
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

163 | P a g e

www.ijacsa.thesai.org

New Text Steganography Technique based on

Multilayer Encoding with Format-Preserving

Encryption and Huffman Coding

Mohammed Abdul Majeed1*, Rossilawati Sulaiman2, Zarina Shukur3

Center for Cyber Security-Faculty of Information Science and Technology,

 Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia

Abstract—Steganography is the process of hiding secret data

inside other media or cover media. Balancing the requirements

for capacity, security, and imperceptibility is the main challenge

for any successful steganography system. In text steganography,

the data hiding capacity is limited because of the lack of

redundant data compared to other digital media, such as images,

video, or audio. Other challenges in text steganography are

imperceptibility and security. Poor imperceptibility results from

the structure of the text file, which is more visually apparent in

terms of syntax and grammar than in other media. Low level of

security results from the sequential selection of positions for

embedding secret data due to insufficient redundant data in a

text file. Therefore, an attacker or a third party would notice

slight changes in the text file. This paper proposes a new text

steganography method that combines cryptography and

compression techniques to deal with these issues. This technique

is used to conceal secret data to achieve high data hiding capacity

in the cover text while maintaining security and imperceptibility.

Multilayer encoding and Format-Preserving Encryption (FPE)

with Huffman Coding, are applied to secret data before

embedding. Invisible Unicode characters are employed to embed

secret data into English text files to generate stego files. Results

show that the proposed method satisfies capacity and

imperceptibility in the cover file by comparing it with previously

developed methods.

Keywords—Text steganography; format-preserving encryption;

Huffman coding; unicode characters

I. INTRODUCTION

Modern advancements in digital communication are
essential to our everyday lives. The utilization of data transfer
has substantially expanded because of developments in web-
based technologies and the digitization of information. The
data transfer includes audio, video, text, and images among
individuals and groups, which has become very convenient [1].
However, the allocation of such massive amounts of data over
the Internet makes them vulnerable to attacks. Thus, protecting
sensitive data has become an important issue requiring
immediate solutions. In general, two techniques are used to
preserve the security and privacy of sensitive data:
cryptography and steganography. One of the most attractive
fields for data security is cryptography. This method uses
several data encryption techniques to convert sensitive data
into ciphertext, which is an incomprehensible format. Another
technique for protecting communications during data
communication is steganography. Although they have the same

goal, steganography and cryptography use different techniques.
Steganography, as compared to cryptography, keeps the
original data by concealing it in various medium [2] [3].

Both Greek terms "Stegano" and "Graphy," which make up
the name "Steganography," have to do with "Cover Writing".
The practice of steganography began centuries ago. For
instance, Histiaeus employed steganography to transmit
messages by inking (tattooing) on the head of his slave, who
would travel after the tattoo had grown enough hair to conceal
it. Greeks were famous for transmitting secret messages [4] [5].
Since the text has fewer redundant bits than in other cover
media like images, music, and video, inserting hidden data in
the cover text is the main challenge in text steganography. Due
to the scarcity of redundant bits, any little adjustments made to
the cover text will be noticeable. Any steganography system
must have three main requirements: capacity, security, and
imperceptibility [6] [7]. Steganography highly values the
imperceptibility of hiding sensitive data in other media. The
hiding process is performed without being noticed by human
eyes. The concept of "security" refers to "undetectability",
where the concealed data is incapable of being found by
statistical methods [8]. A steganography system typically seeks
to communicate a significant amount of confidential
information using the least-covered media to reduce the risk of
being discovered when communicating over an unsecured
connection [9].

Let's say there is a need to embed a significant amount of
sensitive data in a cover file (which will later be called a stego
file). In that instance, altering the cover file is more challenging
due to the difficulty in achieving imperceptibility and the
possibility of distortion. Therefore, the trade-off between
hiding capacity with imperceptibility and hiding capacity with
security must be identified [10]. The hiding capacity has an
inverse relationship with imperceptibility, which means that
when large secret data are hidden within a specific size of
cover text, inevitably, the stego file will be distorted. This
distortion attracts the intruder's attention, and thus the hidden
data is noticeable. In general, Unicode characters are used to
embed secret data, which requires modification of the cover
file. However, because text media suffer from insufficient
locations for hiding secret messages, more text will be needed
for embedding. In addition, the selection process of the
embedding positions of the secret data is performed
sequentially. Sequential patterns of the positions make the
algorithm vulnerable to attacks [2]. Moreover, text media is

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

164 | P a g e

www.ijacsa.thesai.org

naturally bounded in terms of syntax and grammar, making
text media more visually apparent in the embedding process.

Several researchers have worked on the relationship
between hiding capacity and imperceptibility. Compression
techniques are used to reduce the hidden secret data size,
simultaneously minimizing the amount of modification in the
cover file and increasing the imperceptibility [11], such as
work in [12], which compressed the secret message using
Huffman coding. Secret messages are also compressed in
research found in [13] that combined algorithm with minimum-
maximum weight and Huffman coding. Meanwhile, in [14],
the secret data are concealed in the forward email IDs platform
after compressing it with Huffman coding.

Despite implementing the compression algorithms, there
are limitations, especially regarding the compression keys. In
steganography, the compressed data will be hidden with the
compression information, including the decompression keys,
which will be shared separately between authorized
participants. However, any third party getting the
decompression keys could also obtain the secret data. In other
cases, compression also led to low imperceptibility, as found in
[15].

In addition, research on hiding capacity and security is
being done to provide data protection while maintaining hiding
capacity. Work in [16] used the RSA algorithm to provide
security by encrypting data with minimum modifications in the
presence or characters layout. Another research by [17]
employs the Data Encryption Standard (DES), a symmetric
encryption key, and combines steganography and cryptography
for secure data transfer. However, despite these implemented
approaches that improved security, cryptography algorithms
also increased the secret data size since encryption generally
increases the overall size of the data.

Therefore, any new text steganography technique must
consider these issues and propose a method that minimizes the
secret message size compatible with the available capacity in
the cover text. In addition, changes in the cover text should be
minimum since embedding secret data in bulk is more
noticeable than in other media. More importantly, the
embedding technique used to add layers of security must be in
such a way that it does not increase the secret message size.

These issues give the motivation to develop the proposed
method described further in Section III, which considers the
relationship between hiding capacity and imperceptibility on
one hand and hiding capacity and security on the other through
the combination of cryptography and compression algorithms.
This combination has two objectives. Firstly, is to adjust all
steganography requirements simultaneously. Secondly is to
preserve the trade-off between high hiding capacity and
maintaining the imperceptibility of the stego file.

This paper suggests a new text steganography technique
using multilayer encoding with FPE and Huffman Coding,
which is applied to secret data that will be embedded using
invisible Unicode characters inside the cover text. In addition,
this paper explains the nature of the text media and the
relationship among factors that must be considered when
proposing new techniques for text steganography.

The rest of the paper is organized as follows: Section II
presents related works. Concepts in Multilayer encoding with
format-preserving encryption (fpe) and Huffman coding
illustrated in Section III. Proposed method is illustrated in
Section IV. Then, Section V presents the experimental results,
followed by the conclusion of the work in Section VI. Lastly,
recommendations for future research are presented in Section
VII.

II. RELATED WORK

This section analyses related works that share the same
fundamental concept as the proposed method. Randomization
is a concept that can be used as opposed to the sequential
concept. This concept can be seen used in text steganography,
as found in [18], which used randomization in selecting the
forward emails as a cover text. A randomized index-based
word dictionary is used to encrypt the carbon copy field that
contains hidden data. A temporary stego key from the public
key cryptography generates a system time-based random
bitstream and is transmitted separately. This method is
considered secure against attacks because noises are excluded
from the actual email body content. Moreover, randomizing
each word of the index values adds an extra layer of security by
inserting an 18-bit key generated using the system time in the
"date" column of the forward email format. However, the use
of public key cryptography increased secret message size and
affected negatively on data hiding capacity.

The author in [19] suggested a set of two letters words
based on the Oxford dictionary as indicators to hide the secret
data represented through non-printing Unicode characters
(UC). The proposed approach maps secret data so that every
two bits of secret text with a specific UC generates a UC
mapping table that will be shared between the sender and
receiver. However, the inserting of secret message after each
two letters words leads to increase the changes in a cover text
and that minimizes a level of imperceptibility. This work is
improved in [20] with the Lempel-Ziv-Welch compression
algorithm to minimize the secret data size. The secret data are
then represented through non-printing UCs to generate the UC
mapping table that will be shared between both sender and
receiver. However, the capacity is still low due to mapping
representation that used a few bits with non-printing UCs in
UC mapping table.

Color coding and LZW compression technique are used by
[21] that employed the forward mail as a cover text for the
secret data embedding process. The secret data is then
compressed by the LZW compression technique and embedded
inside the cover text by coloring it based in a color-coding
table. However, the capacity is still low due to limitation in
mapping representation in color-coding table. Another work
that used the Huffman compression can be found in [22] to
minimize the secret data. A specific number of characters in an
email ID indicates the bits of hidden messages. However, the
capacity is still low due to mapping representation that used
one bit only in color-coding table.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

165 | P a g e

www.ijacsa.thesai.org

III. CONCEPTS IN MULTILAYER ENCODING WITH FORMAT-

PRESERVING ENCRYPTION (FPE) AND HUFFMAN CODING

The rapid increase in the number of covert activities in
communication networks has intensified the need to devise an
efficient data-hiding method to protect secret information from
malicious attacks. One possible solution to this problem is to
combine steganography techniques with encryption and
compression techniques. As previously mentioned in Section
II, several encryptions and compression techniques have been
proposed, each with unique advantages and disadvantages. An
encryption and compression technique that can provide a high
security and compression ratio while maintaining an acceptable
imperceptibility for the output file must be adopted. To this
end, the proposed model applies multilayer encoding with
(FPE) and Huffman Coding, which seeks to encode by
encrypting and compressing the secret message before
embedding.

This model consists of encryption and compression
techniques (as shown in Fig. 1), which are applied to encrypt
and compress the secret message and consequently increase the
security ratio and hiding capacity.

Fig. 1. Multilayer encoding with FPE and Huffman coding process

A. Format-Preserving Encryption (FPE)

A novel symmetric encryption method known as FPE is
gaining popularity as a solution to previously mentioned
problems. This method differs slightly from traditional
encryption protocols like AES and DES [23] [24]. It is a
rapidly growing cryptography tool that serves the purpose of
secrecy in cryptography by ensuring data security. As the name
suggests, format-preserving encryption aims to encrypt data
without changing its size or format. It involves encrypting data
so that the output matches the input's size and format, which
offers several advantages over traditional encryption. Feistel
structure-based schemes called FF1 and FF3 are used to
implement FPE algorithms. The National Institute of Standards
and Technology (NIST) advises only two operating modes:
FF1 and FF3. A basic block cipher component called BPS-BC
is proposed to be used in Cipher Block Chaining (CBC) mode
to encrypt messages of any length. FF1, known initially as
format-preserving Feistel-based encryption (FFX), was
proposed by [25], and FF3, corresponding to the BPS-BC
(Brier Peyrin Stern), was proposed by [26]. Fig. 2's non-binary
Feistel structure is the foundation for both operating modes.
Both FF1 and FF3 can use electronic code book (ECB) mode
to encrypt data blocks.

Despite using AES as the underlying block cipher,
operating modes may be considered a type of FPE block
ciphers. The encryption of data with changeable forms, such as

Primary Account Numbers (PANs) or Social Security Numbers
(SSNs) that are not in binary format, is an example of a
practical use of FPE [26][27]. FPE can also be used in
communication systems when it's crucial to encrypt specific
protocols, such as in industry or the military or when
encrypting particular image formats [28].

Fig. 2. Generic cipher structure for format preserving encryption: (a)

ciphering, (b) deciphering

The present study focuses on the concept of using format-
preserving encryption FF1 mode. Data encryption must be
considered when developing a conceptual framework because
the technique of data encryption leads to an increase in the
level of security with maintaining the capacity ratio of stego
text files.

B. Compression using Huffman Coding

This section examines the data compression techniques that
benefit from current compression techniques related to text
files. These techniques can also be combined with
steganography to improve the proposed solution. Data
compression refers to the process of encoding input data by
using a few bits representing the input's original size [29]. In
other words, data compression denotes information in a
compact format. The data's structure must first be determined
to construct such small representations. These data may refer to
characters in a text file generated by other processes.
Compressed data are only used when both communicating
parties are informed of the coding scheme, similar to any other
type of communication. Compression is important since it
lowers the use of costly resources.

Data compression techniques are highly recommended to
increase the hiding capacity in cover files. These techniques,
which are popular in computing, require the data transmitted
over the Internet to be as compact as possible. Named after the
late David Huffman in the 1950s, Huffman coding is a data
compression technique that utilizes the greedy algorithm and
achieves remarkable savings in capacity (ranging from 20% to
90%).

A variable-length code is employed in Huffman
compression coding. Utilizing lower-frequency characters with
more extended codes is also preferable in this case. The

Encrypted and compressed secret message

Compression with Huffman Coding

Multilayer Encoding with FPE

Secret message

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

166 | P a g e

www.ijacsa.thesai.org

encoding process involves assigning a numerical string based
on the frequency of characters. The Huffman code algorithm
takes a string of symbols and transforms them into a varying-
length binary string. Then, a binary tree is generated for
decoding the binary strings. Each binary character is assigned
with 1 for the right child and 0 for the remaining child routes.

IV. PROPOSED METHOD

This section describes the proposed method. There are four
main components: the encoding phase, embedding phase,
extracting phase, and decoding phase, as shown in Fig. 3.

Fig. 3. Block diagram of the proposed scheme

A. Encoding Phase

In this phase, a combination of compression and security is
achieved by implementing the multilayer encoding with FPE
and Huffman Coding for compression, where secret messages
are encoded using FPE. This stage is called multilayer
encoding because it involves a few layers of encoding, such as
from text to binary, then binary to decimal, and finally
applying mod 26 to obtain the final encoding. FPE and the
multiple encodings provide multilayer security to the secret
message before its actual embedding. Multilayer encoding also
reduces the size of hidden messages while providing more
hiding spaces, as shown in Algorithm 1 of the multilayer
encoding with FPE (Fig. 4). Next, Fig. 5 depicts the algorithm

for data compression using Huffman Coding. This algorithm
starts by computing the frequency of occurrence of each data
(output code from FPE), which is calculated in the input
stream. These codes are then arranged from the highest
frequency to the lowest.

Algorithm 1: multilayer encoding with FPE

Input:
Output: ,

Steps:

1. Select Kp

2. For each Char in secret message ()

 Convert into Binary.

 End For

3. Convert the binary value of into decimal ()

4. Divide with ,

 // x is random length of the

divisor.

5. Encrypt with using FPE.

 (

6. Take mod 26 of the Encrypted Block

() = mod26.

7. Store the reminder bits of mode 26 as the second key, for

each block.

Fig. 4. Algorithm 1: multi-layer encoding with FPE

Algorithm 2: Huffman message compression
Input: Output codes from the multilayer encoding with FPE
Output: Compressed secret message (CM)

Steps:

1. Read the output codes

2. Compute the frequency of occurrence of each output code in a list

of (output code, frequency).

3. Arrange the list from the highest to the lowest frequency.

4. Calculate summation of the last two frequency numbers.

5. Rearrange the values in descending order based on their frequency

numbers.

6. If there is more than one element in the list

 Repeat Step 3.

 End-If

7. Construct a Huffman tree by assigning the value (0,1) to each pair

of branches in the tree.

8. Construct the final table (Huffman coding) that contains the leaf

nodes (output codes) and their respective codes according to the

Huffman tree.

9. Generate the compressed secret message (CM) by rewriting the

output codes using the table in Step 7.

Fig. 5. Algorithm 2: Compression with Huffman coding

In Algorithm 1 (Fig. 4), in line 1, the algorithm selects the
value of the FPE key (Kp). The block encoding and encryption
processes are shown in lines 2–8. Firstly, each character of the
secret message (Ms) is converted into binary. Next, in line 4, a
binary string is converted into a decimal string Md, and Md is
divided into equal blocks with a random length of the divisor
(x), shown in line 5. After that, the encryption phase (labelled
as Eph) is applied on each block (Bi) with Key (Kp),
 (line 6). In line 7, mod 26 on is

calculated, and finally, the values are determined by
collecting the reminder bits of mode 26 for each block (line 8).

Cover

text

Secret message

Multi-layer with

FPE and Huffman

segment text to words

Capacity

Enough?

Embedding phase

Stego text

Extracting

phase

Decompres

sion and

Secret message

Yes

No

Encoding phase

decoding phase

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

167 | P a g e

www.ijacsa.thesai.org

The values are used to regenerate encrypted blocks in the
extraction process.

In Algorithm 2 (Fig. 5), Huffman coding begins with the
input, representing the output codes of the multilayer encoding
with the FPE algorithm that need to be compressed. The
algorithm then computes the frequency of occurrence of each
output code in the input stream. These codes are subsequently
arranged from the highest to the lowest frequency. The two
codes with the lowest frequencies are treated as children of the
node, and the parent node comprises the total frequency of
these two child nodes. This node is then inserted back into the
list, and the list is rearranged.

The process of applying Multilayer Encoding with FPE and
Huffman coding is shown in the following example:

Suppose the Secret message is: "Universiti Kebangsaan
Malaysia".

1) Multilayer encoding with FPE:
Step 1: Select the encryption key "Kp" value for FPE.

Assume Kp=1200.

Step 2: Convert the secret message into random binary
stream blocks. The obtained binary blocks are given below:

01010101 01101110 01101001 01110110 01100101 01110010
01110011 01101001 01110100 01101001 00100000 01001011
01100101 01100010 01100001 01101110 01100111 01110011
01100001 01100001 01101110 00100000 01001101 01100001
01101100 01100001 01111001 01110011 01101001 01100001

Step 3: Convert each binary block into a decimal stream to
obtain the following decimal stream:

85110105118101114115105116105327510198971101031
1597971103277971089712111510597

Step 4: Convert the decimal stream into random blocks:

8511010511 8101114115 1051161053 2751019897
1101031159 7971103277 9710897121 11510597

Step 5: Encrypt each decimal block using FPE with
Kp=1200; the resultant encrypted blocks are given like the
following:

1909100954 6927975788 1398002705 6714036020
1293204947 2415200591 2308156747 39114904

Step 6: Apply mod 26 on each encrypted block, and the
remaining bits of each block after applying the mod 26
equation are stored as the second key, Ks.

The results of applying mod 26 on each encrypted block are
as follows:

[20 6 21 16 21 11 13 10]

2) Applying huffman coding:
Step1: Read the output codes of multilayer encoding with

FPE, which are:

[20, 6, 21, 16, 21, 11, 13, 10].

Step 2: Construct the final table (Huffman coding table)
that contains the leaf nodes (output codes), as shown in Table I.

TABLE I. HUFFMAN CODING TABLE

Step 3: Generate the compressed secret message by
rewriting the output codes using the table of Huffman coding.

Original secret message: (20, 6, 21, 16, 21, 11, 13, 10)

Compressed secret message: (110, 1000, 11, 101, 00, 010,
011, 1001).

The length of the compressed secret message, as computed
using the Huffman algorithm, is 24 bits.

B. Embedding Phase

By using the invisible Unicode characters (UC), the
embedding process aims to resolve the cover text limitation in
data hiding capacity. In the proposed method, the embedding
process is performed using eight Unicode characters to embed
the secret data. These characters are inserted into spaces
between words of the cover text. This phase proposes a text
steganography technique using the property of data redundancy
in the English text to improve the imperceptibility of hidden
information. This method uses eight invisible Unicode
characters UC by mapping three bits in each UC, as shown in
Table II.

TABLE II. UC MAP FOR HIDING 3 BITS IN EACH CHARACTER

Unicode characters Abbreviation Representation

Zero width character ZWC 000

Zero width joiner ZWJ 001

Zero width no- joiner ZWNJ 010

Invisible plus IP 011

Invisible separator IS 100

Inhabit Symmetric Swapping ISS 101

Empty string „‟‟‟ 110

Left-To-Right Embedding LRE 111

The algorithm uses UC to hide three secret message bits
after each word in the cover text. The first step of Algorithm 3
is to read the cover text and start segmenting text into words.
Then, secret messages are converted to binary, which is
divided into blocks of three bits. Next, every three bits are
checked according to UC mapping, as defined in Table II.
Then the alternative Unicode character is inserted after each
word of cover text. Fig. 6 shows the Embedding algorithm.

Node 20 6 21 16 21 11 13 10

Codeword 110 1000 11 101 00 010 011 1001

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

168 | P a g e

www.ijacsa.thesai.org

Algorithm 3: Embedding process
Input: cover text, secret message, UC
Output: Stego-text file

Steps:

1. Read the secret message.

2. Read the cover text file.

3. Segment cover text to words

4. Divide the hidden data into blocks of 3 bits each.

5. For each block in a secret message

 // there are 8 block options (i.e

000,001,010,100,101,110 and 111) are

available to insert UC after each word.

 Check the state of the first 3 bits of block

 5.1 IF 3 bits of block = “000” Insert ZWC after it

 Else Read a new word, Repeat Step 5.1.

 5.2 IF 3 bits of block = “001” Insert ZWJ after it

 Else Read a new word, Repeat Step 5.2.

 End IF.

 5.3 IF 3 bits of block = “010” Insert ZWNJ after it

 Else Read a new word, Repeat Step 5.3.

 End IF.

 5.4 IF 3 bits of block = “011” Insert IP after it

 Else Read a new word, Repeat Step 5.4.

 End IF.

 5.5 IF 3 bits of block = “100” Insert IS after it

 Else Read a new word, Repeat Step 5.5.

 End IF.

 5.6 IF 3 bits of block = “101” Insert ISS after it

 Else Read a new word, Repeat Step 5.6.

 End IF.

 5.7 IF 3 bits of block = “110” Insert „‟‟‟ after it

 Else Read a new word, Repeat Step 5.7.

 End IF.

 5.8 IF 3 bits of block = “111” Insert LRE after it

 Else Read a new word, Repeat Step 5.8.

 End IF.

 End for

6. Return Stego-text file

Fig. 6. Algorithm 3: Data embedding

C. Extraction Phase

The extraction phase is the third phase implemented in the
proposed method. The stego text file is used as input. The
extraction phase aims to extract the hidden data from the stego
text file by retrieving each invisible UC. The extraction starts
by reading the stego text. Next, the alternative Unicode
character after each word is extracted. Then, each UC is
mapped as defined in Table II to show the three bits of hidden
data. Finally, return the recovered encoded secret message bits
for the Decoding phase to reconstruct the secret message. Fig.
7 summarizes the extraction process.

Fig. 7. Algorithm 4: Data extraction

D. Decoding Phase

The decoding phase includes two processes, namely: the
decompression and deciphering of the secret text. The encoded
secret message retrieved in the extraction phase is used as the
input, while the retrieved secret message text is produced as the
output.

1) Decoding of Multilayer Encoding with Format-

Preserving Encryption and Huffman code: An encoded secret

message retrieved from the extracting phase is decoded using

the Huffman coding table to return the indexes. The Huffman

coding table is transmitted as a key file. Decoding the

retrieved encoded secret message and returning the indexes

require rebuilding the Huffman tree based on the Huffman

coding table. This process iterates through the binary encoded

data.

Algorithm 4: Extraction process
Input: Stego-text file
Output: Recovered encoded Secret message

Steps:

1. Read the stego text file.

2. Set secret data is null

3. Segment stego text to words.

4. Read each word and extract the alternative UC.

5. For each UC

 5.1 IF UC = ZWC add to hidden data = “000”

 Else Read a new UC, Repeat Step 5.1

 End IF.

 5.2 IF UC = ZWJ add to hidden data = “001”

 Else Read a new UC, Repeat Step 5.2.

 End IF.

 5.3 IF UC = ZWNJ add to hidden data =“010”

 Else Read a new UC, Repeat Step 5.3.

 End IF.

 5.4 IF UC= IP add to hidden data = “011”

 Else Read a new UC, Repeat Step 5.4.

 End IF..

 5.5 IF UC= IS add to hidden data =“100”

 Else Read a new UC, Repeat Step 5.5.

 End IF.

 5.6 IF UC = ISS add to hidden data =“101”

 Else Read a new UC, Repeat Step 5.6.

 End IF.

 5.7 IF UC = „‟‟‟ add to hidden data =“110”

 Else Read a new UC, Repeat Step 5.7.

 End IF.

 5.8 IF USC= LRE add to hidden data =“111”

 Else Read a new UC, Repeat Step 5.8.

 End IF.

 End for

 6. Return secret message.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

169 | P a g e

www.ijacsa.thesai.org

The process starts traversing from the root until a leaf is
found to find the characters that correspond to the current bits.
The node on the left of the tree is then approached if the
current bit is 0. If the bit is 1, the approach is made to the right
node of the tree. When traversing, a leaf node is reached, and
its character is displayed. After that, the encoded data is
iterated till the end. The significant advantage of Huffman
coding is that, although each character is coded with various
bits, the receiver will automatically locate the character in
order.

In FPE, the encoded data stream is decoded following the
same principles applied in the encoding process. The process
starts by obtaining the secret message bits from the
decompression process with the Huffman code and then
applying the decryption process with Ks, which is the key
established after applying mode 26 in the multilayer process in
the encoding stage. The next step is decrypting the secret
message bits from FPE using the Kp key, converting secret bits
from decimal to binary to rebuild the characters using ASCII
code at the end of this algorithm (Fig. 8).

Algorithm 5: Decoding Multilayer Encoding with Format
Preserving Encryption

Input: Encoding data stream ,

Output: Recovered Secret message

Steps:

1. Read Encoding data stream.

2. For each number in stream i.e. (20,6,21,16, 21,11,13,10).

 get ND using .

 get NS using .

 End for
 3. For each number in ND stream
 add number in Temp T

 IF T ≥ 64 then

 Add to DI list (T)

 T=0

 Else

 IF T =32 then

 Add to DI (T)

 T=0

 Endif

 End for

 4. For each number in DI list

 convert to binary

 retrieve secret message SM
 End for

 5. Return secret message.

Fig. 8. Algorithm 5: Data decoding

For example:

The retrieved message: (20,6,21,16, 21,11,13,10)

Step 1: decrypt (20,6,21,16, 21,11,13,10) using which
is mod 26 reminder bits of each number in encode stage.

The results of decryption will be:

 1909100954 6927975788 1398002705

6714036020 1293204947 2415200591

2308156747 39114904

Step 2: decrypt each block using FPE with Kp; the
resultant decrypted blocks will be:

8511010511 8101114115 1051161053

2751019897 1101031159 7971103277

9710897121 11510597
Step 3: combine blocks of numbers to accomplish the

stream of decimal numbers. The stream will be separated
according to original decimal numbers that represented each
binary of secret bits:

8511010511810111411510511610532751019897110

10311597971103277971089712111510597.
Step 4: steps to accomplish the separation according to the

original of the decimal numbers:

 take two numbers.

 If the summation of the two numbers equals 32, then
separate

 else-if the sum of the two numbers equals or is more
than 64, then separate

 Else take three numbers and separate

where 32 represents the word space in decimal, which are
separate words. This condition identifies the word spaces in the
algorithm. At the same time, since each letter in the English
language starts with 64 when represented in decimal, and the
numbers reflect the secret message letters in decimal, the
retrieval numbers must be 64 or more. This condition could be
satisfied with two or three numbers from the string while
separating the secret message. The output from this stage will
be (85 110 105 118 101 114 115 105 116 105 32 75 101 98 97
110 103 115 97 97 110 32 77 97 108 97 121 115 105 97).

Step 5: Convert each decimal number into binary and then
retrieve the secret message from the binary. The binary
representation will be as follows:

01010101 01101110 01101001 01110110 01100101

01110010 01110011 01101001 01110100 01101001

00100000 01001011 01100101 01100010 01100001

01101110 01100111 01110011 01100001 01100001

01101110 00100000 01001101 01100001 01101100

01100001 01111001 01110011 01101001 01100001
The secret message will be "Universiti Kebangsaan

Malaysia".

V. EXPERIMENTAL AND ANALYSIS

In this section, we analyze the experimental results of our
proposed method. The performance of the proposed method is
measured in terms of capacity and imperceptibility. The hiding
capacity is a major crucial parameter for analysis of the text
steganography algorithm performance. We used the Jaro-
Winkler distance, as used in [20], which is a similarity metric
for the cover text and stego cover (1) and (2). The similarity
metrics were used to calculate how similar two strings were to
one another, with (0) indicating a difference and (1) indicating
equal matching or imperceptibility of strings.

 ((–))

 (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

170 | P a g e

www.ijacsa.thesai.org

(

) (2)

 is the length of the common prefix at the start of the
string up to a maximum of 4, is the constant scaling factor
 , is the number of matched characters,
is the first string, is the second string, and is the number of
transpositions. As in [18, 21], hiding capacity is defined as the
hidden data size relative to the size of the stego cover.
Formulation (3) can be used for calculating the hiding capacity.

 (3)

The proposed method is applied to the cover file as shown
in Fig. 9 and secret messages shown in Fig 10, which are
divided into twelve samples to be embedded into the cover file.
Table III shows the results of the experiments, which include
the secret messages, size secret message (n) and Jaro-Winkler
(JW), for the proposed method and the comparison with
previous related studies.

Fig. 9. Cover text (1)

Fig. 10. Secret message (1)

As shown in Table III, the experimental results indicate that
the proposed method can be applied to embed the secret
message in the cover file. The Jaro-Winkler similarity score is
0.984 which is higher than in the two previous studies.

TABLE III. JW OF THE PROPOSED METHOD COMPARED WITH RELATED

STUDIES

Next, the performance in capacity is compared with related
studies that use the same secret message, as shown in Fig. 11
and the cover file in Fig. 12. Results show that the proposed
method also scores higher in hiding capacity results. Table IV
compares the hiding capacity of the proposed method with
existing techniques. The proposed method achieved 18.4%
capacity, which performed better than the other techniques for
the same cover text and the secret message. Fig. 13 presents the
bar chart comparison of the capacity that is listed in Table IV.

Fig. 11. Secret message (2)

Secret Message Message

size

(Bit)

JW

[15]

JW

[16]

JW

Proposed

work

the import 80 0.99 1 1

the importance and s 160 0.98 1 1

the importance and size

of tex

240 0.98 0.99 0.99

the importance and size

of text data hav

320 0.97 0.99 0.99

the importance and size

of text data have increase

400 0.96 0.99 0.99

the importance and size

of text data have

increased at an ac

480 0.95 0.98 0.99

the importance and size

of text data have

increased at an

accelerating

560 0.95 0.98 0.98

the importance and size

of text data have

increased at an

accelerating pace beca

640 0.94 0.98 0.98

the importance and size

of text data have

increased at an

accelerating pace because

the re

720 0.94 0.98 0.98

the importance and size

of text data have

increased at an

accelerating pace because

the reliance on

800 0.93 0.97 0.97

the importance and size

of text data have

increased at an

accelerating pace because

the reliance on text based

880 0.93 0.97 0.97

the importance and size

of text data have

increased at an

accelerating pace because

the reliance on text based

web 01234.

936 0.92 0.97 0.97

Average 0.953 0.983 0.984

“The loss of tree cover as a result of forests being cleared

for other land uses such as farming and logging is called

deforestation. Deforestation activities affect carbon fluxes

in the soil, vegetation, and atmosphere. However, logging

can also lead to carbon emissions if the surrounding trees

and vegetation are damaged. Deforestation is defined as

the destruction of forested land. It is a major problem all

over the world. The causes of deforestation vary from

place to place. The most common causes, however, are

logging, agricultural expansion, wars, and mining.

Deforestation has been the cause of many problems

facing the world today such as erosions, loss of bio

diversity through extinction of plant and animal species,

and increased atmospheric carbon dioxide. In this paper, I

will present that we can reduce deforestation by moving

from physical letter mail to electronic mail. From the

ancient era physical letter mail has come, till now it is

going on, but, on the other side due to this everyday trees

are being cut i.e., deforestation is taking place by the

paper industry, hence increasing CO2 emission and

global warming. In place of physical letter mail, we can

use electronic mail which will definitely do some

reduction in deforestation. There are critical effects of

deforestation.”

“The importance and size of text data have

increased at accelerating pace because the

reliance on text based web01234.”

“Behind using a cover text is to hide the

presence of secret messages the presence of

embedded messages in the resulting stego

text cannot be easily discovered by anyone

except the intended recipient”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

171 | P a g e

www.ijacsa.thesai.org

Fig. 12. Cover text (2)

TABLE IV. CAPACITY OF PROPOSED METHOD COMPARED WITH RELATED

STUDIES

Method Hiding Capacity Ratio %

[22] 7.21

[20] 12.02

[18] 12.17

[21] 13.43

Proposed Method 18.4

Fig. 13. Capacity of the proposed method compared with related studies

VI. CONCLUSION

This paper proposes a new technique of text steganography
using Multilayer encoding with FPE and Huffman coding. The
use of UCs shows a significant invisibility due to high
imperceptibility after embedding the secret data into the cover
text. Each Unicode character represents three bits of data.
Before hiding secret data, the proposed scheme minimized the
secret data size by applying multilayer encoding and Huffman
compression. FPE is applied to secret data to achieve the
encryption objective without increasing the size of the secret

data. Results show that the proposed method has demonstrated
significant improvement when compared with previous studies.

VII. FUTURE WORK

In future work, enhancement can be made by proposing a
new method to solve the sequential pattern in the embedding
process by introducing a randomization concept. Therefore, the
security level will be increased without using any encryption
techniques that require sharing of keys between participants. In
addition, increasing the number of bits in UC mapping
representation will result in increasing the amount of
capacity in cover text.

ACKNOWLEDGMENT

The authors would like to acknowledge Universiti
Kebangsaan Malaysia for the Research University Grant with
code: TAP-K011439 to support this project.

REFERENCES

[1] A. Ditta, M. Azeem, S. Naseem, K. G. Rana, M. A. Khan, and Z. Iqbal,
“A secure and size efficient algorithm to enhance data hiding capacity
and security of cover text by using unicode,” J. King Saud Univ. Inf.
Sci., 2020.

[2] M. A. Majeed, R. Sulaiman, Z. Shukur, and M. K. Hasan, “A review on
text steganography techniques,” Mathematics, vol. 9, no. 21, p. 2829,
2021.

[3] Ibrahim, A. H., & Alturki, A. S. (2020). Computational Analysis of
Arabic Cursive Steganography using Complex Edge Detection
Techniques. International Journal of Advanced Computer Science and
Applications, 11(9).

[4] Shehab, D. A., & Alhaddad, M. J. (2022). Comprehensive Survey of
Multimedia Steganalysis: Techniques, Evaluations, and Trends in Future
Research. Symmetry, 14(1), 117.

[5] Almayyahi, A. A., Sulaiman, R., Qamar, F., & Hamzah, A. E. (2020).
High-security image steganography technique using XNOR operation
and fibonacci algorithm. International Journal of Advanced Computer
Science and Applications, 11(10).

[6] Yang, Z., Xiang, L., Zhang, S., Sun, X., & Huang, Y. (2021). Linguistic
generative steganography with enhanced cognitive-imperceptibility.
IEEE Signal Processing Letters, 28, 409-413.

[7] Majeed, M. A., & Sulaiman, R. (2015). AN IMPROVED LSB IMAGE
STEGANOGRAPHY TECHNIQUE USING BIT-INVERSE IN 24 BIT
COLOUR IMAGE. Journal of Theoretical & Applied Information
Technology, 80(2).

[8] Salah, A. H., Hadwan, M., Aqlan, A., Albazel, M., Alqasemi, F., & Al-
Sanabani, M. (2021, August). A Survey on Different Arabic Text
Steganography Techniques. In 2021 1st International Conference on
Emerging Smart Technologies and Applications (eSmarTA) (pp. 1-8).
IEEE.

[9] Kumar, R., & Yadav, A. K. (2021). Development of Novel Algorithm
for Data Hiding on Mobile Application. International Journal of
Advanced Computer Science and Applications, 12(8).

[10] Baziyad, M., Rabie, T., & Kamel, I. (2018, November). Extending
steganography payload capacity using the L ab color space. In 2018
International conference on innovations in information technology (IIT)
(pp. 1-6). IEEE.

[11] Wahab, O. F. A., Khalaf, A. A., Hussein, A. I., & Hamed, H. F. (2021).
Hiding data using efficient combination of RSA cryptography, and
compression steganography techniques. IEEE Access, 9, 31805-31815.

[12] B. Khosravi, B. Khosravi, B. Khosravi, and K. Nazarkardeh, “A new
method for pdf steganography in justified texts,” J. Inf. Secur. Appl.,
vol. 45, pp. 61–70, 2019.

[13] L. Xiang, W. Wu, X. Li, and C. Yang, “A linguistic steganography
based on word indexing compression and candidate selection,”
Multimed. Tools Appl., vol. 77, no. 21, pp. 28969–28989, 2018.

7.21

12.17

12.02

13.43

18.4

0 5 10 15 20

[22]

[18]

[20]

[21]

Proposed Method

Hiding Capacity Ratio %

M
et

h
o
d
s

“In the research area of text steganography,

algorithms based on font format have advantages

of great capacity, good imperceptibility and wide

application range. However, little work on

steganalysis for such algorithms has been

reported in the literature. based on the fact that

the statistic features of font format will be

changed after using font-format based

steganographic algorithms, we present a novel

support vector machine-based steganalysis

algorithm to detect whether hidden information

exists or not. This algorithm can not only

effectively detect the existence of hidden

information, but also estimate the hidden

information length according to variations of font

attribute value. As shown by experimental

results, the detection accuracy of our algorithm

reaches as high as 99.3% when the hidden

information length is at least 16” bits.”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

172 | P a g e

www.ijacsa.thesai.org

[14] R. Kumar, A. Malik, S. Singh, and S. Chand, “A high capacity email
based text steganography scheme using Huffman compression,” in 2016
3rd International Conference on Signal Processing and Integrated
Networks (SPIN), 2016, pp. 53–56.

[15] Fateh, M., & Rezvani, M. (2021). An email-based high capacity text
steganography using repeating characters. International Journal of
Computers and Applications, 43(3), 226-232.

[16] N. Alanazi, E. Khan, and A. Gutub, “Inclusion of Unicode standard
seamless characters to expand Arabic text steganography for secure
individual uses,” J. King Saud Univ. Inf. Sci., 2020.

[17] D. Bhat, V. Krithi, K. N. Manjunath, S. Prabhu, and A. Renuka,
“Information hiding through dynamic text steganography and
cryptography: computing and informatics,” in 2017 international
conference on advances in computing, communications and informatics
(ICACCI), 2017, pp. 1826–1831.

[18] G. Maji and S. Mandal, “A forward email based high capacity text
steganography technique using a randomized and indexed word
dictionary,” Multimed. Tools Appl., vol. 79, no. 35, pp. 26549–26569,
2020.

[19] S. S. Baawi, M. R. Mokhtar, and R. Sulaiman, “New text steganography
technique based on a set of two-letter words,” J. Theor. Appl. Inf.
Technol, vol. 95, no. 22, pp. 6247–6255, 2017.

[20] S. S. Baawi, M. R. Mokhtar, and R. Sulaiman, “Enhancement of text
steganography technique using Lempel-Ziv-Welch algorithm and two-
letter word technique,” in Advances in Intelligent Systems and
Computing, vol. 843, 2019.

[21] A. Malik, G. Sikka, and H. K. Verma, “A high capacity text
steganography scheme based on LZW compression and color coding,”
Eng. Sci. Technol. an Int. J., vol. 20, no. 1, pp. 72–79, 2017.

[22] Kumar, R., Malik, A., Singh, S., & Chand, S. (2016, February). A high
capacity email based text steganography scheme using Huffman
compression. In 2016 3rd International Conference on Signal Processing
and Integrated Networks (SPIN) (pp. 53-56). IEEE.

[23] Gupta, S., Jain, S., & Agarwal, M. (2018, January). Ensuring data
security in databases using format preserving encryption. In 2018 8th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence) (pp. 1-5). IEEE.

[24] Pérez-Resa, A., Garcia-Bosque, M., Sánchez-Azqueta, C., & Celma, S.
(2020). A new method for format preserving encryption in high-data rate
communications. IEEE Access, 8, 21003-21016.

[25] M. Bellare, P. Rogaway, and T. Spies, “The FFX mode of operation for
format-preserving encryption,” NIST Submiss., vol. 20, no. 19, p. 24,
2010.

[26] E. Brier, T. Peyrin, and J. Stern, “BPS: a format-preserving encryption
proposal,” Submiss. to NIST, 2010.

[27] Cui, B., Zhang, B., & Wang, K. (2017, July). A data masking scheme for
sensitive big data based on format-preserving encryption. In 2017 IEEE
International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC) (Vol. 1, pp. 518-524). IEEE.

[28] Oh, I., Kim, T., Yim, K., & Lee, S. Y. (2019). A novel message-
preserving scheme with format-preserving encryption for connected cars
in multi-access edge computing. Sensors, 19(18), 3869.

[29] B. Carpentieri, A. Castiglione, A. De Santis, F. Palmieri, and R.
Pizzolante, “Compression‐based steganography,” Concurr. Comput.
Pract. Exp., vol. 32, no. 8, p. e5322, 2020.

