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Abstract—Hyperspectral image segmentation is an important 

task for geographical surveying. Real-time processing of this 

operation is especially important for sensors mounted on-board 

Unmanned Aerial Vehicles in the context of visual servoing, 

landmarks recognition and data compression for efficient storage 

and transmission. To this end, this paper proposes a machine 

learning approach for segmentation using an efficient 

Convolutional Neural Network (CNN) which incorporates a 

feature compressor and a subsequent segmentation module based 

on 3D convolution operations. The experimental results 

demonstrate that the proposed approach gives segmentation 

accuracy at par with conventional approaches based on Principal 

Component Analysis (PCA) to reduce the feature dimensionality. 

Moreover, the proposed network is at least 35% faster than the 

conventional CNN-based approaches using 3D convolutions.   
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reduction; segmentation; PCA 

I. INTRODUCTION  

Remote sensing is an important field which has helped 
urban and rural planning as well as environmental studies. 
Originally initiated as a satellite-based technology, it is being 
fast adopted to be used via sophisticated multispectral sensors 
that can be installed on Unmanned Aerial Vehicles (UAV) [1]. 
Other than being equipped with a standard RGB camera [2], 
several hyperspectral imaging (HSI) sensors [3] are now being 
deployed on-board these platforms to serve various 
applications in the field of security surveillance, town 
management, wild fires and agriculture etc. Another important 
application is to supplement the on-board navigation 
algorithms via visual servoing [4].  The spectral information 
provided by HSI is extremely rich and powerful. However, this 
raw information has to be processed extensively. Specifically, 
segmentation (classification) of each spatial data point in HSI 
has to be performed. Overall, the spatial and spectral data 
points constitute an information ‘cube’ [5]. Various researchers 
have put forward multiple segmentation methods of 
hyperspectral images to this end [6]. Various open-source 
datasets have also been made available to facilitate the research 
and development in this field [7]. Conventionally,  HSI 

segmentation has been done through well-known machine 
learning methods such as Bayesian [8] distance,  nearest-
neighbor classification [9] and hand-coded features (e.g. Local 
Binary Pattern) [10] etc. Although, these methods have shown 
satisfactory performance on the standard datasets, recently 
CNN-based methods have shown exceptionally better results 
with near optimal segmentation [11, 12]. In this regard, ‘Indian 
Pines’ is a well-known HIS dataset [7] captured through 
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
[13]. This scene (Fig. 1) consists of 145×145 pixels (spatial 
data points) and 224 spectral reflectance bands captured in the 
wavelength range [0.4 2.5] µ meters. This scene is marked by 
regions consisting of common agricultural land, a forest as well 
as wild natural vegetation. Other than this, highways, a railway 
line and some urban construction also exist. The ground truth 
(intended segmentation output) consists of sixteen classes 
(Table I). 

Some earlier works have suggested reducing the number of 
spectral bands to 200 by removing bands corresponding to 
[104-108], [150-163], the so-called ‘water absorption bands’ to 
improve segmentation accuracy [14]. Moreover, it has been 
observed that there is a considerable spectral redundancy i.e. 
the observations in different spectral are highly correlated [15]. 
Thus, it has been found beneficial to consider dimensionality 
reduction through PCA before application of segmentation 
algorithms. Furthermore, it has been suggested to employ the 
spatial variations in spectral data, especially in the case of 
high-resolution data, to improve the segmentation accuracy. 
While, the former approach helps in increasing the inference 
time (lower computational load), the latter adds further 
computational complexity to the segmentation task. However, 
in order to improve segmentation performance, it has been 
proposed to use both spectral and spatial data while segmenting 
a particular data point [6]. Spatial information improves the 
segmentation accuracy because further discriminating 
information could be found in the texture and shape of 
geological structures. To illustrate this point, we have trained 
two classifiers on Indian Pines dataset. The results have been 
given in Table II. 
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a    b 

Fig. 1. Segmentation of a hyperspectral image (Indian pines). a) RGB image 

b) pseudocolor representation of segmented regions for 16 classes. 

TABLE I. GROUND TRUTH DATA FOR INDIAN PINES DATASET 

# Class Number of Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean-mintill 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 

TABLE II. REFERENCE SEGMENTATION CLASSIFIER ON INDIAN PINES 

DATASET 

Classifier Dimensionality Segmentation Accuracy 

SVM 220 96.0% 

SVM 30 96.1% 

CNN 30 99.6% 

The first classifier is based on a conventional machine 
learning classifier, i.e. Support Vector Machine (SVM) [16]. In 
order to verify the strong redundancy in the spectral bands, two 
different versions have been trained. The first version uses all 
220 hyperspectral bands (including noisy bands) while the 
second reduces the dimensionality of these spectral bands 
through PCA. PCA works by projecting the d dimensional data 
to m dimensional data where m < d. 

    
           

    
           

The projection works by exploiting the eigen values and 
corresponding eigen vectors to build the transform as follows. 

           (1) 

Where S is the normalized covariance matrix of the input 
features,    are the eigen values while    are the 
corresponding eigen vectors. The transformation is then given 
by. 

    
 (

    

 
)   (2) 

As can be noticed from the data given in Table II, the 
segmentation accuracy with and without dimensionality 
reduction is almost identical with the minor difference being 
without any statistical significance. The accuracy results have 
been obtained with the provided ground truth as benchmark. 

Fig. 2 shows the original first twelve bands in the Indian 
Pines data as well as the twelve most significant bands after 
PCA has been applied. It can be clearly seen that the most 
information is contained within the first three bands only. 
Thus, the dimensionality reduction through PCA is merited to 
facilitate the further segmentation task. However, it should be 
noted that PCA does not ensure that the segmentation accuracy 
will remain intact in all the cases. 

 
a 

 
b 

Fig. 2. Application of PCA on HIS data from Indian Pines a) First twelve 

original bands b) Twelve transformed bands after PCA. 
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The second classifier considered in Table II is a CNN [6] 
classifier which also incorporates the spatial information while 
performing segmentation. In order to reduce the computational 
load, CNN has also been fed the same PCA-compressed 
spectral bands as for SVM classifier. It can be seen that this 
classifier almost achieves 100% accurate results. For both 
classifiers, 70% data points have been used for training while 
the remaining have been used for validation. Moreover, for 
CNN classifier, image patch size of 25×25 has been used to 
learn spatial information. 

This approach of reducing the spectral information before 
applying the classifier has been considered by various early 
researchers [17]. The other approach of inferring spatial 
information before incorporating spectral data has also been 
considered in some works [18]. Adaptive Markov Random 
Fields [19] and graph cut [20] algorithms have also been 
considered to regularize the segmentation results in the spatial 
domain. Joint processing of spatial and spectral features has 
been considered by Zhon et al. [21] and Guijarro et al. [22]. 
These efforts to combine spatial and hyperspectral data to 
extract joint features is especially important since latent 
redundancy could be exploited. As noted earlier, HIS data cube 
hold valuable information in the local neighborhoods both with 
respect to spatial and spectral dimensions. However, this also 
presents a challenge in terms of computation complexity. This 
is especially relevant for on-board processing of data on 
battery-powered UAVs. 

In contrast to the conventional machine learning models, 
deep learning or CNN-based approaches have been shown to 
be exceptionally well in exploring the data dependencies and 
discriminating features. Thus, several approaches have been 
proposed by researchers in the recent years related to this 
technique [23-25]. In this regard, U-Net [26-28] is of special 
interest because it has been successfully applied to image 
segmentation tasks other than HSI. However, since like other 
CNN-based segmentation frameworks, the computational load 
is a consideration for these methods, PCA is generally applied 
to reduce the HSI data dimensionality as shown above. 
However, since PCA and the subsequent CNN deep feature 
extraction modules are separate, the joint spatial-spectral 
redundant information [27, 29] may not be captured for 
optimal segmentation. To this end, Ying et al. [6] proposed 
using 3D CNN operations for HSI segmentation. 3D 
convolution kernels can learn the patterns found in both the 
spatial and the spectral dimensions of the HSI cube in local 
neighborhoods. This information has been shown to be of 
crucial value for segmentation. This structure can take the full 
advantage of all structural similarities within the HIS cube. 3D 
CNNs have shown promise in a variety of computer vision 
applications where the input is simple RGB images. Moreover, 
they have been applied to video frames to make the best use of 
temporal information. While using 3D CNNs for HSI 
segmentation, not only the pre-processing (PCA) overhead is 
reduced, but also the spectral and spatial features are learnt 
jointly. However, this presents a computational overhead since 
3D convolutions are even more complicated than their 2D 
counterpart. In this paper, we have proposed an approach to 
circumvent this problem by adding an ‘Encoder’ stage before 
3D CNNs. The ‘Encoder’ stage is inspired by the autoencoders 

[30] which have been shown to infer even non-linear statistical 
dependencies. In contrast PCA can only infer linear 
correlations. The proposed ‘Encoder’ stage compresses the 
spectral features, just like PCA, but in tandem with the 
subsequent segmentation stage based on 3D CNN. In this 
regard, Khan et al. [31, 32] have proposed using a traditional 
Autoencoder for the segmentation of HIS but they do not 
explicitly target the improvement in the inference speed. On 
the other hand, the experimental results demonstrate that the 
proposed architecture works at par with the state of the art 
while being up to 35% faster. 

The remaining paper has been structured as follows. 
Section II describes the proposed architecture in detail with 
respect to the inclusion of encoder section before a 2D CNN. 
Section III has been devoted to the provision of results of the 
proposed architecture on standard datasets followed by a 
discussion. Section IV concludes the discussion by 
summarizing the results and contributions of the current work. 

II. PROPOSED ARCHITECTURE 

Autoencoders have been extensively used in computer 
vision applications to learn the underlying data decencies and 
have been shown to work better than PCA in the presence of 
non-linear structures. Autoencoders are made up of two parts 
i.e. encoder and decoder. The encoder finds a compressed 
representation of the input while the decoder replicates the 
input using the compressed (low dimensional) encoding. 
Inspired by their architecture, we propose adding only the 1D 
encoding stage before a 3D CNN stage for HIS cube 
processing. The idea is to find non-linear data decencies in the 
spectral bands data which is then subsequently processed by 
the 3D CNN architecture to exploit spatial information as well. 
However, since the two modules are part of one learnable 
architecture, both spatial and spectral information are learnt 
jointly. Moreover, it is faster since the early part of the network 
(closer to the input) only processes the spectral dimension. In 
contrast the 3D CNN architecture proposed in [6] processes the 
whole cube starting from the input which leads to a high 
computational load. 

The proposed architecture depicted in Fig. 3 consists of two 
stages as mentioned earlier. The ‘Encoder’ stage reduces the 
spectral dimension in two stages. The first stage uses 3×3 
convolutions with a stride of two to reduce the dimensions 
from 220 to 110. The second stage uses 3×3 convolutions with 
a stride of fourj to reduce the dimensions from 110 to 27. The 
spatial dimensions (25×25) remain the same. Thus, at the end 
of the ‘Encoder’ stage, a 25×25×27 cube is presented the 3D 
CNN stage for further segmentation. This network consists of 
four 3D convolutional layers i.e. 3×3×7, 3×3×5, 3×3×3 and 
3×3×1. There are 8, 16, 32 and 8 filter kernels for these layers 
respectively. A 256 long vector is generated through a fully 
connected layer followed by another fully connected layer 
generating a 128 long vector. The final vector (16 output 
classes) is generated through another fully connected layer. 
Thus, the 25×25×220 HSI input cube is gradually processed 
through convolutions to generate the final segmentations. The 
hallmark of this architecture, as mentioned earlier, is that the 
‘Encoder’ stage is light-weight since it only processes the 
spectral data. However, despite only processing spectral data, it 
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is connected with the subsequent spatial processing layers as 
well through the forward propagation. Thus, the whole network 
learns spectral and spatial information jointly without being 
computationally complex. The proposed architecture has been 
implemented using the Matlab Deep Learning Toolbox and 
trained in the same environment using NVIDIA GeForce 940 
MX GPU on a intel i7 powered CPU (3.48 GHz) with 12 GB 
RAM. For training and testing of the proposed architecture, 
Indian Pine, Salinas, SalinasA, Pavia and PaviaU datasets [7] 
have been used. A sample training session has been shown in 
Fig. 4. It can be clearly seen that the training process quickly 
converges for both training and validation sets. Thus, not only 
is the proposed architecture suitable for the task at hand but 
also does not overfit showing excellent harmony between 
spatial and spectral data points. 

 

Fig. 3. Proposed HSI cube segmentation through Encoder + 3D Convolution 

stages. 

 

Fig. 4. Training of the proposed network in Matlab environment depicting 

fast convergence without overfitting. 

III. RESULTS AND DISCUSSION 

The proposed architecture has been trained and tested on 
Indian Pine, Salinas, SalinasA, Pavia and PaviaU datasets. The 
former three datasets have been captured by AVIRIS sensor 
with 220 bands. The latter two datasets are captured by ROSIS 
sensor and have 102 and 103 bands respectively. To cater for 
the fewer number of bands on ROSIS datasets, the first stage of 
the ‘Encoder’ uses 3×3 convolutions with a stride of two to 
reduce the dimensions from 102/103 to 50. The second stage 
uses 3×3 convolutions with a stride of two to reduce the 
dimensions from 50 to 25. The rest of the architecture remains 
same. 

The test results have been reproduced in Table III. It can be 
seen that the proposed network either performs better or at par 
with the 3D CNN network. Moreover, it is worth mentioning 
that this particular network has been tuned for each dataset 
separately by the authors [6] while we have used the same 
universal architecture for all cases. Thus, the proposed 
architecture is universally applicable to all scenarios. 

It is worth mentioning that the proposed architecture also 
operates faster than the competing 3D CNN architecture due to 
its simpler ‘Encoder’ stage. On average, the proposed network 
processes an HSI cube of size 145×145×220 in 7.14 s while a 
3D CNN without encoder stage processes the same in 9.64 s. 
Thus, the proposed approach is at least 35% faster while being 
equally accurate. 

Fig. 5 shows the reconstruction of spectral data for four 
example data points in Indian Pine dataset. This data has been 
generated by a reference Autoencoder with both ‘Encoder’ 
and’Decoder’ parts for visualization. It can be seen that the 
spectral information can be fairly accurately recovered even 
after being compressed to 27 channels from original 220 
(12%). However, it must be noted that the purpose in the 
application at hand is not reconstruction but use in subsequent 
segmentation where upto 100% accuracy has been achieved on 
SalinasA dataset even with this much compression. Visual 
results using psuedocolors for segmentation results on the 
mentioned datasets have been depicted in Fig. 6, Fig. 7, Fig. 8 
and Fig. 9 respectively. 

TABLE III. SEGMENTATION ACCURACY ON TEST DATASETS 

Architecture 
Indian 

Pine 
Salinas SalinasA Pavia PaviaU 

3D CNN [6] 99.07% - - - 99.4% 

Proposed 99.6% 94.3% 100% 98.0% 98.3% 

 

  

Dimensionality Reduction 
Encoder

Segmentation Network
3D Convolutions
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Fig. 5. Reconstruction of the spectral data for 4 sample spatial points. Original-Blue, Reconstructed-Red. 

 
Input Grayscale    Ground Truth    Proposed Approach 

Fig. 6. Pavia centre segmentation. 

 
Input Grayscale    Ground Truth    Proposed Approach 

Fig. 7. SalinasA Segmentation. 
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Input Grayscale    Ground Truth    Proposed Approach 

Fig. 8. Pavia University segmentation. 

 
Input Grayscale   Ground Truth   Proposed Approach 

Fig. 9. Salinas segmentation. 
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IV. CONCLUSION 

This paper has proposed a 3D convolution-based 
segmentation architecture for hyperspectral images. The 
proposed architecture achieves detection accuracy at-par with 
the state of-the-art with the added benefit that it achieves up to 
35% higher speed due to a feature compressor module at the 
input. Moreover, this module works almost as good as 
conventional PCA in compressing the spectral information 
while being trained in tandem with the spatial data. Thus, the 
network has the ability to jointly learn spatial and spectral 
information. In conclusion, the proposed architecture provides 
a better alternative than both PCA-CNN and 3D-CNN 
architectures, combining the best of both approaches in terms 
of computational speed, learning flexibility and segmentation 
accuracy. For future work, the proposed technique could be 
applied to HS images from more satellite imagers to test the 
generalization of the approach. 
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