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Abstract—Path planning is vital for robust autonomous robot 

navigation. Driving in dynamic environments is particularly 

difficult. The majority of the work is based on the premise that a 

robot possesses a comprehensive and precise representation of its 

surroundings prior to its starting. The problem of partially 

knowing and dynamic environments has received little attention. 

This circumstance occurs when an exploratory robot or a robot 

without a floor plan or terrain map must move to its destination. 

Existing approaches for dynamic-path-planning design a 

preliminary path based-on known knowledge of the environment, 

then adjust locally by replanning the total path as obstacles are 

discovered by the robot's sensors, thereby sacrificing either 

optimality or computational efficacy. This paper presents a novel 

algorithm. A Near-Optimal Multi-Objective Path Planner (NO-

MOPP), capable of planning time-efficient, near-optimal, and 

drivable paths in partially known and dynamic environments. It 

is an expansion of our earlier research contributions called "A 

Multi-Objective Hybrid Collision-free Optimal Path Finder 

(MOHC-OPF) for Autonomous Robots in known static 

environments" and "A Multi-Objective Hybrid Collision-free 

Near-Optimal Path Planner (MOHC-NODPP) for Autonomous 

Robots in Dynamic environments". In the environment, a mix of 

static and moving dynamic obstacles are present, both of which 

are expressed by a hybrid, discrete configuration space in an 

occupancy-grid map. The proposed approach is executed at two 

distinct levels. Using our earlier method, A Multi-Objective 

Collision-free Optimal Path Finder (MOHC-OPF), the initial 

optimal path is found in environment that includes only known 

stationery obstacles at the Global-path-planning level. On the 

second level, known as Local Re-planning, this optimal path is 

continuously refined by online re-planning to account for the 

movement of obstacles in the environment. The proposed 

method, A Near-Optimal Multi-Objective Path Planner (NO-

MOPP), is used to keep the robot's sub-paths optimum while also 

avoiding dynamic obstacles. This is done while still obeying the 

robot's non-holonomic restrictions. The proposed technique is 

tested in simulation using a collection of standard maps. The 

simulation findings demonstrate the proposed method's ability to 

avoid static as well as dynamic obstacles, as well as its capacity to 

find a near-optimal-path to a goal location in environments that 

are constantly changing without collision. The optimal-path is 

determined by taking into account several performance 

measures, including path length, collision-free path, execution 

time, and smooth paths. 90% of studies utilizing the proposed 

method demonstrate that it is more effective than other methods 

for determining the shortest length and time-efficient smooth 

drivable paths. The proposed technique reduced average 15% 

path length and execution time compared to the existing 

methods. 

Keywords—Autonomous mobile robots; dynamic environment; 

planning; collision-free; time-efficient paths 

I. INTRODUCTION 

Path planning for mobile robots, especially when the 
environment is known, is a well-researched problem [1-8].  
However, one issue that arises when putting theory into 
practice is the fact that incomplete information about the 
environment is often available. In most cases, it seems 
unrealistic to expect to have a detailed map with all the 
obstacles clearly marked. Recent years have seen tremendous 
progress realized in the realm of path planning in dynamic 
environments across a wide range of domains. Particularly, 
mobile robots have found practical use across a wide range of 
domains. Applications incorporate emergency rescue 
management in natural disasters [12], planetary exploration 
[10, 11], inventory control [12], the manufacturing industry 
[13], etc. 

In the 1960s, research began in the arena of path planning 
for different kinds of robots [1, 2, 12]. The Path-Planning is the 
procedure of establishing a path-way in an environment that is 
no-obstacles and that connects a predetermined starting point 
and an intended ending point [14-15]. The environments in 
which robots operate can either be static or dynamic. When 
working in a static known environment, the locations of 
obstacles remain the same, but when working in a dynamic 
environment, their positions shift over the course of time. The 
goal of employing path-planning algorithms is to translate the 
high-level-specifications which humans execute into low-level-
steps [15]. This is accomplished by locating the optimal-path 
and presenting to the robot in the form of a series of waypoints 
that it should follow as moving directions. 

The dynamic environment comprises moving obstacles, the 
path-planning algorithm is a necessity not-only to determine 
the optimal-path but also to observe it. In order to persist 
responsive to its environments, the approach must know the 
current position of an obstacle, forecast upcoming paths, and 
bring up-to-date its path in real-time with sufficient frequency. 

In most cases, an autonomous mobile robot is free to follow 
any one of a number of predetermined routes. The length of the 
path, the amount of time it takes, and the amount of energy it 
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takes are all factors that go into determining what constitutes 
the optimal path. Numerous algorithms were developed to 
handle the problem of path planning; these algorithms can be 
categorized as either classical or intelligent. Artificial Potential 
Field [16], Rapid Exploration of Random Trees (RRT) [15, 17] 
and its variants RRT*, etc. [15,18], Partitioned Learning 
Traditional methods, such as D* [20], are utilized to solve 
dynamic path planning problems. As the search space grows in 
size, however, these methods become inefficient and get stuck 
at local maxima. Thus, intelligent optimization techniques like 
the Genetic Algorithm [21-22], Particle Swarm Optimization 
[23], Bees algorithm [24] [29] and etc. have been employed to 
solve path planning difficulties. 

Real-time dynamic path planning needs more investigation 
[30], as stated earlier. This study proposes an A*[3] based 
Near-Optimal Multi-Objective Path Planner (NO-MOPP) to 
swiftly identify a near-optimal drivable smooth path in a 
dynamic environment while taking the kinematic restrictions of 
the robot into account. The following are some of the 
contributions made in this work: 

1) "A Multi-Objective Hybrid Near-Optimal Dynamic 

Path Planner (NO-MOPP)" is a new dynamic path planning 

technique that finds no-collision near-optimal-drivable paths 

in a dynamic environment with a hybrid environment 

representation. Since A* ensures both optimality and 

completeness, the A* algorithm will serve as the foundation 

for this approach. This algorithm performs comparably to A*. 

2) The proposed technique performs on two distinct 

levels. Initially, using global path planning, the optimal-path is 

determined in an area with known static-obstacles. The second 

level, known as Local-replanning, adjusts the optimal path 

online with the assistance of sensors in order to prevent 

collisions with dynamically generated immovable and moving 

obstacles. After that, path tracking is performed, and the path 

is optimized during path tracking without sacrificing the 

algorithm's real-time performance. 

3) Kinematic constraints, like a robot's orientation, are 

employed in order to find the most efficient driving smooth 

paths in ever-changing real-time environments. 

4) It finds application in a wide range of different 

dynamic environments. The percentage of successful attempts 

is 90%. 

5) When compared to RRT and RRT*, our suggested 

method achieves superior outcomes in dynamic environments 

in relation to the amount of time required for execution, 

execution time, and the total length travelled path-length. 
The paper is organized as follows. Section II explains 

related research that is pertinent to the techniques for planning 
paths. The technique and underlying algorithm for path-
planning in the presence of static as well as dynamic obstacles 
are presented in Section III. Section IV looks at how well the 
suggested strategy works and gives the results of the 
experiments. Section V brings the article to a conclusion, 
which also offers guidelines for future work. 

II. RELATED WORK 

Past decades have seen many path-planning algorithms. 
Graph-based techniques include Dijkstra's algorithm [4,24], A* 
[3], D* [20], and etc. After discretizing the path planning state 
space into a graph structure, they employ graph search to find a 
feasible path. A* and Dijkstra's algorithms are suitable for 
lower-dimension static environments. D* is used for dynamic 
environments. Optimal Path Planning using Memory Efficient 
A*. Improved A* Path Planning Method Based on the Grid 
Map. Sensors [25], Time-Efficient A* Algorithm for Robot 
Path Planning [26], Safe Path Planning of Mobile Robot Based 
on Improved A* Algorithm in Complex Terrains [27], Optimal 
Path Planning using Memory Efficient A*[31] and Fast path 
planning using modified A* method [32]. 

The graph-based approach is full and resolution optimal, 
meaning it finds an optimal-path if a viable path-exists and 
fails otherwise. The graph-based partition of the state-space 
yields a massive search space, which makes these graph-based 
approaches unsuitable for large-scale issues. The recent 
updates on A*, in research papers like Dynamic-Algorithm for 
Path-Planning using A* with Distance-Constraint [13] and 
Improved-Analytic-Expansions in Hybrid A* Path-Planning 
for Non-Holonomic Robots [9]. They are suffering from high 
computation time. 

Another significant kind of path-planning algorithm is the 
sampling-based path-planning approach. Instead of discretizing 
the state space, it generates a graph or tree by randomly 
selecting points. Sampling-based path planning algorithms beat 
graph-based ones in large-scale situations. The sampling-based 
path planning strategy is probabilistically complete, thus when 
the trials number reaches infinite, the likelihood of discovering 
a suitable path-way approaches one. Sampling-based planners 
employ RRT [15,17] and PRM [19] algorithms. The RRT, a 
single-query path planning method that traverses state space by 
generating a tree rooted at the start state, is faster than the 
PRM. Despite finding an initial path in high-dimensional space 
quickly, RRT has many downsides. RRT's path may not be 
ideal because it is randomly generated. RRT* [18] advanced 
RRT. The RRT* takes time and memory to identify the best 
path. RRT* likewise experiences significant search time 
variability. Though, these techniques perform poorly and trap 
in local optima when the search space is big. 

Hence, intelligent optimization procedures have been 
employed in the process of solving path-planning problems. 
Some examples of these algorithms include the Genetic 
Algorithm [21-22] [28], Particle Swarm Optimization [23], 
Simulated Annealing [12], Ant Colony Optimization [8], Bees 
[29] and etc. Even if these algorithms conquered the difficulties 
of path planning, they still wouldn't be usable without the 
partitioning and pre-processing of environment maps. This is 
because such maps need to be prepared in advance. The 
accuracy is reduced as a result of discretization and pre-
processing, which also results in non-optimal pathways. 
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III. PROPOSED PATH PLANNING SYSTEM 

The purpose of path-planning is to discover a continuous 
path that will lead a system from its current state to a desired 
one. Finding a path across a dynamic environment that a non-
holonomic robot or vehicle can follow without colliding with 
any of the environment's obstacles is the goal of dynamic path 
planning. 

1) Problem formulation:  The path-planning issue‟s main 

objective is to identify an optimal-path for an autonomous-

robot to proceed from a given beginning-point to a certain 

goal location in a dynamically changing environment 

containing static and dynamic stationery as well as moving 

obstacles by satisfying optimization-criteria. The path-

planner‟s goal is to discover the optimal- or near-optimal-path 

for a mobile-robot that avoids obstacles in the surroundings. 
The environment is denoted as a Grid. The initial step in 

mobile-robot-path-planning is establishing an environment-
model for the mobile-robot's 2-dimensional. As identical 
square cells, grids are used to represent the mobile-robot's 
workplace. Each grid-cell is either free (logic 0) or forbidden 
(logic 1) by an obstacle. There are both static as well as 
dynamic stationary and moving obstacles in this area. 

2) Optimization criteria: The proposed path planning 

system NO-MOPP determines a no-collision smooth path that 

obeys multi-objective optimization criteria. The criteria is: 

first one is the Cost objective-function , minimum-cost path 

for a mobile-robot to move from its start-point to the goal-

point, provided that it is a smooth and safe path, i.e., the 

mobile-robot travels with no collision with obstacles. This 

measure is specified by Eq. (1) : 

Cost f = g + h + SO+DSO +DMO  (1) 

where cost-f is the sum-of-the-costs from the start-node to 
current-node (g), the estimated-cost (h) to the goal from 
current-node, the additional-cost for changing the orientation 
angle, SO is the cost for switching orientation, DSO 
corresponds to the cost of avoiding dynamic stationary 
obstacles, and DMO indicates the cost of avoiding dynamic 
stationary obstacles during local replanning. 

The second Criterion is the Execution time objective needed 
for finding a minimum length and safe path. This is given by 
equation (2): 

Ttotal = TGlobal-path-planning + Tlocal-replanning (2) 

where Ttotal is the time essential for the completion of 
execution of the path planner, TGlobal-path-planning is the time taken 
by the offline line path planner and TLocal-raplanning is the time 
needed to update the initial optimal path to skip dynamic 
stationery obstacles. 

The optimal path-planning problem can be stated as: 

“Find the lowest cost and least time taking near-optimal 
smooth path between the start-point and the goal-location, such 
that the above optimization-criteria Cost function f and 
Execution time T objective functions given in above equations 
(1) & (2) are lessened by taking non-holonomic constraints of 
the robot into account”. 

3) The proposed dynamic path planning system’s 

architecture: The component structure of the dynamic-path-

planning system is depicted in Fig. 1. The system will function 

efficiently on the two levels. At the first level, global path 

planning, the optimal route is determined using the 

information that is currently known about the environment, 

including the known static obstacles, for instance. After that, 

the robot will continue along this optimal path. This optimal 

path is updated online at the second level, which is known as 

"Local Replanning," in order to skip collisions with-obstacles 

which are dynamically presented and may be either stationary 

or dynamic. 
Primary components of the dynamic-path-planning system 

are depicted in Fig. 1. The environment is dynamic and 
comprises both static and moving obstacles. To represent this 
ever-changing environment, a binary occupancy grid map is 
employed. Constraints: Non-holonomic car-like robots or 
vehicles have kinematic constraints.  Optimization criteria: 
Path smoothness, path length, and the time required to locate a 
path comprise optimization criteria. 

4) Path-planning: The path-planning algorithm is the 

crucial component of a dynamic-path-planning system that 

addresses a path-planning issue. In this proposed system, there 

are two levels. A Multi-Objective Optimal Path Finder 

(MOHC-OPF) is used to obtain a quick initial optimal-path in 

an environment that includes known static obstacles only in 

the First level of Global Path Planning. Local-Replanning is 

the second level of our proposed dynamic path planning 

approach, a Near-optimal Multi-Objective Path Planner (NO-

MOPP), which is employed to avoid dynamic obstacles in 

dynamically changing environments. 

 
Fig. 1. Block diagram of the dynamic path planning system 

A. The Working Principle of NO-MOPP 

A novel method called NO-MOPP has been proposed as a 
way to avoid the limitations of the traditional A* methodology. 
The kinematics of the car-like robot or vehicle is added to 
predict the movement of the robot which is dependent on the 
steering angle in a continuous search space. The proposed 
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system has a collection of continuous states represented by the 
coordinates (xp, yp, θ), here (xp, yp) represents the location of 
the robot or vehicle and θ represents its orientation. Non-
holonomic robots and vehicles can benefit from this feature 
since it helps the path planner choose the best successor state 
for them to follow. One of the five steering actions, maximum-
left, left, maximum-right, right, and no-steering, expands the 
states and leads to an arc of a circle with a minimum turning 
radius, in accordance with the kinematic restrictions of the 
simple car-like robot or vehicle. On the basis of these 
operations, the proposed method, the NO-MOPP algorithm 
selects the states depicted in Fig. 2. 

 
Fig. 2. NO-MOPP incorporates kinematic constraints with 5 steering angles 

B. Multi-Objective Functions for Optimization 

As part of this effort, different objectives are analysed and 
taken into consideration so that the updated path can be 
optimized. 

Cost Function: It calculates the cost of driving from the 
present-point to a neighboring node. This cost f is the total-cost 
from the start node to the current node (g), the anticipated-cost 
from the present node to the goal-(h), and the cost for adjusting 
the orientation angle (SO). Eq. (1) is utilized to calculate this 
cost. 

1) Path length: The final path is made up of a series of 

path segments denoted by the notation P= {P1, P2, …, Pn}. 

The ultimate length of the path is equal to the totality of the 

lengths of all path segments that connect the Start state to the 

Goal state via any intervening states. This is illustrated in Fig. 

3. To get the length of this final path, Eq. (2) is utilized. 

 
Fig. 3. Path length 

                   where i= 1 to n. (3) 

At each stage, the next state with the lowest possible cost is 
chosen, and the arcs in the path are optimized to have the 
minimum turning radius. As a result, it ensures that the final 
path will be the shortest and most optimal one. 

2) Execution time: The amount of time required to carry 

out the method that was proposed for discovering a path and 

Eq. (2) is used for determining this. 
The travelled distance must be sufficient in order to exit the 

current cell, and the equation that describes this requirement is 
below (4). 

l >√2 s   (4) 

In this equation, l represents the length of an arc, and s 
indicates the size of a single cell in the grid map. At each node, 
the continuous state is rounded off to a discrete state in order to 
prevent the search graph from becoming an increasingly huge 
structure. This, in turn, results in a reduction in the amount of 
search time necessary to locate the ultimate path. 

3) Smooth path: Kinematic constraints determine the next 

node in this proposed approach, resulting in minimum turning 

radius curves. Therefore, the final path produced is smooth. 

C. The Heuristic Function 

The heuristic function predicts the minimum-cost from any 
node to the destination on the map. This reduces node 
exploration. Thus, heuristic function selection directly impacts 
the performance of path planning approaches. The Euclidean 
distance is employed as a heuristic function. Equation (5) 
determines each node's heuristic values. 

       –                     (5) 

D. The Proposed Path Planning Approach 

The proposed approach executes the path-planning 
procedure in a dynamic-environments with both dynamic as 
well as static obstacles. The method operates on two levels. 
Global Path Planning 2. Local Redevelopment Replanning. In 
the first level, the Global-path-planning method is applied to 
determine the optimal-path through a static obstacle 
environment. The attained path is provided for the robot to 
track during the second level. Simultaneously, the algorithm 
modifies the path in real-time to prevent a collision by means 
of any new obstacles, to ensure the sub-paths are optimum. 
Using proposed path-planning system, the path‟s optimality is 
preserved. Fig. 1 depicts this process. 

1) The global path planning:  By adhering to kinematic 

constraints, the MOHC-OPF method, which was the objective 

of our previous research, is used in Global Path Planning to 

swiftly construct an optimal path for a given environment 

containing only static obstacles. The MOHC-OPF algorithm 

employs Open-list and Closed-list. Comparable to the 

conventional A*, they keep track of the states while searching. 

The open list includes the neighbours of states that have been 

expanded during the search process. The closed list comprises 

all states for which processing has been finalized. Here is a 

summary of the MOHC-OPF algorithm. 
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Input: Occupancy grid map of the environment with static 
obstacles information, starting position (xstart), target position 
(xgoal), heading θ, and kinematic constraints of simple car-like 
robot and U(x) actions set with five forward steering angels. 

Output: A mobile robot's optimal path from its starting point 
to its goal, including path length and execution time. 

Step 1: Set Open list and Close list 

Step 2: Assign Xstart to the start state,  

Step 3: For each of the 5 steering angles, find Xstart 's 5 
neighbors. Using a simple car-like robot‟s kinematic model 
with a global location of (xg, yg, θ) generated using the 
equation (6) (LaValle, S.M. Planning Algorithms, 2006. [15]). 

             

            

                

ρ min = l/ tanφmax   __________ (6) 
 

Where u is an action set {0,1}, φ is the steering angle, ρ 
min is the minimum turning radius and l is the front-rear-axles 
distance of a simple car. 

Step 4: If any of the neighbors is a goal state, then quit. 

Step 5: Estimate the cost of each neighbor using the cost 
function equation (1) if they are not likely to collide. 

Step 6: Assign Xstart to a neighbor having the minimum cost 
function f-value, then execute the related action on the map. 
Keep the former Xstart and the f values in an open list. 

Step 7: Repeat from step 3 until Open-list is empty. 

2) The local replanning: Global path planning generates 

the optimal-path in a dynamic-environment with stationary 

obstacles only. In Local re-planning, the autonomous mobile 

robot or vehicle takes this optimal path from the starting-point 

to the target-point in a dynamically changing situation. The 

robot moves along the course with the aid of surrounding 

sensors and a scanning procedure. The robot's sensors allow it 

to survey an area from a 360-degree angle. 
The proposed method, NO-MOPP, begins by analysing 

sensor data to identify any new static or moving dynamic 
obstacles on the optimal path for tracking. Once an obstacle 
reaches the robot sensor's exposure range, sensor readings 
provide all information regarding the robot's movement and 
location, as well as all obstacles in the surroundings. Using this 
information, the likelihood of a robot and obstacle collision is 
evaluated. If there is no collision, the robot will continue along 
its original path as shown in Fig. 4(a). 

However, in the case of a collision, the proposed NO-
MOPP technique replans the segment of the path containing a 
potential collision location. The newly found subpath must be 
the best and shortest possible. The inventive optimal path was 
adjusted such that the-robot will track the updated no-collision 
path. The process of alerting a robot to the presence of new 
obstacles is known as obstacle detection. 

The proposed methodology enables the robot to-move 
toward the goal though detecting any new obstacles. The 
following stages are included in this implementation. The 
measurements of the sensor are recorded. The robot-obstacle 
distance is then estimated from the robot to the close exterior-
surface of the obstacle. 

3) Obstacle detection: The obstacle‟s presence is detected 

when sensors sense the obstacle. The obstacle-robot distance 

exceeds a certain threshold. The collision check method is 

invoked when an obstacle is encountered to find that the robot 

as well as the obstacle will crash. 

4) Collision check: Even if an obstacle is within the 

sensor range of the robot, not all detected obstacles will cause 

a collision. If there is no collision as depicted in Fig. 4(a), the 

robot will follow the optimal reference path. If there is a 

collision possibility as depicted in Fig. 4(b) and the distance 

amid the robot & the obstacle is greater-or-equal to the 

threshold value, then replanning is performed using the 

proposed local search method called NO-MOPP; otherwise, 

the robot will halt and pause for the obstacle to go before 

continuing along the same path. 
The likelihood of a collision is computed based on the 

robot's location and direction angle in relation to the sensed 
obstacle. Calculating the time and location of the collision is: If 
the robot's present location is P r-p1 (x r-p1, y r-p1) and it is 
heading toward Pr-p2 (xr-p2, yr-p2), and if the obstacle‟s present 
location is Pobst1 (xobst1, yobst1) and its goal is Pobst2(xobst2, yobst2). 
The formulas of the robot movement are given by (7). 

Calculating robot motion requires the following formula: 

xr-p = xr-p1 + vrobot tr cos θ 

yr-p = yrobot1 + vrobot tr sin θ (7) 

The equation for the movement of the obstacle could be 
expressed as (8). 

xobst1 = xobst1 + vobst tobst cos φ 

yobst1 = yobst1 + vobst tobst sin φ (8) 

The collision amid the robot and the moving obstacle 
occurs when the subsequent Eq. (9) is satisfied. 

xrobot = xobst1 (9) 

yrobot = yobst1 

i, e. 

xr1 + vr tr cos θ = xobst1 + vobst tobst cos φ (10) 

yr1 + vr tr sin θ   = yobst1 + vobst tobst sin φ 

where θ is orientation and vrobot is the robot-velocity, φ and 
vobst are the orientation and the obstacle-velocity respectively, 
and tr and tobst are the current time at which the robot and 
obstacle are there and they are positive. Then the point of the 
intersection can be determined by replacing Eq. (7) and (8) 
with Eq. (9) producing equation (10). In the case of a collision, 
the robot's sub-path consists of 3 locations. The robot's present 
location is represented by the first point, Xpresent (x1, y1), the 
collision points by Xcolisn (xc, yc), and the next point in its path 
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by Xnew_next (xn, yn). If there is a collision, the obstacle will be 
on this sub-path. For this reason, a modified local search is 
proposed, NO-MOPP, for replanning in order to locate an 
alternate collision-free sub-path. When both of the below 
circumstances are true Local replanning is done by invoking 
the proposed method NO-MOPP. The first circumstance is 
when a new obstacle enters the robot sensor's coverage range. 
Second, when a collision detection judgment is made 
favourably. In this local search, NO-MOPP looks for the next 
neighbour with minimum cost value calculated using Eq. (1) in 
the Global path planning from its neighbor‟s list, named Open 
list. The computational cost is less because the next node is 
selected from the open list which is readily available. 
Therefore, the replanning has no impact on the time efficiency 
of the proposed technique. Once again, the new neighboring 
point is checked for collisions; if there are none, a minimal 
turning radius path segment is constructed. This is repeated 
until the goal is found. 

 
(a)   

 
(b) 

Fig. 4. (a) No collision Case (b) Collision case 

The shortest path is guaranteed by a Minimum turning 
radius path segment. The near-optimal sub-path is returned by 
the proposed method NO-MOPP. The robot is instructed to 
pursue this new branch of the course. Because the Global-path-
planning of the proposed dynamic path-planning system 
previously computed the costs of five neighbors corresponding 
to each steering angle for each location on the global optimum 
path, the cost computing in the proposed method NO-MOPP is 
no longer required. There is therefore no computational 
overhead. The time needed for this is likewise quite short 

because there are just five neighbour points with regard to five 
steering angles while looking forward and only those points for 
which the arc length is greater than the cell size Eq. (4) So, 
search time is also reduced. Therefore, the method has no 
consequence on the efficiency of time. The following 
Algorithm 2 summarizes the pseudo-code of the proposed 
dynamic path planning algorithm NO-MOPP: 

Algorithm 2: NO_MOPP 
Input: Start, Goal, Closed-list and Open-list  
Output: The near-optimal-path for an autonomous mobile-
robot fromthe given initial point to the goal-position in Path 
length and Execution time. 
Algorithm NO_MOPP (Open_List, Closed_List, Xstart, Xgoal) 
1. Xnext=Xstart  
2. index=0 
3. optimal_path =Closed_List 
4. Pathlength= length (Optimal-path) 
5. Robot follows optimal_path 
6. for each point in Closed_List ()  
7. { 
8. index=index+1 
9. Robot move forward in the mentioned orientation 
10. Xnext = Closed_List(index)  
11. if Xnext ==Xgoal 
12. Print (“Path detected successfully”) 
13. Print (“Found near Optimal path”, Closed_List); 
14. Sensor data= Sensor reading from its coverage area 
15. If (Sensor data != Obstacle) 
16. Robot moves forward to the Xnext. 
17. Else if (Collision_detection () == false) 
18. Robot moves forward to the Xnext  
19. Else if 
20. {   
21. Xcurrent = Xnext 
22. While (neighbours of Xcurrent from Open_List ==true) 
23. {  
24. Xnew_next=Xcurrent „s neighbours with next minimum cost 

from Open_List () 
25. Xnew_next=Xcurrent having next minimum cost from Open_List 

() 
26. If Collision_detection (Xnew_next ) == false 
27. Robot moves to Xnew_next with the given orientation 
28. Update Closed_List 
29. Return  
30. Else  
31. Continue 
32. } 
33. update path length 
34. If (no more neighbors of Xcurrent in Open_List) 
35. Print (“There is no path exists”)  
36. } 
37. Method: Collision_detection (X new_next) 
38. { 
39. d= distance between the robot‟s current point and collision 

point 
40. if (d >= threshold value) 
41. return false 
42. else  
43. return true 
44. } 
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IV. EXPERIMENTAL RESULTS 

Using MATLAB 2021a on Windows 10 64bit-with an 
Intel-core i5 NIVIDIA G5-CPU, the performance of the 
proposed method, a novel Near-Optimal Multi-Objective Path 
Planner (NO-MOPP), was evaluated. For testing, sensor views 
from -45° to +45°, -90° to +90°, and -180° to +180° were 
captured. In ninety percent of the studies, it was discovered that 
the dynamic obstacles were successfully avoided. On a variety 
of dynamic maps, all simulations were executed with varying 
starting and ending points. Path-Length-Mean and Average-
Execution-Time between the provided start and goal locations 
on the map are the performance metrics considered when 
evaluating the effectiveness of our proposed system. The 
execution time and length of the near-optimal-path was 
recorded. 

1) Case-study-1: Complex Map: A more complex 

dynamic environment is considered; the environment is a 

complex maze with both static and dynamic obstacles that are 

stationary and moving. The proposed method was executed 

one hundred times in order to determine its average execution 

time. Fig. 5(a), (b) and (c) depicts a nearly optimal path 

generated by NO-MOPP for this complex environment on two 

levels known as Global path planning and Local-replanning 

paths and how robot (arrow) avoiding dynamic 

stationery(purple color) and moving obstacle(green color). In 

ninety percent of experiments, it successfully avoids dynamic 

obstacles. 

 
Fig. 5. (a) & (b): No collision and collision avoidance with a moving 

dynamic obstacle (green color) using NO-MOPP. (c) Collision avoidance with 

dynamic moving (green color) and stationary obstacles (purple color) using 

NO-MOPP 

The findings for the Complex map's Path Length Mean and 
Average-Execution-Time are given in below Table I. 

TABLE I.  TYPE  RESULTS FOR COMPLEX MAP 

 Offline path planning After Local-replanning 

Path length_mean in 
meters 

64.5589 67.8374 

Execution time in secs 0.457936 1.986376 

Direct_Path_Length in 
meters 

51.856 51.856 

2) Case-study-2: Package pickup in Warehouse scenario: 

A package pickup in a warehouse dynamic-environment 

contains static and dynamic moving and stationary obstacles. 

Fig. 6(a), (b), and (c) illustrate, NO-MOPP devised a path that 

was close to optimal for avoiding static (purple color) and 

moving (green color) obstacles on the way to the package 

pickup site. In 90% of the experiments, the proposed strategy 

was effectively avoided. 
The Path length mean and execution time outcomes for the 

Package Pickup scenario are summarized in Table II. 

 
Fig. 6. (a) & (b): No collision, collision avoided with a moving dynamic 

obstacle (green color) using NO-MOPP. (c) The collision was avoided with the 

moving dynamic obstacle (green color), and stationery obstacle (purple color) 

using NO-MOPP 

TABLE II.  RESULTS FOR PACKAGE PICKUP IN A WAREHOUSE SCENARIO 

 Global path 
planning 

After Local-
replanning 

Path length_mean in meters 73.5541 91.5263 

Execution time in secs 0.4951 2.953216 

Direct_Path_Length in meters 62.1488 62.1488 
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Performance Evaluation: In the preceding two case studies, 
we describe the efficacy of the proposed method NO-MOPP 
and comparability it to the current techniques RRT and RRT*. 
In this section, we compare NO-MOPP to RRT and RRT*. The 
proposed method NO-MOPP has been rigorously examined. 
The comparison of performance is summarised here. In 
comparison to RRT and RRT*, the path length supplied by the 
Proposed Method NO-MOPP was superior. The execution time 
of No-MOPP is considerably shorter. 

1) Case Study-1: Complex Dynamic map: Table III 

provides a visual representation of the results of a 

performance evaluation that compares the proposed technique 

NO-MOPP to the existing methods RRT and RRT* when 

applied to a complex dynamic map. The figures provide 

abundant evidence that the proposed technique is successful 

even when the level of map complexity increases. 

TABLE III.  PERFORMANCE EFFICIENCY COMPARISON IN A COMPLEX MAP 

Planner/performance 
metric 

Path length 
Mean in meters 

Avg_Execution Time 
in secs 

RRT 110.873295 4.136285 

RRT Star 105.567284 4.513792 

Proposed method NO-
MOPP 

67.8374 1.986376 

As is evident from the Fig. 7 below, the proposed method 
NO-MOPP performed better than the existing methods RRT 
and RRT* after being run through 100 iterations. The blue line 
that depicts its performance shows that the proposed method 
developed the shortest length paths in contrast to other existing 
approaches in the Complex Dynamic Map. This is proved by 
the fact that the method created the shortest length paths in 
each iteration. 

 
Fig. 7. Path length comparison in complex map 

The Fig. 8 displays the efficiency and efficacy of the 
execution time. The proposed method NO-MOPP is 
represented by a blue line in virtually all 100 iterations of the 
Complex Dynamic Map. This method generates paths that 
require significantly less time consuming compared to the 
existing techniques RRT and RRT*. 

 
Fig. 8. Execution time comparison in complex map 

2) Case Study-2: Dynamic map for Package Pickup: The 

RRT and RRT* approaches, as well as the proposed approach, 

were evaluated using the Warehouse scenario as a point of 

comparison. Table IV presents a comparison of various 

performance metrics for further consideration. Examining how 

the proposed solution comes up in path length as well as 

execution time in comparison to the other available options. 

The proposed method is carried out fairly well when applied 

to this difficult warehouse map. 

TABLE IV.  PERFORMANCE EFFICIENCY COMPARISON IN A COMPLEX MAP 

IN WAREHOUSE 

Planner/performance 
metric 

Path length Mean in 
meters 

Avg_Execution Time 
in secs 

RRT 170.8753 4.596832 

RRT Star 150.3547 4.975649 

Proposed method NO-
MOPP 

91.5263 2.953216 

The Fig. 9 indicates how the performance of the 
recommended method NO-MOPP compares to that of the 
existing methods RRT and RRT* in 100. When compared to 
the other existing methods in the Warehouse dynamic map, the 
proposed method NO-MOPP consistently created paths that 
were the shortest in length. This can be seen from the blue line 
that depicts the performance of the proposed methodology. 

 
Fig. 9. Performance metric path length comparison in warehouse map 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

209 | P a g e  

www.ijacsa.thesai.org 

The results of a comparison between the efficiency of our 
method NO-MOPP and the existing techniques RRT and RRT* 
can be found in the following Fig. 10, which can be found 
below. The strategy that was suggested consistently produced 
the least time-consuming paths when compared to other 
approaches that were already being used for the dynamic map 
of the Warehouse. 

 
Fig. 10. Performance metric execution time comparison in warehouse map 

V. CONCLUSION AND FUTURE WORK 

In this paper, A Near-Optimal Multi-Objective Path 
Planner (NO-MOPP) is used to determine the optimal path for 
mobile autonomous robots operating in dynamic environments. 
While complying with the robot's kinematic constraints, the 
robot is able to follow the determined path and avoid new 
obstacles. Detection of obstacles is dependent on the coverage 
area of the sensors of a robot and an assessment of the 
likelihood of a collision. Collision avoidance is achieved 
through re-planning if the collision check method indicates a 
collision with a newly introduced dynamic obstacle. 
Consequently, the development of smooth, drivable paths, 
which are required for realistic scenarios, is ensured. On 
average, smoother, collision-free, near-optimal paths may be 
discovered 90% of the time. NO-MOPP accomplishes Multiple 
Objective Optimization, which includes Path length, Execution 
Time, Cost function, and Path Smoothing. Based on the 
preceding experiments, it is obvious that applying the proposed 
technique reduced average 15% path length and execution time 
compared to the existing methods RRT and RRT*. Compared 
to these existing methods, the proposed method has exhibited 
superior performance efficiency in complex settings. 

Future studies may extend the NO-MOPP method to 
dynamic situations with higher dimensions for real-time 
autonomous robots and autonomous vehicles. 
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