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Abstract—A heterogeneous material image enhancement 

method based on multi-exposure image fusion is proposed to 

address the problem of obtaining high-quality images from the 

single imaging of chips containing two extremely different 

reflectivity materials. First, a multi-exposure image fusion 

algorithm based on window segmentation and Laplacian 

pyramid fusion is proposed. Then, orthogonal experiments are 

used to optimize the parameters of the imaging system. Next, a 

method based on information entropy and average gray intensity 

is utilized to calculate the imaging exposure times of two 

heterogeneous materials, and two exposure time ranges are 

obtained that are appropriate for regions with high and low 

reflectivity. Finally, the subjective and objective experimental 

evaluations are conducted after the multi-exposure image set has 

been established. The results show that the fused image has a 

good visual effect, the information entropy is 6.29, and the 

average gray intensity is 131.56. In addition, time consumption is 

reduced by an average of 20.3% compared to the Laplace 

pyramid strategy. The heterogeneous material enhancement 

method based on multi-exposure image fusion proposed in this 

paper is effective and deserving of further research and 

application. 
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I. INTRODUCTION 

Chip defect detection typically includes size measurement, 
character detection, stain detection and pin defect detection [1]. 
It is found that because chips in ordinary cameras contain both 
high reflectivity metal and low reflectivity black plastic, they 
cannot capture all information through a single image when 
collecting images [2]. At present, there are devices for directly 
acquiring high dynamic images [3], but such hardware devices 
have high cost and few applications, so software algorithm 
enhancement methods are widely considered instead. 

This paper aims to propose a new multi-exposure image 
fusion method to improve the image quality of an object 
composed of a variety of materials with very different 
reflectivity. The main contributions are as follows: 

 An image fusion method based on window 
segmentation and Laplace pyramid was proposed. 

 The optimal imaging parameters of the established 
machine vision system were determined by the 
orthogonal experiments. 

 A strategy for determining the optimal exposure time 
based on information entropy and average gray 
intensity was proposed. 

 The experimental results show that the image 
information entropy and average gray intensity of the 
fused image by our method were 6.29 and 131.56 
respectively and the time was averagely reduced by 
about 1.26 s. 

The rest of this paper is organized as follows: the first 
section is the introduction. The second section reviews the 
related work in multi-exposure image fusion. The third section 
describes the image fusion algorithm. In the fourth section, the 
main factors affecting the imaging quality are determined by 
orthogonal testing, and the level of the influencing factors is 
optimized. In the fifth section, through information entropy and 
average gray intensity, the optimal exposure time for imaging 
objects with multiple heterogeneous materials is determined. 
The sixth section discusses the experiment and the analysis of 
the results. Finally, conclusions are presented. 

II. RELATED WORKS 

Currently, image quality enhancement algorithms are 
divided into two categories. One is based on single source 
image enhancement [4], which primarily use the spatial domain 
and transform domain to enhance a single image to improve 
the problems of detail loss and uneven lighting. Common 
spatial methods include grayscale transformation, histogram 
equalization, contrast enhancement and other methods [5]. 
Among them, the histogram equalization method is the most 
commonly used airspace method. The global histogram 
equalization map is highly efficient, but the enhanced image 
will easily lose details. Therefore, Celik [6] adopted the local 
histogram equalization algorithm based on information entropy 
to solve the problem of image texture loss. The local histogram 
equalization map can enhance the local details of the image but 
lacks global integrity. Wavelet transform [7], discrete wavelet 
transform [8], stationary wavelet transform [9] and other 
transform domain methods distinguish the basic information 
and detailed information of the image and perform 
multi-exposure image fusion. At present, the transform domain 
algorithm based on the wavelet transform can achieve the 
effect of enhancing the image [10]. Such methods can enhance 
the details while taking into account the global whole but also 
magnify the noise in the image. Therefore, the final result of 
the single source image enhancement method experiences 
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noise and loss of detail, which is typically accepted in the field 
of natural images but is not suitable for size measurement and 
defect detection. 

The other category is image fusion based on multi-source 
images. Image fusion refers to obtaining different image 
sequences of the same scene with imaging sensors and 
combining the details and complementary information of the 
image sequence to obtain a rich and comprehensive image 
[11]. Multi-Exposure Fusion (MEF) is one of the branches 
derived from image fusion; that is, it fuses multiple images 
with different exposures in the same scene into a new image, 
preserving the brightest and darkest details in the scene [12]. 
From the perspective of image decomposition, multi-exposure 
image fusion can be divided into pixel-based and image 
block-based fusion methods. Goshtasby [13] first proposed 
image block-based fusion and calculated the information 
entropy to select the best image block for fusion, but there was 
some distortion in the results. Qin Lyu used nonuniform 
triangulation to segment images [14]. T Prabhakara Rao 
performed feature-level image fusion based on contour 
blocking, improved the distortion and played a crucial role in 
developing its subsequent feature extraction and detection [15]. 
Compared with the method of nonuniform division of images, 
the fusion algorithm speed block based on uniform division of 
image blocks is more suitable for the application of industrial 
detection occasions, but it mainly emphasizes the selection of 
the optimal block of the image sequence, which frequently 
results in issues with discontinuous images and obvious 
stitching traces. In contrast, Mertens [16] proposed a 
pixel-based multi-exposure fusion method, which can make up 
for the shortcomings of discontinuous images but has a high 
computational complexity and low efficiency. An extremely 
critical method in pixel-based image fusion is pyramid 
decomposition [17], which constructs an image pyramid from 
the input image, adds a weight matrix, and finally combines the 
two to obtain the final fusion result. Ashish et al. adopted 
multiresolution fusion based on a Laplacian pyramid [18], 
measured by entropy and contrast, which is characterized by 
seamless fusion and excellent improved details. Zhong Qu and 
others improved pyramid decomposition and applied it to 
image fusion, improving the common artifact problem of 
multi-exposure fusion [19] and retaining more local details. 
The pyramid algorithm can typically preserve good image 
edges and textures, but the processing time is generally very 
long. The fusion method based on image blocks can greatly 
improve the computational efficiency and remove random 
noise. Therefore, it is expected that combining the pyramid 
algorithm with the image block algorithm will allow the fused 
image to maintain better details and improve the operational 
efficiency of the algorithm. 

The optimal exposure time should be primarily determined 
according to the material characteristics of a specific object for 
developing the image fusion methods. The image gradient was 
employed in the fusion method proposed by Turgut et al. [20]. 
Image information entropy was adopted by Kataoka et al. as 
the only indicator to determine the exposure time for image 
fusion [21]. Camera response curve was uniquely selected and 
used for exposure fusion by Zhang et al. [22]. Thus it can be 
seen that the common indicators of exposure fusion include 

image gradient, image information entropy and camera 
response curve, and they were used singly at present. However, 
these above methods may be invalid and inaccurate for objects 
with multi-materials. Therefore, this paper will also explore a 
new multivariate strategy to determine the optimal exposure 
time for imaging objects with muti-materials. 

III. MULTI-EXPOSURE IMAGE FUSION METHOD 

A. Image Fusion Algorithm based on Laplacian Pyramid 

The source image 0G  undergoes multiple Gaussian fuzzy 

filtering and downsampling operations and continuously 
reduces the image size to obtain an image sequence

 0 1 2, , , , NG G G G . The Gaussian pyramid is obtained by 

arranging 0G  at the bottom and NG  at the top. The essence 

of the Gaussian pyramid is the multiscale representation of the 
image signal, as shown in Formula (1). The Laplacian pyramid 
is obtained by up sampling and interpolation of the Gaussian 
pyramid [23], and the image sequence can be represented by 

 0 1 2, , , , NLP LP LP LP , as shown in Formula (2). 
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For multi-exposure image fusion based on the Laplacian 
pyramid strategy, each layer of images were first processed in 
multiple Laplacian pyramids according to the strategy in 
Formula (4) to obtain the fused Laplacian pyramid image 
sequence, and then obtain the fused source image according to 
the method in Formula (5). 

 
1

H

l k l k
k

FLP LP


 
  (4) 

where H  is the number of multi-exposure images, 

 l k
LP represents the l -th layer of the Laplacian pyramid 

decomposition image of the k -th image,
k  is the weight 

coefficient corresponding to the k -th image, and 
lFLP  is the 

weighted fusion result of the l -th decomposition image of the 

H  multi-exposure image. 
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In the formula, 
lFG is the Laplacian pyramid 

decomposition image of layer l of the fused image, and
*

1lFG  is 

calculated according to Formula (3). 

The image fusion based on the Laplacian pyramid strategy 
comprehensively uses the information of the source image at 
different spatial frequency levels. Compared with traditional 
fusion methods, there is no obvious stitching trace, but it also 
has the problem of long computing times. 

B. Multi Exposure Image Fusion Algorithm based on Window 

Segmentation 

Divide the H multiple exposure light source images 
evenly to obtain an image block with size m n . The j -th 

image block in the i -th source image is represented by ,i jA . 

Select an appropriate image quality evaluation index to 

quantize  ,i jA , and select the optimal image block jB . As 

shown in Formula (6), the fused image is finally obtained by 

"splicing" all the jB . The basic process of the multi-exposure 

image fusion algorithm based on window segmentation is 
shown in Fig.1. 

   ,Indicatorj i jB Optimal A
 (6) 

In Formula (6), 1,2, ,i H , 1,2, ,j M , M is the 

number of image blocks,  Indicator  represents the 

quantitative evaluation function of image quality, and 

 Optimal 
 
represents the optimization function. 

Optimizing the exposure quality evaluation index of image 
blocks and the image block "splicing" algorithm are the core of 
the multi-exposure image fusion algorithm based on window 
segmentation. The uniform block-based fusion algorithm has 
high efficiency, but an inappropriate evaluation index and 
"splicing" algorithm easily lead to splicing traces. The 
nonuniform block fusion algorithm has the advantages of 
obvious edge information and large brightness width, but the 
efficiency of such methods is usually not high. 
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Fig. 1. Window segmentation fusion algorithm 

C. Image Fusion Algorithm based on Window Segmentation 

and Laplacian Pyramid 

The image fusion algorithm based on window segmentation 
and Laplacian pyramid combines the characteristics of high 
efficiency of window segmentation method and less stitching 
trace of Laplacian pyramid method. Same as window 
segmentation, first, the H source image is divided into M  
image blocks of size m n , and the j -th image block of the 

i -th source image is expressed as ,i jA . Then, the appropriate 

image quality evaluation index was selected to quantize and 

sort ,i jA , whose total quantity is M , and select the best N  

image blocks ,k jB . Then, the image fusion algorithm based on 

Laplace pyramid sideratio is adopted, and jB  is obtained by 

fusing N image blocks ,k jB . Finally, the fused image is 

obtained by "splicing" all the jB . The basic process of the 

image fusion algorithm based on window segmentation and 
Laplacian pyramid is shown in Fig. 2. 
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Fig. 2. Image fusion algorithm based on window segmentation and 

Laplacian pyramid 

For vision systems, exposure time is not the only factor 
affecting the imaging system. Lighting, camera sensors and 
lenses are key factors that affect imaging. Therefore, before 
multi-exposure image fusion, this paper innovatively controls 
the image acquisition conditions and uses orthogonal 
experiments to optimize the parameters of the multi-exposure 
imaging system. 

IV. OPTIMAL PARAMETERS SELECTION METHOD FOR 

IMAGING SYSTEM AND ITS IMPLEMENTATION 

A. Machine Vision System 

The experiment object of this paper is a semiconductor chip 
with a size of approximately 4mm × 4mm. A dual camera 
image acquisition system consisting of two telecentric lenses 
was built based on the characteristics of small distortion, as 
shown in Fig. 3. 
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Fig. 3. Binocular telecentric vision system 

B. Effect Factors of Imaging Quality and Its Levels 

There are many factors that affect the image quality during 
the design of a machine vision system. Among them the 
ambient light, the artificial light and the camera gain are the 
three most concerned parameters. It is difficult to control the 
ambient light to reduce the impaction on image quality and 
thus the dark rooms are typically used to isolate ambient light 
for image acquisition. The image quality will sharply vary with 
the light source intensity, light source direction and other 
illumination conditions. Therefore how to optimize 
arrangement of artificial lights to ensure the acquisition of 
high-quality images was studied. In the darkroom, a larger gain 
may be employed to have more luminous flux to increase the 
image brightness. However, a larger camera gain may amplify 
noise and thus reduce the image quality. Accordingly, how to 
determine the optimal camera gain is also very important. 
Therefore, in the orthogonal experimental design, the three 
factors of artificial light source, ambient light and gain must be 
analyzed to determine their optimal levels to provide stable 
experimental conditions for multi-exposure fusion research. 

TABLE I.  EFFECT FACTORS OF IMAGING QUALITY AND THEIR LEVELS 

Levels 
Factors 

A B C 

1 low 4.00 without a dark room 

2 medium 5.00 with a dark room 

3 high 6.00 / 

The above three factors of imaging quality and their levels 
are tabulated in Table Ⅰ. Factor A represents the artificial light 
and has three levels: low, medium and high light intensity of 
backlights. Factor B represents the gain and has three levels: 
4.00 dB, 5.00 dB and 6.00 dB. Factor C represents the ambient 
light and has two levels: with or without a dark room. 

C. Image Quality Evaluation Indicators 

An image collected by the machine vision system is an 
8-bit single channel gray image. The image quality evaluation 
indicators include information entropy, average gray intensity, 
variance and average gradient, which are defined as follows: 

1) Information entropy H  
255

0

logi i

i

H p p



  (7) 

where 
ip  represents the proportion of pixels whose gray 

value is i in the image. 

2) Average gray intensity U  
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where ( , )I i j  represents the gray intensity at ( , )i j  in the 

image. m and n are the size of the image along two coordinate 
directions. 

3) Variance S  
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where ( , )I i j  represents the gray intensity at ( , )i j  in the 

image. m and n are the size of the image along two coordinate 
directions. U  is the average gray intensity of the image. 

4) Average gradient G  
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where ( , )I i j  represents the gray intensity at ( , )i j  in the 

image. m and n are the size of the image along two coordinate 
directions. 

5) Comprehensive evaluation indicator W  

W k H U S G       (11) 

where k is a coefficient that is employed to normalize W  

to be between 0 and 1. 

D. Orthogonal Experiments and Results 

The orthogonal experimental scheme was established as 
shown in Table Ⅱ according to the orthogonal experimental 
design method. 

TABLE II.  ORTHOGONAL EXPERIMENTAL SCHEME L6 (32×2) 

Levels 
Factors 

A B C 

1 1 1 1 

2 2 1 2 

3 3 2 1 

4 1 2 2 

5 2 3 1 

6 3 3 2 

According to the above orthogonal experimental scheme 
tabulated in Table Ⅱ, the experiments were carried out with the 
left camera and the right camera. Six images were collected 
with the left camera, and the evaluation results of image quality 
are shown in Table Ⅲ. 
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TABLE III.  RESULTS OF 6 EXPERIMENTS WITH THE LEFT CAMERA 

The results of orthogonal experiments were calculated by 
using the comprehensive indicator, whose values are tabulated 

in Table Ⅴ. ik  is the sum of comprehensive indicators at the 

i-th level of factors and ik  is the mean value of ik . r is the 

range of ik  , and σ is the variance of ik . The larger the range 

of a factor is, the more significant the impact of the factor on 

image quality. The larger the ik  of a factor is, the more 

significant the impact of the level on image quality. 

TABLE IV.  RESULTS OF 6 EXPERIMENTS WITH THE RIGHT CAMERA 

No. 

Factors Image Quality Evaluation Indicators 

A B C 
Information 

entropy 

Average 

gray 

intensity 

Variance 
Average 

gradient 

Comprehensive 

indicator 

1 1 1 1 0.7000 241.280 2833.36 0.2400 1.1510 

2 2 1 2 0.6600 240.640 3087.94 0.1900 0.9460 

3 3 2 1 0.7100 243.070 2244.70 0.2600 1.0170 

4 1 2 2 0.6700 240.530 3127.14 0.2000 0.9900 

5 2 3 1 0.7100 243.050 2253.85 0.2800 1.0800 

6 3 3 2 0.6900 242.260 2522.78 0.2200 0.9170 

TABLE V.  RESULTS OF ORTHOGONAL EXPERIMENTS BY COMPREHENSIVE 

EVALUATION INDICATORS 

Camera Factors 
Evaluation Indexes 

1k  2k  3k  1k  2k  3k  r σ 

Left 

A 1.748 1.712 1.690 0.8740 0.8560 0.8450 0.0290 0.00043 

B 1.727 1.700 1.723 0.8635 0.8500 0.8615 0.0135 0.00011 

C 2.661 2.489 / 0.8870 0.8300 / 0.0570 0.00162 

Right 

A 2.141 2.026 1.934 1.0705 1.0130 0.9670 0.1035 0.00538 

B 2.097 2.007 1.997 1.0485 1.0035 0.9985 0.0500 0.00152 

C 3.248 2.853 / 1.0827 0.9510 / 0.1317 0.00867 

From Table Ⅲ, Table Ⅳ and Table Ⅴ, it can be seen that 
the ambient light has the greatest impact on image quality, 
camera gain has the smallest impact on image quality and 
backlight intensity has a moderate impact on image quality, 
i.e., C > A > B. The image quality is the highest when the three 
influencing factors are set to the first level, i.e., the optimal 
parameter combination is C1A1B1. 

V. DETERMINATION OF EXPOSURE PARAMETERS BASED ON 

INFORMATION ENTROPY AND AVERAGE GRAY INTENSITY 

A. Information Entropy-Exposure Time Model for Images of 

Single Material Object 

The exposure time required in imaging is related to the 
reflectivity of the object surface. Dark areas with low 
reflectivity require longer exposure times. In contrast, bright 
areas with higher reflectivity require shorter exposure times. 
When imaging a single material object or an object with 
multiple materials but little difference in reflectivity, the 
relation curve of the information entropy of the acquired image 
to the exposure time is a downward parabola. The information 
entropy first increases with increasing exposure time. When the 
information entropy reaches the maximum value, it will 
decrease with increasing exposure time, as shown in Fig. 4. 

 
Fig. 4. Theoretical relationship between exposure time and image entropy 

According to Fig. 4, when imaging a single material object 
or an object with multiple materials but little difference in 
reflectivity, the optimal exposure time can be set to 

0 1 0 2[ , ]t t t t  , where the exposure time is 0t and the 

information entropy is maximal. 1t  and 2t  are two positive 

numbers that are smaller than 0t . 

B. Information Entropy-Exposure Time Model for Images of 

Multi-Material Objects 

Different from single material object imaging, a 
multi-material object imaging has multiple peaks in its 
information entropy-exposure time curve, as shown in Fig. 5. 
The above method for determining the optimal exposure time 
cannot be directly used. Therefore, it is necessary to study the 
method of determining the optimal exposure time according to 
the characteristics of the information entropy-exposure time 
curve. 

C. Determination of Optimal Exposure Time based on 

Information Entropy and Average Gray Intensity 

The chip is composed of pins with high reflectivity and 
plastic packages with low reflectivity. As shown in Fig. 5, two 
peaks appear when the exposure time is 34200 μs and 500000 
μs. If the selected exposure time is less than 34200 μs or more 
than 500000 μs, it will not be conducive to high-quality 
imaging of chips made of both materials. Therefore, the best 
exposure time must be between 34200 μs and 500000 μs. 

No. 

Factors Image Quality Evaluation Indicators 

A B C 
Information 

entropy 

Average 

gray 

intensity 

Variance 
Average 

gradient 

Comprehensive 

indicator 

1 1 1 1 0.63 242.11 2802.76 0.21 0.908 

2 2 1 2 0.61 241.61 3026.27 0.18 0.819 

3 3 2 1 0.65 243.29 2431.72 0.23 0.860 

4 1 2 2 0.61 241.56 3042.61 0.19 0.840 

5 2 3 1 0.65 243.34 2411.14 0.23 0.893 

6 3 3 2 0.63 242.62 2703.44 0.20 0.830 
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Fig. 5. Information entropy-exposure time curve of objects with two 

materials 

The length of the above exposure time interval determined 
according to the information entropy is still relatively large. 
When collecting the pin image and the plastic package image, 
there is only one lower limit or upper limit of the exposure 
time. Therefore, the above interval needs to be further refined 
to obtain two subsections, which are applicable to collecting 
the pin image and the plastic package image. For this purpose, 
the relationship between the rate of the average gray intensity 
of images and the exposure time was analyzed. Fig. 6 and Fig. 
7 show the first-order difference and the second-order 
difference of the model of image average gray intensity and 
exposure time, respectively. 

 
Fig. 6. First-order difference of image average gray intensity vs. exposure 

time 

 

Fig. 7. Second-order difference of image average gray intensity vs. exposure 

time 

Fig. 6 shows that when the exposure time is greater than 
34200 μs but less than 95000 μs, the first-order difference in 
the average gray intensity of the image drops steadily. 
However, when the exposure time is greater than 95000 μs, it 
decreases while there is a certain amount of jitter. In Fig. 7, 
when the exposure time is between 34200 us and 95000 μs, the 
second-order difference of image average gray intensity 
basically shows a horizontal line, although it fluctuates slightly, 
while when the exposure time is greater than 95000 μs, the 
second-order difference of image average gray intensity has 
relatively large fluctuations. With increasing exposure time, 
low reflectivity targets can be imaged better. When the 
exposure time is 380000 μs, a peak appears in the first-order 
difference curve of image average gray intensity vs. exposure 
time, as shown in Fig. 6. This means that the average gray 

intensity of the image has a relatively sharp change at 
approximately 380000 μs. According to the above analysis, the 
exposure time intervals for two targets with different materials 
were determined to be [34000, 95000] and [380000, 500000], 
respectively. It should be noted that the first exposure time is 
rounded off appropriately to make calculation more 
convenient. 

Then, the above two exposure time intervals were divided 
into several segments, and multiple images were accordingly 
collected and fused. The areas with different materials of chips 
in the fused image are clear. A camera parameter, defined to be 
the product of exposure time and gain, was used to reasonably 
determine the segmentation. According to the optimal gain 
determined by the orthogonal experiments and the exposure 
times determined by the peak of the information entropy vs. 
exposure time curve, the camera parameters for two material 
targets are 136800 and 2000000, respectively. Compared with 
imaging objects with high reflectivity materials, the camera 
parameter should be larger when imaging objects with low 
reflectivity materials. Accordingly, the segmentation of the 
interval [34000, 95000] should be much smaller than that of 
the interval [380000, 500000]. Consequently, the former 
interval was divided into 20 subintervals, and the latter interval 
was divided into 10 subintervals. The segmentation of the 
former interval is 3100μs and that of the latter interval is 12000 
μs. 

VI. EXPERIMENTS RESULTS AND DISCUSSION 

Thirty multi-exposure images were collected with the 
machine vision system shown in Fig. 3. During image 
acquisition, the previously determined optimal exposure 
parameters were adopted. The proposed multi-exposure image 
processing algorithm was implemented by using MATLAB® 
2015. An ordinary PC with a 64-bit operating system was used 
as an image processing system. Some collected images are 
included in Table Ⅵ. 

TABLE VI.  SOURCE IMAGES WITH DIFFERENT EXPOSURE TIMES 

Images Exposure times (μs) Descriptions 

 

45000 

The pins can be imaged, but 

the brightness is slightly dark. 

The characters are completely 

invisible. 

 

85000 

The pins are incomplete and 

the characters are still 

invisible. 

 

400000 
The pins are missing and the 

characters are visible. 
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A. Subjective Evaluation 

The information entropy method, window segmentation 
method and the proposed joint method were employed to fuse 
the images, and the results are shown in Fig. 8. 

 
(a)          (b)        (c)         (d) 

 
(e) 

Fig. 8. Results of image fusion. (a) image fusion result based on the 

Laplacian pyramid strategy with σ = 0.1; (b) image fusion result based on the 

Laplacian pyramid strategy with σ = 0.2; (c) image fusion result based on the 

Laplacian pyramid strategy with σ = 0.3; (d) image fusion result based on 

ordinary window segmentation; (e) image fusion result based on the proposed 

joint method 

Fig. 8(a) to 8(c) show the image fusion results based on the 
Laplacian pyramid strategy. From the perspective of character 
clarity, the characters on the plastic package in Fig. 8(a) are 
very vague. The clarity of characters on the plastic package in 
Fig. 8(b) is obviously improved compared with that of Fig. 
8(a). Compared with Fig. 8(a) and Fig. 8(b), the characters on 
the plastic package in Fig. 8(c) are the clearest. From the 
perspective of the pin area contrast, the pin area in Fig. 8(b) has 
the highest contrast. Fig. 8(d) is the result of image fusion 
based on window segmentation. Although the contrast of the 
pin area is high and the characters are relatively clear, there is 
an obvious "fracture" trace in the fused image, which will 
cause relatively large interference in subsequent image 
processing and thus may easily cause measurement errors. Fig. 
8(e) is the image fusion result based on the proposed joint 
method. The characters are clear, the pin area contrast is high, 
the "fracture" trace is significantly eliminated, the details are 
well protected, and the visual effect is good. 

B. Objective Evaluation 

The above image fusion results were quantitatively 
analyzed and compared by using three indices, namely, 
information entropy, average gray intensity and time 
consumption. The results are tabulated in Table Ⅶ. 

According to Table Ⅶ, in image fusion based on the 
Laplacian pyramid strategy, the value of σ will affect the 
information entropy and average gray intensity of the fused 
image, while it has little impact on the image fusion efficiency. 
When σ = 0.1, the information entropy of the fused image is 
6.1473, and the average gray intensity of the fused image is 
89.9575. Compared to σ = 0.1, when σ = 0.2, the information 
entropy of the fused image increases by 1.27%, and the 
average gray intensity of the fused image increases by 33.65%. 
Compared to σ = 0.1, when σ =0.3, the information entropy of 

the fused image increases by 2.12%, and the average gray 
intensity of the fused image increases by 38.09%. 

TABLE VII.  OBJECTIVE INDICATORS OF DIFFERENT FUSION RESULTS 

Fusion Method 
Information 

Entropy 

Average Gray 

Intensity 
Time (s) 

Laplace pyramid strategy 

with σ = 0.1 6.1473 89.9575 6.246965 

Laplace pyramid strategy 

with σ = 0.2 6.2252 120.2241 6.245941 

Laplace pyramid strategy 

with σ = 0.3 6.2778 124.2241 6.220413 

Ordinary window 

segmentation 6.4937 117.4303 5.112153 

Proposed method 6.2922 131.5629 4.967878 

Image fusion based on window segmentation has the 
largest information entropy, which is 5.63% higher than the 
minimum value. However, the average gray intensity of the 
fused image is not high, ranking fourth (penultimate). The 
efficiency of the fusion algorithm is improved. Compared with 
the three image fusion methods based on the Laplacian 
pyramid strategy, the efficiency of the algorithm is increased 
by 22.20%, 22.18 %and 21.68%. 

Image fusion based on the proposed joint method has 
higher information entropy, which is better than the three 
image fusion methods based on the Laplacian pyramid strategy 
and second to the image fusion method based on window 
segmentation. The average gray intensity of the fused image is 
the highest. Compared with the other four methods, the average 
gray intensity is increased by 46.25%, 9.43%, 5.91% and 
12.03%. The fusion algorithm takes the least time. Compared 
with the image fusion method based on the Laplacian pyramid 
strategy, it takes approximately 1.3 seconds less. Compared 
with the image fusion method based on window segmentation, 
the efficiency of the algorithm is also improved, and this 
algorithm takes 2.90% less time. 

VII. CONCLUSIONS 

To address the difficulty of acquiring high-quality images 
with single imaging for chips made of two materials with 
extremely different reflectivity, an image enhancement method 
based on multi-exposure image fusion was proposed in this 
paper. First, a joint image fusion algorithm based on the 
Laplacian pyramid and window segmentation was proposed, 
improving image quality and reducing processing time. Then, 
the factors that affect the imaging quality their levels were 
analyzed and the imaging parameters were optimized through 
orthogonal tests. After that, a method of determining the 
exposure time based on information entropy and first and 
second order difference of average gray intensity was studied. 
Finally, multi-exposure image sets were established, and 
experiments and subjective and objective evaluations were 
subsequently performed. The results show that the fused image 
has a good visual effect, its information entropy was 6.29, and 
its average gray intensity was 131.56. Furthermore, compared 
with the Laplace pyramid strategy, the time consumed was 
averagely reduced by 1.26 s. The fusion algorithm has the 
advantages of being less time consuming and high efficiency. 
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It has been demonstrated that the image enhancement 
method based on multi-exposure image fusion proposed in this 
paper is effective for an imaging object composed of two 
materials with great difference in reflectivity. However, 
obtaining high-quality images is not the ultimate goal, and it is 
necessary to further verify the effectiveness of the method in a 
defect detection or size measurement task. Furthermore, the 
proposal can be further explored and applied to the objects 
composed of more than two kinds of materials. On the other 
hand, although the proposed algorithm takes the shortest time 
in the above experiments, the image fusion process still takes 
4.6 s. So the efficiency should be further improved. 
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