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Abstract—Modern integrated circuit design manufacturing 

involves outsourcing intellectual property to third-party vendors 

to cut down on overall cost. Since there is a partial surrender of 

control, these third-party vendors may introduce malicious 

circuit commonly known as Hardware Trojan into the system in 

such a way that it goes undetected by the end-users’ default 

security measures. Therefore, to mitigate the threat of 

functionality change caused by the Trojan, a technique is 

proposed based on the testability measures in gate level netlists 

using Machine Learning. The proposed technique detects the 

presence of Trojan from the gate-level description of nodes using 

controllability and observability values. Various Machine 

Learning models are implemented to classify the nodes as Trojan 

infected and non-infected. The efficiency of linear discriminant 

analysis obtains an accuracy of 92.85 %, precision of 99.9 %, 

recall of 80%, and F1 score of 88.8% with a latency of around 0.9 

ms. 
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Abbreviations 

A Accuracy 

P Precision 

R Recall 

F F1–Score 

TP True Positive 

TN True Negative 

I. INTRODUCTION 

Hardware Trojans are modern-day system attacks that will 
cause prominent damage to the IC or system in numerous 
ways. Though the software is considered to be vulnerable, the 
underlying hardware is generally considered to be safe. 
However, research has shown that, due to the complex nature 
of the design, fabrication process, rapid prototype 
development, and distribution of the final product, new sources 
of attack are prominent [1]. Speeding up the development 
cycle and lowering R&D costs is the main goal of most 
manufacturing companies because the estimated R&D cost is 
up to $5 billion. Most companies cannot afford to invest such a 
huge amount from start to finish. So, companies frequently 
outsource fabrication to a third-party foundry, buy IP cores 
from third-party suppliers, and employ EDA tools from third-
party vendors. Third-party suppliers can readily enter such a 
model, and the supply chain is currently deemed vulnerable to 
assaults like Hardware Trojan insertion, reverse engineering, IP 

theft, IC tampering, IC cloning, and IC overproduction, among 
others. Hardware Trojans are arguably the most concerning of 
them, and they have attracted a lot of attention. It will 
eventually change the functionality of the system and the user 
will be unable to take any action against it [2]. 

Hardware Trojans can be defined as malicious components 
introduced during the design, manufacturing, fabrication, 
testing, or development phase [3]. Once introduced they can be 
activated anytime, anywhere, and according to the attacker‘s 
interest. The activation mechanism divides Hardware Trojan 
into two groups: always on and triggered. Always-on Trojans 
are active as soon as the systems or designs are turned on, 
whereas triggered Trojans require the activation of some form 
of condition. A Hardware Trojan circuit is generally designed in 
two parts; a condition-based circuit (trigger) and an operation 
circuit (payload) which is interconnected via  trigger net [4]. 
The Trojan will be triggered and activated when the predefined 
criteria is satisfied. The most dangerous part is that they can be 
inserted anywhere in the circuit, be it processor, IC power grid, 
IO, and there is no way to immediately know the source of the 
threat. By the time it is discovered and neutralized it may be 
too late as it can change the functionality of the circuit. They 
can also downgrade its performance, leak sensitive information 
and finally cause a Denial-of-Service attack [3]. Therefore, to 
find a solution for many such attacks, various researches are 
being conducted. Amongst them, the logic function test (LFT) is 
a traditional method [5]. Most of the existing methods of LFT 
do not effectively activate any potential hidden Trojans. 
Researchers use side-channel analysis to detect Hardware 
Trojans by modelling and analysing electromagnetic 
information generated during chip operation [6]. Traditional 
side-channel analyses' effect isn't sufficient, according to 
researchers [7], due to low sensitivity detection rates for big 
process fluctuations and a small Trojan footprint. Combining 
principal component analysis and linear discriminant analysis 
to analyse chip power is effective in evaluating Trojan 
detection accuracy [8]. Machine learning techniques for 
malware detection are the most successful state-of-the-art 
research topic because of their ability to keep up with malware 
evolution. They concentrate mainly on two areas, one is feature 
extraction, and the other is dimensionality reduction. Support 
Vector Machine algorithm seems to be the go-to algorithm for 
detection in multiple cases [9]. However other advanced 
algorithms are also being explored to trigger and detect a 
Trojan. Triggering a Trojan has an impact on the system's 
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power usage as well as the circuits' delay. This behavior is 
extensively used to study the power and delay characteristics of 
hardware Trojans in order to detect them [10]. 

Even though there is a possibility to detect the Trojan using 
the different techniques as stated so far, there is still scope for 
optimization. The contributions made by this paper are as 
follows: 

1) We propose the use of gate-level descriptions of nodes 

using controllability and observability values to generate a 

dataset to detect the presence of Hardware Trojan. 

2) Machine Learning techniques are used to detect the 

presence of Trojan. 

3) Benchmark circuits-C17, C3540 and C432 are 

considered to validate our proposed technique. 

4) We experimentally prove that our proposed model has 

an area and power reduction up to 75% and 80% respectively 

in Trojan free circuits. This performs better in comparison to 

other state-of-art techniques. 
The rest of this paper is organized as follows. Section II 

and III analyze the related works and motivation. Section IV 
shows the proposed scheme. The experimental results and 
discussion are presented in Section V. Section VI shows the 
conclusion. 

II. RELATED WORKS 

Various techniques ranging from score-based classification 
[6] for identifying Hardware-Trojan-free or Hardware-Trojan-
infected circuits without using golden model-based approach to 
deep learning techniques are researched. The side-channel 
analysis and detection method [11], uses dimensional reduction 
to detect HTs. This causes the loss of important feature 
information of Hardware Trojans after the principal component 
analysis or filtering process. To solve this problem, a Hardware 
Trojan detection technology is proposed based on Extreme 
Learning Machine (ELM), which can completely retain 
important information without any inaccuracies caused by 
modelling. Results show that detecting the Hardware Trojans 
only used about 0.15% of resources. The accuracy rate was 
about 90%. 

In terms of router looping, traffic diversion, or core 
spoofing, a trojan attack corrupts the router packet [9] by 
changing the destination address. As a solution, SVM is used 
to increase detection accuracy. According to the estimates, the 
suggested security solution architecture achieves a 93 percent 
accuracy for seizure detection applications in 4.8µS. 

Detection of Trojan using gate-level netlist based on 
observability and controllability analysis [4] produce sufficient 
results. When this technique was used on numerous trojans, the 
findings reveal that even in the worst situation, all Trojans are 
discovered effectively with zero false positive and negative 
rates in less than 14 seconds. 

Using a specific gate-level netlist that specifies the Trojan 
nets in full, the review paper [12] covers extracting 51 gate-
level Trojan features. The usage of an ensemble- based random 
forest classifier results in a true positive and true negative rate 
of 100 percent. 

Implementation of SVM using five-dimensional vectors 
[13] classifies all the nets in an unknown netlist into Trojan 
affected and normal ones using the Trust-HUB benchmark. 
Not only SVM but various other machine learning algorithms 
like Decision Tree, K Nearest Neighbour [14] is applied to 
identify the Trojan. Further to increase classification accuracies, 
Hardware Trojans are discretized based on their dominant 
attributes. The results show that both Machine Learning 
algorithms when trained on a given dataset perform well. DT 
and KNN models can accurately predict about 83% of the test 
data. 

In addition, existing deep neural networks security studies 
are not extensively conducted at these software algorithm 
levels [15] and the more realistic attacks by third-party vendors 
are not explored. So, it is successful in demonstrating how an 
attack is possible. Experiments reveal that the approach can 
quickly generate and activate a variety of Trojan attacks that 
can readily overcome existing defenses. This is very important 
in formulating a solution to the attack. 

III. MOTIVATION 

The presence of Hardware Trojans (HTs) in circuits causes 
malfunction on various scales depending on the type of Trojan 
attack. Amongst the numerous existing state-of- art techniques, 
the FANCI [16] technique uses a coverage-like approach 
where it does not require access to any verification stimuli. But 
the attackers like third-party vendors being aware of this can 
make the Trojan look benign. The third-party inputs from on-
chip IPs can be scrambled to suppress the Trojan triggers. But 
this would not work for analog triggers. So, the Side-channel 
techniques can be used to unmask Trojans injected by third 
parties [17], but this method is unusable until IC is 
manufactured and inside the supply chain. As a solution, the 
use of formal proofs enables to development of trusted IPs. 
However, this assumes that proof is sufficient to rule out 
injected Trojans and that IP specifications are known. 
Therefore, there is a need for better-advanced techniques to 
counter novel malware attacks. One such technique is Machine 
Learning (ML) [18]. 

The rise of Machine Learning has profound implications 
for many industries, including cyber security. ML-based anti-
malware tools are generally believed to provide better 
detection of modern malware attacks and improve scanning 
methods. Machine Learning algorithms perform better against 
unforeseen threats as they can be trained to handle unknown 
potential threats. This is a major advantage over other 
techniques. They yield more accurate, efficient solutions. As a 
result, employing ML techniques proves to be beneficial. 

IV. METHODOLOGY 

The proposed Trojan detection technique is a 
combinational circuit [19] for avoiding unintended malicious 
activity is as shown in Fig. 1. Controllability and Observability 
are the two parameters considered for the detection and 
classification of Trojan in the given circuit [20]. 

To implement the proposed methodology, let us consider 
ISCAS benchmark circuits. These are implemented using 
Verilog. We have designed a Trojan threat model and applied it 
to ISCAS benchmark circuits. Then we generate a Gate Level 
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netlist. Using Python and gate-level netlist, we obtain values of 
two parameters, Controllability and Observability to detect the 
presence of Trojan in the circuit. Hence, we create a dataset 
using these values as input. The model is trained and tested by 
applying different Machine Learning techniques. The desired 
output is obtained and verified using functional verification and 
overhead analysis. 

 
Fig. 1. Block diagram of proposed methodology 

A. Design of Trojan Threat Model 

A trojan is a unique circuit that performs specific malicious 
activity [21]. Trojan considered in our proposed work will 
change the functionality of the circuit. Fig. 2 shows the Trojan 
threat model designed for our work. Here, 4-bit Linear 
Feedback Shift Register (LFSR) is used to trigger the Trojan 
and NOT gate act as payload. One input to the comparator is 
from LFSR and the other input is a random number generated 
by the attacker. The output of the comparator is connected to 
the select line of MUX. If the output of the comparator is one, 
Trojan is triggered and vice versa. 

B. Benchmark Circuit Selection 

The proposed method is implemented on a standard ISCAS 
benchmark circuit [22]. The ISCAS '85 benchmark circuits are 
combinational circuits that are used by researchers as the basis 
for performing analysis and comparing results. C17-NAND 
only circuit, C432-a 27 channel interrupt, and C3540–an 8-bit 
ALU are the three circuits considered in our work as depicted 
in Fig. 3, Fig. 4 and Fig. 5. 

 
Fig. 2. Design of trojan threat model 

 
Fig. 3. C17 (NAND circuit) 

C. Gate Level Netlist 

Gate Level Netlist contains information regarding the 
logical connectivity of all standard cells and macros [23]. Gate 
level netlist of C17, C432, and C3540 is generated by 
synthesizing these circuits using the Cadence tool at 90nm 
technology. These gate-level netlists are used for calculating 
observability and controllability values. 

D. Controllability and Observability Calculation 

The presence of Trojans in the circuits is analyzed by 
calculating the controllability and observability values. 

1) Controllability analysis: Nets with poor testability are 

identified using combinational controllability. The levels of 

controllability range from 1 to infinity. Because the possibility 

of detecting such a node is very low, and controlling that 

particular node is quite difficult, nodes with high 

controllability (CC) ratings are more susceptible to having a 

trojan inserted. All signals from primary inputs to primary 

outputs have their controllability values determined first. The 

circuit is initially levelled by giving each gate a level value 

[24]. Each gate's output controllability is then calculated. 

Controllability (CC) in general is expressed as: 

CC (i)= √CC0(i )
2 + CC1(i )

2
  (1) 

where, CC0(i) is Combinational Controllability 0 and 
CC1(i) is Combinational Controllability 1 
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Fig. 4. C432 (27 channel interrupt controller circuit) 

 
Fig. 5. C3540 (8-Bit ALU circuit) 

2) Observability analysis: Observability is a measure of 

the ease (or difficulty) with which one can calculate the signal 

value at any logic node in the circuit by controlling its primary 

input and observing the primary output [4]. The observability 

values for all signals from primary outputs towards primary 

inputs are then calculated. The observability of one input of a 

AND gate with multiple inputs is given by 

CO(s) = P(x,y)+1  (2) 

where, x=output observability and y= CC1 of other inputs. 
If ‗U‘ is a primary output node of a digital circuit, then the 
combinational observabilities of node I are defined as, CO(U) = 
0. Table II, Table III, and Table IV reports the controllability 
and observability values obtained. 

E. Machine Learning Algorithms and Data Set       Creation 

The use of machine learning algorithms aids in the better 
analysis of various Trojan threats because they are capable of 
processing massive amounts of data with greater precision. 
Using Python, dataset is created by evaluating the 
controllability and observability values received from the 
chosen benchmark circuits. The more advanced algorithms 
can be trained to detect any kind of Trojan across various 
platforms. Hence, we employ various Machine Learning 
Techniques (MLT) [25] along with our proposed technique to 
detect the presence of Trojan in the circuits by classifying the 
nodes as Trojan free and Trojan infected. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Functionality Verification 

To understand the impact of Trojans on the circuits let us 
consider C3540, an 8bit ALU. C3540 consists of Mux, shift 
register, ALU_Core, xor gate, and BCD subtractor. Trojan can 
be introduced to any block in the circuit. To understand the 
effect of Trojan, we are introducing Trojan to the BCD adder 
block in C3540. Let us consider two and five as inputs to this 
BCD block. When this block is configured as adder, the output 
is six in the absence of Trojan. When Trojan is activated, the 
output changes. This can be observed in Fig. 11, where the 
Trojan activation at 72ns changes the output value from 6D to 83 
and remains in the same state as long as Trojan is activated. 
Once the Trojan is deactivated, output changes to the original 
value. As the blocks in C3540 are cascaded as seen in Fig. 11, 
the final output of ALU will also be changed. This clearly 
demonstrates that, due to the presence of Trojans, functionality 
of the circuit will change. Similarly, functionality verification 
of C17 and C432 benchmark circuits are carried out for both 
the cases, with Trojan and without Trojan. The obtained 
simulation results are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 
10, and Fig. 11. Thus, this shows how the entire functionality 
of a circuit or a system change upon Trojan activation. 

 
Fig. 6. C17 simulation result without Trojan 

 
Fig. 7. C17 simulation result with Trojan 
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Fig. 8. C432 simulation result without Trojan 

 
Fig. 9. C432 simulation result with Trojan 

 
Fig. 10. C3540 simulation result without Trojan 

 
Fig. 11. C3540 simulation result with Trojan 

B. Performance Analysis 

Performance analysis of the benchmark circuits-C17, 432 
and C3540 using area and power metrics are shown in Table I. 
The circuits are implemented in Verilog HDL using Cadence 
Incisive and synthesized in 90nm technology using Cadence 

Genus. It can be observed that, area of the circuits without 
Trojan is less compared to with t rojan. It can be noticed that, 
power consumption of the circuits in the absence of Trojan is 
less. From Table I, it is evident that Trojan presence can also be 
determined by performing area and power analysis. This is due 
to the fact that, any new addition of unwanted components such 
as Trojan, increases the area and power consumption in a 
drastic way. 

TABLE I.  SYNTHESIS REPORT 

Bench
mark 

Circuits 

Area(µm2) Power(µW) 

With
out 

Troja
n 

With 
Troja

n 

With
out 

Troj
an 

Wit
h 

Tro
jan 

C17 16.62 
227.0
7 

0.42
5 

6.7
6 

C432 
439.0
02 

3279.
648 

15.2
05 

107
.09 

C3540 
4931.
203 

5196.
118 

185.
38 

194
.27 

C. Controllability and Observability Calculation 

Controllability and Observability are the parameters used 
for detection of Trojan in the benchmark circuits. Netlist 
obtained from synthesis of C17, C432 & C3540 is converted 
into benchmark formats. The benchmark formats are then fed as 
input to the python code that determines controllability and 
observability values. The output in the form of a text file is 
used to create datasets. Combinational controllability is used to 
identify nets which show difficulty in testability. The 
controllability values range from 1 to infinity. If ‗I‘ is a 
primary input node of a digital circuit, then the combinational 

controllabilities of node ‗I‘ are defined 1 i.e., CC0(I) and 
CC1(I)=1. Similarly, calculations of combinational 
controllabilities for various gates are shown in Fig. 12. 

An Observability is simply a function of controllability, 
meaning that it is impossible to observe a given internal node if 
the circuit is not driven to a given state. The Observability 
values range from 0 to infinity. If ‗U‘ is a primary output node 
of a digital circuit, then the combinational observabilities of 
node ‗U‘ are defined as, CO(U) = 0 

The formulation of combinational observabilities for 
various gates are shown in Fig. 13 where, 

CC = Combinational Controllability 

CO = Combinational Observability   

Trojan value 0 = No Trojan detected 

Trojan value 1 = Trojan detected 

Table II, Table III, and Table IV represent samples of 
datasets generated using Controllability and Observability 
values obtained using the calculations for various gates 
mentioned in Fig. 12 and Fig. 13. The gate-level netlists are 
converted to benchmark codes that are fed into the python 
code that performs the calculations to output files with the           
testability measures. 
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Fig. 12. Combinational controllability calculation for  various gates 

 
Fig. 13. Combinational observability calculation for  various gates 

TABLE II.  C17 DATASET 

Line Name CC CO Trojan 

G3gat 4.2 17 0 

G1gat 1.4 5 0 

G22gat 6.4 0 0 

G10gat 3.6 3 0 

G19gat 4.5 3 0 

G3gat 4.2 54 1 

G10gat 38.1 3 1 

G19gat 4.5 3 1 

G1gat 1.4 42 1 

G22gat 7.1 0 1 

TABLE III.  C432 DATASET 

Line Name CC CO Trojan 

G159 13.5 74 0 

G165 13.5 74 0 

G295gat 14.3 152 0 

G1gat_1 1.4 38 0 

. 

. 

. 

   

G236gat_0 14.2 157 0 

G159 13.5 76 1 

G165 13.5 76 1 

G360gat 15.44 244 1 

. 

. 

. 

   

G1gat_1 1.4 56 1 

G236gat_0 14.2 163 1 

TABLE IV.  C3540 DATASET 

Line Name CC CO       Trojan 

G905 22.8 141 0 

G906 7.6 89 0 

G116 5.6 409 0 

. 

. 

. 

   

G353 11.7 0 0 

G68 8.4 364 0 

G905 126.3 141 1 

G906 42.1 89 1 

G116 5.6 384 1 

. 

. 

. 

   

G1018 41.2 82 1 

G625 42.1 4 1 

D. Machine Learning Techniques (MLT) 

MLT are used for detection of Trojans in the benchmark 
circuits. Controllability and Observability values calculated for 
C17, C432 and C3540 are used as input to create dataset. Upon 
pre-processing the data, dataset is split into training set and test 
set. This data set is used on various MLT for classifying the 
nodes as Trojan free and Trojan infected. Scatter plot shown in 
Fig. 14, Fig. 15 and Fig. 16 better visualizes the results. C17 
circuit is easier to classify as with Trojan and without Trojan 
but C432 circuit has considerable overlapping and is harder to 
classify. Thus, non-linear ML models have to be used in order 
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to separate this nonlinear data. Hence, we propose an MLT 
model which is a combination of LDA and Naive Bayes. 
Comparative study of all these MLT along with the proposed 
model in terms of accuracy, precision, F1 score and Recall is 
carried out for C17, C432 and C3540 circuits (see Fig. 17 to 
22).  It is evident from Table V, Table VI and Table VII that 
our proposed LDA+ Naive Bayes model is best among other 
MLT with the latency of around 0.9 ms in comparison with the 
other state-of-art techniques. 

 
Fig. 14. Observability (Y) vs controllability (X) scatter plot results of C17 

nodes 

 
Fig. 15. Observability (Y) vs controllability (X) scatter plot results of C432 

nodes 

 
Fig. 16. Observability (Y) vs controllability (X) scatter plot results of C3540 

nodes 

 
Fig. 17. C17 accuracy and precision metrics 

 
Fig. 18. C17 recall and F1-score metrics 

 
Fig. 19. C432 accuracy and precision metrics 
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Fig. 20. C432 recall and F1-score metrics 

 

Fig. 21. C3540 accuracy and precision metrics 

 

Fig. 22. C3540 recall and F1-score metrics 

The Performance Metrics in Table V, Table VI, Table VII 
use the following parameters: 

TABLE V.  C17 PERFORMANCE METRICS 

 

Model 

A 

(%) 

P 

(%) 

R 

(%) 

F 

(%) 
T P T N 

Tim e 

(ms) 

RBF SVC 43 29 40 33 4 2 0.9 

KNN 50 33 40 36 5 2 3.9 

Decision 

Tree 
50 42 100 59 2 5 0.9 

Random Forest 71 57 80 67 6 4 17.9 

Logistic 

Regression 

 

86 

 

71 

 

100 

 

83 

 

7 

 

5 

 

0.9 

Naive 

Bayes 
93 83 100 91 8 5 0.9 

Linear 

SVC 
93 83 100 91 8 5 0 

LDA + 

Naive Bayes 

 

93 

 

100 

 

80 

 

89 

 

9 

 

4 

 

0.9 

TABLE VI.  C432 PERFORMANCE METRICS 

 

Model 

A 

(%) 

P 

(%) 

R 

(%) 

F 

(%) T P T N 
Tim e 

(ms) 

Logistic 

Regression 

 

30 

 

11 100 
 

8 

 

9 

 

1 

 

0.0 

Random 

Forest 45 47 94 63 0 15 0.9 

Decision Tree 48 48 100 65 0 16 0.0 

KNN 52 50 50 50 9 8 1.9 

Naïve Bayes 55 52 81 63 5 13 0.0 

RBF SVC 79 76 81 79 13 13 11.9 

Linear  SVC 82 86 75 80 15 12 0.5 

LDA + 

Naïve Bayes 

 

82 

 

75 

 

94 

 

83 

 

12 

 

15 

 

1.9 

TABLE VII.  C3540 PERFORMANCE METRICS 

Model 
A 

(%) 

P 

(% 

R 

(%) 

F 

(%) 
TP TN 

Time 

(ms) 

RBF SVC 43 29 40 33 4 2 0 

Decision 

Tree 
50 42 100 59 2 5 0 

Random  

Forest 
64 50 60 55 6 3 9.9 

KNN 71 56 100 71 5 5 2.9 

Logistic 

Regression 

 

86 

 

71 

 

100 

 

83 

 

7 

 

5 

 

0.9 

Linear SVC 93 83 100 91 8 5 0 

Naïve Bayes 93 83 100 91 8 5 0.9 

LDA + 

Naïve Bayes 

 

93 

 

100 

 

80 

 

89 

 

9 

 

4 
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VII. CONCLUSION 

Considering the various threats to the manufacturing 
process of an IC/system like functionality change, IC 
tampering, third party vendor attacks etc, a new Hardware 
Trojan detection technique using Machine Learning is 
proposed. Controllability and Observability analysis was 
performed using Gate Level netlists. Based on the values 
obtained, the various Machine learning models were able to 
distinguish the nodes in three of the benchmark circuits used as 
Trojan free or Trojan infected. Amongst them, our proposed 
model i.e., LDA + Naïve Bayes performed the best when 
compared to other state-of-art techniques with an accuracy of 
92.85%, precision of 99.9 

%, recall of 80% and F1 score 88.8%. The latency of the 
proposed technique was around 0.9ms. Along with this, the 
Simulation and Synthesis reports obtained using 90nm 
technology of Cadence tool also proved that presence of Trojan 
increasingly affects the system in terms of area and power. 
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