary, there
will be an additional time overhead with no improvement in
performance. In addition to that, it will also result in
overfitting, which is why it ought to be avoided. Comparisons
are made between the HBM model proposed in Part 3 and the
APID model proposed in Part 4 in terms of TPR, TNR,
Precision, F-Measure, and AUC on the NSL-KDD, KDD CUP
99, and Koyoto 2022+ datasets, which are depicted in Fig. 11
to 19.

A comparison of TPR, TNR, Precision, F-Measure, and
AUC on NSL-KDD data demonstrates that the MLDN model
exhibits better prediction levels when compared to APID and
HBM (Fig. 11 to 13). This is shown by the fact that the
MLDN model has a higher AUC.

Fig. 11. Comparison of TPR and TNR of MLDN, HBM and APID on NSL-

KDD.

Fig. 12. Comparison of precision and F-Measure of MLDN, HBM and APID

on NSL-KDD.

Fig. 13. Comparison of AUC of MLDN of MLDN, HBM and APID on NSL-

KDD.

Fig. 14. Comparison of TPR and TNR of MLDN on KDD CUP 99.

Fig. 15. Comparison of precision and F-Measure of MLDN on KDD CUP 99.

Fig. 16. Comparison of AUC of MLDN on KDD CUP 99.

Analysis of performance on KDD CUP 99 dataset shown
in Fig. 14 to 16 demonstrate that in comparison to the APID
model, the performance of the MLDN model that has been
proposed is superior. In contrast to this, the performance
levels demonstrate a marginal drop of 0.1% when measured
against the HBM model. The levels of reduction are so
negligibly very low that they can be ignored as a result.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

139 | P a g e

www.ijacsa.thesai.org

Fig. 17. Comparison of TPR and TNR of MLDN on Koyoto 2022+.

Fig. 18. Comparison of precision and F-Measure of MLDN on Koyoto

2022+.

Fig. 19. Comparison of AUC of MLDN on Koyoto 2022+.

When compared to the other models, the performance of
the proposed MLDN model on the Koyoto 2022+ datasets
shows a slight decrease in the performance with respect to
certain metrics such as TPR and F-Measure. Even in this case,

the reductions are extremely minimal and, as a result, are
insignificant.

Table VII provides a tabular representation of the
performance comparisons that were made. The table
demonstrates that the overall performance of the proposed
models was found to be high and effective, despite the fact
that there are slight reductions and elevations in the
performance levels of the proposed models.

Table VIII presents a comparison of the amount of time
spent training and testing the APID, HBM, and MLDN
models. Training is carried out using 70 percent of the records
contained in the data, while testing has been carried out using
30 percent of the records across all of the datasets. The HBM
model has the most efficiency with regard to its use of time,
followed by the APID model and then the MLDN model.
Testing requirements for the MLDN model are always less
than one second, which is a low requirement that corresponds
to a real-time prediction scenario. The training requirements
for the MLDN model are quite high. In addition, the little
increase in the amount of time needed could be neglected due
to the significant boost in terms of performance, which would
make the MLDN model the most effective performer when it
comes to the detection of intrusions in networks.

The results of a comparative analysis of the proposed
MLDN model with the HBM model, the APID model, and
models proposed by [5, 6], [7], [8], and [9] are shown in Fig.
20 to 22. This analysis compares the proposed MLDN model
with the HBM model and the APID model.

In comparison to other models that are currently available
in the literature, the suggested models have a higher level of
accuracy in their prediction, as shown in Fig. 20 to 22. The
MLDN model produces the best results in terms of
performance, followed by the HBM model, which delivers the
results with the next best performance. After this comes the
APID model, and after that comes the models that already
exist in the literature.

TABLE VII. PERFORMANCE COMPARISON OF APID, HBM AND MLDN

Measures
NSL-KDD KDD CUP 99 KOYOTO 2022+

APID HBM MLDN APID HBM MLDN APID HBM MLDN

TPR 0.99 0.99 0.99 0.99 1.00 1.00 0.98 0.88 0.94

Precision 0.99 0.99 1.00 0.99 1.00 1.00 0.94 0.88 0.95

TNR 0.97 0.99 1.00 0.97 1.00 1.00 0.99 0.99 0.99

Accuracy 0.99 0.99 1.00 0.99 1.00 1.00 0.99 0.98 0.99

F-Measure 0.99 0.99 0.99 0.99 1.00 1.00 0.96 0.88 0.94

AUC 0.98 0.99 0.99 0.98 1.00 1.00 0.99 0.93 0.97

TABLE VIII. TIME COMPARISON OF APID, HBM AND MLDN

 NSL-KDD KDD CUP 99 Koyoto 2022

 Training (sec) Testing (sec) Training (sec) Testing (sec) Training (sec) Testing (sec)

MLDN 50 0.259 4 0.316 2 0.279

HBM 2.24 0.21 0.209 0.102 0.107 0.098

APID 2.42 0.302 0.257 0.108 0.0962 0.054

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

140 | P a g e

www.ijacsa.thesai.org

Fig. 20. Comparison of accuracy of MLDN with state-of the-art models on

KDD CUP 99.

Fig. 21. Comparison of accuracy of MLDN with state-of the-art models on

NSL-KDD.

Fig. 22. Comparison of accuracy of MLDN with state-of the-art models on

Koyoto 2022+.

A tabular representation of the findings is presented in
Table IX. The best results are highlighted in bold below. It
was found that the proposed models performed better than all
of the existing models that were researched and used as a
point of comparison in the literature. In general, methods are
constructed with data as their foundation. When utilised with a
wider variety of data, such data-specific models are unable to
generate results that are beneficial. This particular illustration
could be effectively noticed in models from the literature,
where models perform better in certain cases while performing
worse in others. Because the models that are provided are
generic, it is possible to see that the proposed model performs
well regardless of the dataset that is being used. This is
because the offered models are general.

TABLE IX. PERFORMANCE COMPARISON WITH STATE-OF-THE-ART

MODELS

KDD

Technique Accuracy

APID 0.99

HBM 1.00

MLDN 1.00

CANN 0.99

LMDRT-SVM 0.99

LMDRT-SVM2 0.99

NSL-KDD

Technique Accuracy

APID 0.99

HBM 0.99

MLDN 1.00

LMDRT-SVM 0.99

LMDRT-SVM2 0.99

TVCPSO-SVM 0.98

TVCPSO-MCLP 0.97

OS-ELM 0.98

Koyoto 2022+

Technique Accuracy

APID 0.99

HBM 0.98

MLDN 0.99

OS-ELM 0.96

LMDRT-SVM 0.98

LMDRT-SVM2 0.98

V. CONCLUSION

The initial work provides the Adaptive Parallelized
Intrusion Detection (APID) model, which is utilised for
finding intrusion signs from data that is sent within a network.
This model was developed by the researchers. The
transmission data that is later sent to the model is first
subjected to pre-processing, and then training bags are
produced. The training data bags are then given to the learners
at the basic level. The training for every base learner is
determined by the training bag that is given to it. The learner
that demonstrates the best prediction rates in terms of normal
data prediction and in terms of the best overall prediction is
determined to be the basic learner.

 The final predictions are obtained by utilising heuristic-
based combiners, after which the test data are forecasted by
using all of the basic learners. After that, the ensemble is
retrained based on the false predictions to produce an adaptive
model that is capable of changing itself to produce better
predictions over the course of time. Despite the fact that the
model delivers impressive results, it is not appropriate for use
for processing large amounts of data because of the significant
computational cost connected with it. In the following

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

141 | P a g e

www.ijacsa.thesai.org

contribution, a Heterogeneous Bagging based Model, or
HBM, is presented with the goal of reducing complexity
levels. This model features an improved bagging method that
makes it possible to detect intrusions both more quickly and
more accurately. The training data is divided up into various
bags that also overlap with one another. Both the Decision
Tree and Random Forest models are utilised here as the
foundation learners for the model. The bagging procedure is
altered in such a way that each data bag is made available to
both models. Each of the bags that are constructed gets its own
unique set of several pairs of base learners.

 On the basis of these models, predictions are made, and
the results of those predictions are combined with the votes
from the voting combiner. While this model does a better job
of simplifying complex processes, its performance is
marginally inferior. A deep learning network-based intrusion
detection model, known as the MLDN, is presented as the last
contribution. This is done in order to improve efficiency. The
Keras library was utilised during the construction of the deep
learning model. In order to accommodate the specific
processing architecture of neural networks, the training data is
preprocessed and partitioned.

The network is built with various layers, and all of the
other necessary parameters for the network are configured
based on the data that is entered. Validation of the trained
model is accomplished by employing the validation data that
has been meticulously isolated for the sole purpose of
fulfilling this requirement. Standard benchmark datasets, such
as KDD CUP99, NSL-KDD, and Koyoto 2022+ datasets,
were utilised in the experiments that were carried out.
Comparisons were made with previously published models
that were already in existence. The analysis was carried out
using the existing standard performance metrics for classifiers,
which included TPR, FPR, TNR, FNR, Precision, Recall, F-
Measure, and Accuracy. According to the findings, the
proposed models appear to have superior performance levels
when compared to the standard models that are currently in
use.

REFERENCES

[1] B. Gao, B. Bu, W. Zhang and X. Li, "An Intrusion Detection Method
Based on Machine Learning and State Observer for Train-Ground
Communication Systems," in IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 6608-6620, July 2022.

[2] R. Bitton and A. Shabtai, "A Machine Learning-Based Intrusion
Detection System for Securing Remote Desktop Connections to
Electronic Flight Bag Servers," in IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 3, pp. 1164-1181, 1 May-June 2021.

[3] Sahu et al., "Multi-Source Multi-Domain Data Fusion for Cyberattack
Detection in Power Systems," in IEEE Access, vol. 9, pp. 119118-
119138, 2021.

[4] X. Y. Li, R. Tang and W. Song, "Intrusion Detection System Using
Improved Convolution Neural Network," 2022 11th International
Conference of Information and Communication Technology (ICTech)),
Wuhan, China, 2022, pp. 97-100.

[5] C. Chen, X. Xu, G. Wang and L. Yang, "Network intrusion detection
model based on neural network feature extraction and PSO-SVM," 2022
7th International Conference on Intelligent Computing and Signal
Processing (ICSP), Xi'an, China, 2022, pp. 1462-1465.

[6] S. L. Rocha, G. Daniel Amvame Nze and F. L. Lopes de Mendonça,
"Intrusion Detection in Container Orchestration Clusters : A framework
proposal based on real-time system call analysis with machine learning

for anomaly detection," 2022 17th Iberian Conference on Information
Systems and Technologies (CISTI), Madrid, Spain, 2022, pp. 1-4.

[7] R. Zhang, Y. Song and X. Wang, "Network Intrusion Detection Scheme
Based on IPSO-SVM Algorithm," 2022 IEEE Asia-Pacific Conference
on Image Processing, Electronics and Computers (IPEC), Dalian, China,
2022, pp. 1011-1014.

[8] H. Yang, Y. Bai, T. Chen, Y. Shi, R. Yang and H. Ma, "Intrusion
Detection Model For Power Information Network Based On Multi-layer
Attention Mechanism," 2022 IEEE 10th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), Chongqing,
China, 2022, pp. 825-828.

[9] F. J. Mora-Gimeno, H. Mora-Mora, B. Volckaert and A. Atrey,
"Intrusion Detection System Based on Integrated System Calls Graph
and Neural Networks," in IEEE Access, vol. 9, pp. 9822-9833, 2021.

[10] X. Gong, X. Chen, Z. Zhong and W. Chen, "Enhanced Few-Shot
Learning for Intrusion Detection in Railway Video Surveillance," in
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8,
pp. 11301-11313, Aug. 2022.

[11] P. Freitas De Araujo-Filho, A. J. Pinheiro, G. Kaddoum, D. R. Campelo
and F. L. Soares, "An Efficient Intrusion Prevention System for CAN:
Hindering Cyber-Attacks With a Low-Cost Platform," in IEEE Access,
vol. 9, pp. 166855-166869, 2021.

[12] M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam and
O. M. Elkomy, "Federated Intrusion Detection in Blockchain-Based
Smart Transportation Systems," in IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 3, pp. 2523-2537, March 2022.

[13] Q. Liu, V. Hagenmeyer and H. B. Keller, "A Review of Rule Learning-
Based Intrusion Detection Systems and Their Prospects in Smart Grids,"
in IEEE Access, vol. 9, pp. 57542-57564, 2021.

[14] C. Jichici, B. Groza, R. Ragobete, P. -S. Murvay and T. Andreica,
"Effective Intrusion Detection and Prevention for the Commercial
Vehicle SAE J1939 CAN Bus," in IEEE Transactions on Intelligent
Transportation Systems. doi: 10.1109/TITS.2022.3151712.

[15] J. Shu, L. Zhou, W. Zhang, X. Du and M. Guizani, "Collaborative
Intrusion Detection for VANETs: A Deep Learning-Based Distributed
SDN Approach," in IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 7, pp. 4519-4530, July 2021.

[16] M. Nadeem, A. Arshad, S. Riaz, S. S. Band and A. Mosavi, "Intercept
the Cloud Network From Brute Force and DDoS Attacks via Intrusion
Detection and Prevention System," in IEEE Access, vol. 9, pp. 152300-
152309, 2021.

[17] T. Wisanwanichthan and M. Thammawichai, "A Double-Layered
Hybrid Approach for Network Intrusion Detection System Using
Combined Naive Bayes and SVM," in IEEE Access, vol. 9, pp. 138432-
138450, 2021.

[18] G. Apruzzese, L. Pajola and M. Conti, "The Cross-evaluation of
Machine Learning-based Network Intrusion Detection Systems," in
IEEE Transactions on Network and Service Management.

[19] J. Lansky et al., "Deep Learning-Based Intrusion Detection Systems: A
Systematic Review," in IEEE Access, vol. 9, pp. 101574-101599, 2021.

[20] L. Yang, A. Moubayed and A. Shami, "MTH-IDS: A Multitiered Hybrid
Intrusion Detection System for Internet of Vehicles," in IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 616-632, 1 Jan.1, 2022.

[21] Y. Miao, Y. Tang, B. A. Alzahrani, A. Barnawi, T. Alafif and L. Hu,
"Airborne LiDAR Assisted Obstacle Recognition and Intrusion
Detection Towards Unmanned Aerial Vehicle: Architecture, Modeling
and Evaluation," in IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 7, pp. 4531-4540, July 2021.

[22] M. A. Siddiqi and W. Pak, "An Agile Approach to Identify Single and
Hybrid Normalization for Enhancing Machine Learning-Based Network
Intrusion Detection," in IEEE Access, vol. 9, pp. 137494-137513, 2021.

[23] Y. Gao, H. Miao, J. Chen, B. Song, X. Hu and W. Wang, "Explosive
Cyber Security Threats During COVID-19 Pandemic and a Novel Tree-
Based Broad Learning System to Overcome," in IEEE Transactions on
Intelligent Transportation Systems.

[24] Z. Hu, S. Liu, W. Luo and L. Wu, "Intrusion-Detector-Dependent
Distributed Economic Model Predictive Control for Load Frequency
Regulation With PEVs Under Cyber Attacks," in IEEE Transactions on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

142 | P a g e

www.ijacsa.thesai.org

Circuits and Systems I: Regular Papers, vol. 68, no. 9, pp. 3857-3868,
Sept. 2021.

[25] R. Conde Camillo da Silva, M. P. Oliveira Camargo, M. Sanches
Quessada, A. Claiton Lopes, J. Diassala Monteiro Ernesto and K. A.
Pontara da Costa, "An Intrusion Detection System for Web-Based
Attacks Using IBM Watson," in IEEE Latin America Transactions, vol.
20, no. 2, pp. 191-197, Feb. 2022.

[26] K. Agrawal, T. Alladi, A. Agrawal, V. Chamola and A. Benslimane,
"NovelADS: A Novel Anomaly Detection System for Intra-Vehicular
Networks," in IEEE Transactions on Intelligent Transportation
Systems.doi: 10.1109/TITS.2022.3146024.

[27] C. Kim, M. Jang, S. Seo, K. Park and P. Kang, "Intrusion Detection
Based on Sequential Information Preserving Log Embedding Methods
and Anomaly Detection Algorithms," in IEEE Access, vol. 9, pp. 58088-
58101, 2021.

[28] J. Gao et al., "Omni SCADA Intrusion Detection Using Deep Learning
Algorithms," in IEEE Internet of Things Journal, vol. 8, no. 2, pp. 951-
961, 15 Jan.15, 2021.

[29] T. Kim and W. Pak, "Hybrid Classification for High-Speed and High-
Accuracy Network Intrusion Detection System," in IEEE Access, vol. 9,
pp. 83806-83817, 2021.

[30] N. Mishra and S. Pandya, "Internet of Things Applications, Security
Challenges, Attacks, Intrusion Detection, and Future Visions: A
Systematic Review," in IEEE Access, vol. 9, pp. 59353-59377, 2021.

[31] G. Pu, L. Wang, J. Shen and F. Dong, "A hybrid unsupervised
clustering-based anomaly detection method," in Tsinghua Science and
Technology, vol. 26, no. 2, pp. 146-153, April 2021.

[32] O. Alkadi, N. Moustafa, B. Turnbull and K. -K. R. Choo, "A Deep
Blockchain Framework-Enabled Collaborative Intrusion Detection for
Protecting IoT and Cloud Networks," in IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9463-9472, 15 June15, 2021.

[33] S. Seth, K. K. Chahal and G. Singh, "A Novel Ensemble Framework for
an Intelligent Intrusion Detection System," in IEEE Access, vol. 9, pp.
138451-138467, 2021.

[34] D. Gümüşbaş, T. Yıldırım, A. Genovese and F. Scotti, "A
Comprehensive Survey of Databases and Deep Learning Methods for
Cybersecurity and Intrusion Detection Systems," in IEEE Systems
Journal, vol. 15, no. 2, pp. 1717-1731, June 2021.

[35] H. Janabi, T. Kanakis and M. Johnson, "Overhead Reduction Technique
for Software-Defined Network Based Intrusion Detection Systems," in
IEEE Access, vol. 10, pp. 66481-66491, 2022.

[36] L. Vu, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang and E. Dutkiewicz,
"Deep Generative Learning Models for Cloud Intrusion Detection
Systems," in IEEE Transactions on Cybernetics.doi:
10.1109/TCYB.2022.3163811.

