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Abstract—Women's cancers, signified by breast 

adenocarcinoma and non-small-cell lung cancers, are a 

significant threat to women's health. Across the globe, the 

leading cause of death for women is a group of tumors referred 

to as "female-oriented cancers". The most recent researches in 

the classification of molecular tumors is the analysis of women's 

cancers using RNA-Seq data for precision cancer diagnoses. 

Furthermore, discovering the different genes’ patterns behaviors 

will lead to predict the cancer-specific biomarkers to early 

diagnosis and detection of cancer-specific in women. An overfit 

model will be resulted due to the high-dimensional data of RNA-

Seq from a small samples of data. In this work, we propose a 

filter-based selection approach for a deep learning-based 

classification model. In addition, hybrid classification models 

have been proposed to be compared with the new modified deep 

learning model. The Experiments’ analysis showed that the 

proposed filter-based selection approach for a deep learning-

based classification model performed better than the other 

hybrid models in terms of performance evaluation metrics, with 

an accuracy of 96.7% for RNA-Seq breast adenocarcinoma data 

and 95.5% for RNA-Seq non-small-cell lung cancer data. 

Keywords—Women's cancers; RNA-Seq; deep learning; 

molecular tumor; hybrid classification models 

I. INTRODUCTION 

Today, cancer is the number two mortality globally and the 
number one mortality in both developed and developing 
nations. Twenty million new cases of cancer are diagnosed 
each year, and ten million people die from it. Women account 
for nine million of these cases and 4.4 million deaths globally 
each year [1]. According to the World Health Organization, 
breast cancer will be the most prevalent and deadly cancer in 
women in 2020, accounting for more than two million new 
cases and 684,996 deaths annually. Lung cancer is the third 
most frequent type of cancer in women overall, with roughly 
607, 465 deaths and 770, 828 cases every year [1]. 

Determining the presence of cancer, making a primary 
diagnosis, and identifying new, more effective treatment 
options could all aid in reducing mortality and morbidity rates. 
Genetics, individual lifestyle, body shape, age, menopause 
status, family history, smoking, and history of exposure to 
carcinogens or viruses, hormone therapy, chemicals, and other 
airborne particles are all associated with the occurrence and 
frequency of women's cancers [2]. One of the most crucial 
methods to investigate genetic correlations in medical 

investigations is transcriptomics by next-generation RNA 
sequencing (RNA-seq). Large data sets generated by NGS 
technologies offer a thorough perspective of the human 
genome [3]. Numerous molecular structures are adopted by 
nucleic acids, and these designs are crucial for the storage, 
processing, and transmission of genetic information [4]. DNA 
molecules are translated to mRNA for the synthesis of proteins. 
Proteins are the primary factors in the most fundamental 
cellular processes. The process via which a fragment of DNA 
is read and then transformed into an addiction to a protein has 
excessive awareness in several therapeutic analyses in addition 
to biological ones [5]. The significant aim of cancer disease 
research is to recognize the genes that cause normal cells to 
mutate into cancer [6]. 

Researchers now have access to an unprecedented amount 
of tumor genomic and transcriptome data thanks to 
developments in next-generation sequencing methods. A 
molecule that is reliably tested and assessed as a marker of 
healthy biological processes, harmful biological processes, or 
pharmacologic reactions to therapeutic intervention is referred 
to as a biomarker [7]. Next-generation sequencing (NGS) 
technologies are used by RNA-Seq. As a crucial tool, RNA 
sequencing has been used in many aspects of cancer research 
and therapy, including the identification of biomarkers and the 
characterization of cancer heterogeneity and evolution, drug 
resistance, the cancer immune microenvironment, and 
immunotherapy, among others [8]. 

It is critical to develop biomarkers for disease progression 
and potential therapy response, as this will enable personalized 
care, enhance clinical outcomes, and accomplish the objective 
of precision oncology [9]. This kind of technology is gathering 
data from cells and tissues about variations in gene expression 
[10]. Depending on whether targeted-exome or whole-exome 
sequencing is utilized, the potential of RNA sequencing resides 
in the ability to combine the twin characteristics of discovery 
and quantification in a single high-throughput sequencing, 
allowing for the simultaneous investigation of thousands of 
genes [11]. Finding the set of genes that are associated with 
and highly expressed in many types of tumor cells is one of the 
difficult issues in the field of cancer classification [12]. 
Massive gene data sets with few samples are frequently used to 
represent gene expression data [13]. The large number of 
ambiguous and redundant features in gene data has been 
highlighted as adding to the classifiers' complexity challenges. 
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There are two significant problems with the RNA-Seq gene 
expression datasets [13]. Due to the high dimensionality of the 
RNA-Seq datasets, the datasets are extremely complicated and 
noisy [14]. In these datasets, only a small number of samples 
were gathered, even though each sample measures the levels of 
expression of countless thousands of genes [14]. As a result, 
the learning model will be overfit due to the dimensionality 
problem and the problems with such a large dataset. Using 
gene expression analysis, researchers may categorise 
malignancies, forecast clinical outcomes, and identify 
biomarkers connected to the disease. The current main hurdle 
in the cancer diagnosis problem is thought to be the 
differentiation of normal from malignant tissues, as well as the 
selection of the few informative genes [15]. 

In this work proposed RNA-Seq gene expression 
classification models that are optimised for deep learning and 
combined with PDA, SVMRadial, GaussprPoly, NB, RF, NN, 
and the Glmboost Method. The NCBI GEO accessions 
GSE19804 and GSE70947 were used to download the RNA-
Seq gene expression profiles. And extensive packages that 
make RNA-Seq analysis possible when using Bioconductor 
and R programming. It has five modules: feature mapper, 
preprocessing gene expression, dimension transformer, feature 
selector, deep learning approach, machine predictors with 
hyper-parameters, and prediction biomarkers with performance 
evaluation including accuracy, sensitivity, specificity, 
precision, the F1 score, and the area under the curve (AUC) 
score. 

The contribution of this work can be summarized as 
follows: 

 Using supervised learning and a deep learning 
algorithm known as a feedforward neural network with 
hyper-parameters for model optimization, 

 For the selection approach, we introduce filter-based 
selection for dimensionality reduction methods for 
selection informative genes by applying the FCBF 
algorithm. 

 To determine the dependencies of genes and identify the 
optimal subset of genes, the enhanced gene selector and 
feed-forward neural network classifier combined the 
statistical results of pertinent genes using the 
symmetrical uncertainty (SU) assessment. 

  We adopted further classification. A model that 
achieves robust classification with little CPU 
consumption while maintaining accuracy under test 
conditions is based on hybrid learning models with 
feedforward neural networks. 

The rest of this paper is organized as follows. Section II 
discussed some of related works, Section III discussed the 
materials and methods used in this work, and Section IV 
illustrates the proposed approach, while Section V discusses 
our results. Finally, Section VI provides conclusion. 

II. RELATED WORK 

Different related works have been proposed in the era of 
detection and the diagnosis of human cancer, and in this 

section reviews the most recent studies on the use of deep 
learning and machine learning in the field of malignant tumor 
gene expression data. Studies on biomarker gene 
documentation will also be tested. Researchers will be able to 
evaluate and appraise their suggested analytical methodologies 
using data on cancer gene expression from the resources they 
have identified. 

Zhang et al. [16], proposed a SVM classifiers based on 
various features selection to forecast lymphatic metastasis in a 
range of malignancies. Such classifiers were applied to identify 
differentially expressed signatures in lymph node metastatic 
and non-metastatic cancer groups. These SVM classifiers were 
found to be successful, with an overall accuracy of 81.25% on 
various profiles with light biomarker sets (seven biomarkers on 
average). They also contrasted these SVM classifiers with two 
other benchmark classifiers based on comparable profiles 
(Random Forest, KNN, and K-Nearest Neighbor, RF). 

Han et al. [17], argue that Rao's score statistic is 
arithmetically appropriate to associate several mechanisms 
through a typical set of weight factors to yield a biased 
universal indicator. Next, the weightiness slash statistics 
measure the purposeful influences of various alteration 
categories on the target population. Finding cancer-associated 
genes with mutations that cause the cancer phenotype during 
cancer genome sequencing is a significant issue for this paper. 

Simsek et al. [18], proposed the machine learning 
classification model for the classification of leukemia subtypes 
using the gene expression data set from 72 patient records and 
7129 gene regions. In the research, machine learning 
classification techniques such as support vector machines 
(SVM), linear discriminant analysis (LD), ensemble classifiers 
(EC), and K-nearest neighbor (KNN) were used. It is evident 
from experience that the SVM model outperforms the other 
algorithms despite the fact that the collective test data and 
collective training data were shared and combined to create a 
fresh training dataset. Results show that these machine learning 
models can be helpful in determining the leukemia subtype. 

Das et al.'s [19], grouping and classification approach by 
gene-gene similarity matrix is permeated by the suggested 
study. The feature selection strategy in this attempt is SVM-
RFE. Based on the gene-gene similarity matrix, specific traits 
are further clustered into several groupings. These pairwise 
correlation-based clusters use reduction into a smaller set of 
features for further processing by the neural network, which is 
required to categorise the various types of cancer. 

Yin et al. [20], The CNN-Cox model, which combines a 
unique CNN framework with prognosis-related feature 
selection cascaded Wx and has the advantage of fewer 
computing requests while using light training parameters, has 
been established as a short and effective survival analysis 
model. The Cancer Genome Atlas cohort's seven cancer type 
datasets, including those for head and neck squamous cell 
carcinoma, bladder carcinoma, brain low-grade glioma, kidney 
renal cell carcinoma, skin cutaneous melanoma, lung squamous 
cell carcinoma, and lung adenocarcinoma (LUAD), show that 
the CNN-Cox model achieved reliable higher C-index values 
and better survival prediction performance. They demonstrated 
the use of protein-protein interaction network analysis to 
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identify potential prognostic genes and further investigated the 
biological roles of 13 core genes, whose high expression is 
significantly associated with poor survival in LUAD patients. 

Houssein et al. [21], proposed an algorithm to choose the 
most relevant and instructive genes from cancer microarray 
datasets. The first goal of this study is to select the most 
predictive genes, and the second goal is to extract the most 
accurate gene expression datasets with the least amount of 
difficulty. The most informative genes are chosen from a tiny, 
filtered dataset that is collected from the IG feature subset 
evaluator after filtering out irrelevant and noisy genes and 
getting their relationships from the datasets using the BMO 
method with the SVM classifier. To calculate this suggested 
model's efficiency, four benchmark microarray datasets—
namely, Leukemia1, Leukemia2, Lymphoma, and SRBCT—
were used. 

Vaiyapuri et al. [22], proposed a new Red Fox optimizer 
for deep learning-supported microarray gene expression 
classification (RFODL-MGEC).The current RFODL-MGEC 
model aims to improve classification performance by selecting 
appropriate features. The RFODL-MGEC model employs a 
novel feature selection technique based on the red fox 
optimizer (RFO) with the goal of creating an ideal subset of 
characteristics. A bidirectional cascaded deep neural network 
(BCDNN) created for data classification is also part of the 
RFODL-MGEC model. 

Shen et al. [23], report that DCGN, a deep learning method, 
has been proposed for cancer multi-classification tasks; this 
model is recommended since it can handle high-dimensional 
sparse gene expression data better than previous models that 
have been put out. The DCGN performs well on all five of the 
examined datasets when it comes to classification evaluation 
factors like accuracy and precision, especially on the BLCA-
TCGA and BLCA-CIT datasets. 

Rezaee et al. [24], proposed a hybrid method that assigns 
rank to the five key genes in the microarray data based on soft 
ensemble and stacking auto-encoders. The least number of 
genes needed for final classification was found by combining 
the three soft wrapper techniques with classification using the 
k-NN algorithm. 

At the conclusion of this section, In this work, we are 
interested in diseases that affect women, and therefore we 
strive to provide the latest technologies that help in the early 
detection of these diseases in order to speed up the treatment 
process and help doctors take accurate measurements and 
develop medicines suitable for each disease as Targeted 
therapies are determined according to the biomarkers for 

women's carcinoma that were discovered through powerful 
learning models suitable to deal with high-dimension RNA-Seq 
gene expression with hyper-parameters to optimizing the 
model, so this model in our study gave the best results with 
performance evaluation of classification models on test 
datasets for women's cancer. 

III. MATERIALS AND METHODS BACKGROUND 

A. Women's Cancers RNA-Seq Gene Expression Datasets 

Biotechnology National Center Information is a key 
resource for multi-omics research, including genetic data, and 
it facilitates the advancement of science and health by making 
biomedical and genomic information accessible. For example, 
genome, transcriptome, epigenetic, and proteome information 
are applied to methodology issues in bioinformatics. Fresh 
genetic structures (i.e., RNA, DNA, ChIP sequence, whole 
exome sequencing, protein chips, and amino acid structures) 
are among the most abundant public raw data in omics and are 
easily accessible via the following group sequencing tools. The 
RNA-Seq gene expression profiles used in our investigation 
were downloaded from the Gene Expression Omnibus (GEO) 
database, a free public database that included various genes 
(https://www.ncbi.nlm.nih.gov/geo/). Under the accession 
numbers GSE19804 and GSE70947, the dataset was 
downloaded. The explanation for each kind of tumor is given 
in Table I. 

B. Methods and Materials 

In this section, we examine the various methodologies used 
for the proposed model. 

1) Feature mapping: For each row in the gene expression 

dataset, feature mapping translates the Entrez Gene id to the 

gene symbol and gene name before using the merging 

procedure to connect those annotations [25]. 

2) Preprocessing: Combinations of normalization-

transformation and the imputation method. Normalization is a 

crucial step in the interpretation of RNA-Seq data since 

normalization- transformation combinations are regulated by 

preprocessing. To enable samples to be evaluated on the same 

scale, systematic deviations must be identified and corrected 

[26]. These systematic changes may result from both within-

sample variations such as gene length and sequence 

composition as well as between-sample variations such as 

library size (sequencing depth) and the presence of majority 

fragments. Additionally, for data compatibility, 

transformations are used. In order to handle missing values in 

gene expression, imputation is utilized. 

TABLE I. WOMEN'S CANCERS RNA-SEQ GENE EXPRESSION DATASETS 

Accession 

number 
Dataset name 

Number of 

features (genes) 

Number of 

samples 
Summary 

GSE19804 

non-small-

cell 

lung cancer 

(NSCLC) 

54,675 features 120 samples 

Even though smoking is the main risk factor for lung cancer, in Taiwan, just 7% of 

female lung cancer patients had ever smoked, a significantly lower percentage than 

among Caucasian females. This study provides a thorough examination of the 

molecular profile of female lung cancer in Taiwan that is not caused by smoking. 

GSE70947 
breast 

adenocarcino

ma 

62,976 features 296 samples 

Through accelerating angiogenesis and tissue remodeling in the tumor 

microenvironment, chronic inflammation aids in the growth and invasion of breast 

tumors. The intricate interaction between estrogen, which promotes the growth of 70% 

of breast cancers, and inflammation. 
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3) The dimension transformer. After the RNA-Seq reads 

have been mapped to a reference genome or transcriptome, the 

number of reads mapped to the reference genome can be 

tallied to determine the abundance of the transcripts. For the 

approaches to be used, it is crucial that the count values be 

raw sequencing read counts [27]. 

4) Feature selector: The high dimensionality of the 

dataset is one of the main issues with machine learning [24]. 

The weighting features reduce processing time and redundant 

data, boosting algorithm performance because the analysis of 

several features uses a lot of memory and results in overfitting 

[20]. The method of eliminating all unnecessary and irrelevant 

genes while also identifying the most informative genes [28]. 

Finding the group of genes that are associated and highly 

expressed in many types of tumor cells is one of the other 

difficult issues in the field of cancer categorization [29]. Gene 

expression data is frequently characterized by an enormous 

amount of gene data and a small number of samples. It has 

become clear that the abundance of confusing and duplicated 

features restricted in the gene data adds to the classifiers' 

difficulty. To improve the accuracy of predictive models, this 

research proposed FCBF filter-based dimensionality reduction 

approach as a selection method. Gene prioritization, often 

known as the finding of biomarkers, is another name for the 

feature selection method. 

5) Supervised methods: The cross-validation concept: A 

method for minimizing bias in the estimation of prediction 

accuracy is cross-validation [6]. When a classification system 

is over fitted to a certain dataset, bias might result because the 

algorithm learns the classification "by heart" but struggles to 

generalize it to new, untested samples. In a nutshell, the 

dataset is deterministically divided into a number of training 

and test sets for cross-validation [18]. Each training set is used 

to build the model, which is then tested on the test set. Over 

these fits, the accuracy metrics are averaged. N fits are used in 

leave-one-out cross-validation, with N training sets of size N-

1 and N test sets of size 1. As a result, we employed 10-fold 

cross-validation to define training control in this study's two 

data sets, splitting the data randomly into a test set (30% of the 

dataset) and a train set (70% of the dataset). 

a) Learning models: Classification and regression are 

two examples of supervised learning tasks that attempt to 

anticipate the intended output based on the input data [30]. For 

instance, a classification algorithm trained on a dataset of 

correctly classified genes using supervised learning will learn 

to recognize diseases. In this study, supervised machine 

learning algorithms with tuning parameters for the gene 

expression of women's tumors were incorporated in seven 

learning models to predict biomarkers. 

 Neural Network (NN). 

 Support Vector Machines with Radial Basis Function 
Kernel (SVMRadial). 

 Penalized Discriminant Analysis (PDA). 

 Naive Bayes (NB). 

 Random Forest (RF). 

 Gaussian Process with Polynomial Kernel 
(GaussprPoly). 

 Boosted Generalized Linear Model (Glmboost). 

b) Feedforward neural network algorithm (FNN): An 

input, multi-hidden, and output hierarchy shape is the 

Multilayer Perceptron Architecture's most noticeable feature at 

first glance (Fig. 1). If input data is provided, the output result 

is computed directly along the subsequent layers of a 

multilayer perceptron. This type of neural network operating 

process is referred to as feedforward [31]. A number is 

obtained as the current output of each neuron in the middle-

hidden layer by multiplying the vector-format output results 

from the previous layer by a weight vector plus a bias value in 

the current layer, then feeding the biased weighted sum into a 

nonlinear function (such as a sigmoid, hyperbolic tangent, or 

rectified linear unit (ReLU), etc.). The feature layer is a new 

numeric vector made up of enormous neuron outputs in the 

same hidden layer. 

 
Fig. 1. Multilayer perceptrons architecture. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

271 | P a g e  

www.ijacsa.thesai.org 

Evaluation Metrics for Classification Models on test 
dataset: Several metrics are used to evaluate machine learning 
approaches. The optimal models are designated using these 
metrics [30]. To systematically determine the detection effect, 
the metrics are often used concurrently in our proposed 
approach as follows: 

 Accuracy: A test's accuracy is determined by how well 
it can distinguish between cancer and healthy instances. 
Accuracy = TP+TN/TP+TN+FP+FN. 

 Sensitivity: A test's sensitivity is how well it can 
identify cancer instances (true positive rate). Sensitivity 
= TP / TP + FN. 

 Specificity: A test's specificity is how well it can 
identify healthy instances (false positive rate). 
Specificity = TN / TN + FP. 

 Precision is the ratio of the number of true positive 
findings to the number of positive results the classifier 
anticipated. Precision equals TP / TP + FP. 

 The F1 score is a direct reflection of the model's 
performance and is used to evaluate test accuracy. The 
F1 score can vary from 0 to 1, and the objective is to 
reach as near to 1 as possible. 

 Receiver operating characteristic curve (ROC) / area 
under curve (AUC) score: The performance of the 
classification model at every threshold is shown 
graphically by the ROC curve. The entire region below 
the ROC curve in two dimensions is known as the 
AUC. Sensitivity and specificity, two crucial 
parameters, are produced by this curve. 

IV. PROPOSED APPROACH 

As shown in Fig 2, we employed the RNA-Seq features as 
the inputs for deep learning-based classification together with 
other well-known techniques such as PDA, SVMRadial, 
GaussprPoly, NB, RF, and glmboost to predict biomarkers for 
women's malignancies. 

A. Proposed Approach for Women's Cancers Classification 

1) Feature mapper module: By using an organism-level 

package (an "org" package) that employs a central gene 

identification (such as the Entrez Gene id) and provides 

mappings between this identifier and other types of identifiers, 

annotations can be provided in packages curated by 

Bioconductor (e.g., GenBank or Uniport accession number, 

etc.). The number of reads mapped to the reference genome 

can be tallied to determine the abundance of the transcripts 

once the RNASeq reads have been mapped to a reference 

genome or transcriptome. For the approaches to be used, it is 

crucial that the count values be raw sequencing read counts. 

2) A preprocessing module: The normalization-

transformation combinations are controlled by using 

transformations for data compatibility for two reasons: 

Making non-numeric features into numeric features. Since a 

string cannot be multiplied using a matrix, it must be 

converted to a representation that is practically numerical. 

Resizing inputs to a consistent size. For instance, feed-forward 

neural networks require input data to be a constant size since 

they have a certain number of input nodes. 

 
Fig. 2. The pipeline of RNA-Seq female cancer data-based machine learning and deep learning workflow development 
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NAs in this data collection are another problem. That's 
typical. I'll explain. Without showing log transformations, the 
expression data have a very wide range, with several outliers in 
the higher range. However, as log-transformation frequently 
produces data with negative infinity (-Inf) values or NAs, 
which are brought on by all the 0-values in the data since log2 
(0) == -Inf, this frequently creates a new issue. As a result, set 
their NAS value to zero. 

Methods used for normalization and transformation: deseq-
rlog available in MLSeq package in R programming: Deseq 
median ratio approach is used for normalization. The 
normalized data is transformed using a regularized logarithmic 
formula. 

z-Score Normalization (zero-mean Normalization) 

3) FCBF-PCA Feature selector module: subsequently 

applied PCA using the FCBF-reduced datasets. While feature 

selection shrinks the dataset by deleting useless 

characteristics, dimensionality reduction uses feature 

extraction to reshape and simplify the data. Use 

Bioconductor's FCBF (Fast Correlation Based Filter for 

Feature Selection) to filter highly correlated genes. A 

multivariate gene selection technique called a fast correlation-

based filter (FCBF) begins with a complete collection of 

characteristics (genes). It determines the optimum subset by 

calculating the dependencies of the genes using the 

symmetrical uncertainty (SU) measurement. An effective 

computer approach called FCBF is used to discriminate 

between redundant and irrelevant features. 

It assesses each property individually, finds the main 
correlations, and heuristically eliminates superfluous features. 
When there are no features, it stops due to an internal halting 
requirement. Implementing FCBF for GSE70947 and 
GSE19804 datasets seems like 0.1 as a threshold that is 
reasonable for this both two datasets. After running FCBF for 
GSE70947, we went from 62976 features to now a lean set of 
twenty-four features/genes. As can see, EZH2.1 has the 
strongest correlation to the target class with an SU value of 
0.41, and then comes COL10A1.1 with an SU value of 0.40, 
and so on. As demonstrated, Table II shows the best 
informative genes and FCBF for GSE19804, we went from 
54,675 features to now a lean set of seventy-nine 
features/genes. As can see, COL10A1 has the strongest 
correlation to the target class with an SU value of 0.72, and 
then comes PROM2 with an SU value of 0.68, and so on. As 
demonstrated, Table III shows the best informative genes 

Subsequently, run the FCBF algorithm using a heat map 
plot to illustrate the gene correlation of the 79 genes for 
GSE19804 gene expression: Observing the heat map in Fig. 3, 
we can see the genes are not either positively or negatively 
correlated with each other as they appear in a lighter color 
(blue = negative correlation, red = positive correlation). 
However, there are some that are quite correlated with each 
other. However, they are quite correlated with each other. For 
example, HBM, LOC101927069, and PITPNM2.1 are fairly 
correlated with each other, and H2AFV, KIAA0101, and 
COL11A1 are quite correlated as well. As shown in Fig. 4, 

gene correlation of the 24 genes for GSE70947 gene 
expression includes EZH2.1, COL10A1.1, and 
LOC100132724, as well as SDPR, 
LincRNA.chr2.120459730.120511405_R, and KCNA4.1. 

4) Deep learning for classification module: The H2O 

package serves as the foundation for the deep learning 

technique, and it uses multi-layer neural networks that have 

been trained using stochastic gradient descent search to 

forecast the results of diagnoses. To achieve the best 

classification outcomes for the neural network setup, H2O 

enables users to conduct hyper parameter grid searches on 

several deep learning models. Rectifier or Tanh are often the 

activation functions. 

A single hidden layer site (100 or 200 neurons), two 
discrete layer locations (10, 20 or 50 neurons each), three 
discrete layers with 30 neurons each, and four discrete layers 
with 25 neurons each are predefined for assortments. The feed-
in dropout ratio options are available in steps of 0.1 from 0 to 
0.9. 

Typically, there are zero or two total training samples per 
iteration, where 0 represents one epoch and 2 represents two. 
The H2O package chooses the automatic value with caution. 
The maximum number of epochs (iterations) to run the entire 
dataset is set at 500. Momentum starts out at a value of 0 or 
0.5. (Default zero, without hyper-parameter grid search.). 

TABLE II. LIST OF SOME OF THE BEST INFORMATIVE GENES FOR 

GSE70947 

gene symbol SU values 

EZH2.1 0.4083618 

COL10A1.1 0.4042125 

LOC100132724 0.3069758 

lincRNA.chr2 0.2469364 

MS4A1.1 0.1901143 

PTPN1.1 0.1774414 

COL1A1.1 0.1766899 

TNKS.1 0.1616661 

N4BP2L1 0.1605699 

BAX.7 0.1580289 

TABLE III. LIST OF SOME OF THE BEST INFORMATIVE GENES FOR 

GSE19804 

gene symbol SU values 

COL10A1 0.72990832 

PROM2 0.68648556 

SH3GL3.1 0.68648556 

GOLM1.1 0.68648556 

RTKN2 0.64935173 

CA4 0.58091266 

DPP6.2 0.54387741 

FLJ30901....SCUBE1 0.53771981 

HS6ST2.2 0.53771981 

CNTN6 0.53265203 
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Full image size  

 
Fig. 3. Heat map for GSE19804 gene expression. 

Full image size  

 
Fig. 4. Heat map for GSE70947 gene expression. 

The momentum quickens the iterations for a quicker 
concourse and dampens the oscillation to achieve the optimal 
spot. 0.5 Or 0.99 is the adaptive learning rate decay factor (). 
(Default 0.99, devoid of hyper-parameter grid search) while 
simultaneously doing quantile regression, the quantile rate 
(quantile alpha rate in H2O) is set between 0 and 1. Contrary to 
linear regression, which tests the answer variable's provisional 
mean, quantile regression tests the provisional quantile. 
Between 0 and 1 is set as the threshold between quadratic and 

linear loss (Huber alpha rate in H2O) (default 0.9). In order to 
make it easier to search on entire combinations of the hyper-
parameters, the "random discrete" technique is abandoned. 

The most extreme number of models for each run is set at 
100 as part of the automatic ML training. If the 
misclassification values do not increase by 0.01 after five 
iterations, the training phases come to an end. Score duty cycle, 
which refers to how frequently validation metrics are 

https://drive.google.com/file/d/1sfiX_CXKmK8XJKBKuGqwNSEJW9dFVRHk/view?usp=sharing
https://drive.google.com/file/d/1sfiX_CXKmK8XJKBKuGqwNSEJW9dFVRHk/view?usp=sharing
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computed, is set to 0.025 H2O, which means that no more than 
2.5% of the total training time will be spent to create the 
validation measurements. 

Following grid search, the final hyper-parameters for the 
DL model are listed as follows for the Women's Cancers RNA-
Seq dataset: "Rectifier" activation function, four hidden layers 
with 25 neurons each, insert dropout ratio zero, defaulting 
training samples each iteration per H2O (value of -2), epoch 
rate of 430.9, momentum beginning value zero, value of 0.99, 
quantile regression rate one, and a Huber -value of zero. 

Additionally, additional hyper-parameters with an L1 
regularization rate of 2.5e-5 and an L2 regularization rate of 
2.6e-5 are included. Along with the eleven existing machine 
learning algorithms that were previously used in H2O for 
classification, these new DL algorithms are PDA, SVMRadial, 
GaussprPoly, NB, RF, NN, and glmboost. Based on the data 
and the size of the sample, to prevent overfitting, N-fold cross-
validation with a default N of 10 is feasible. With training data 
that has been cross-validated 10 times. 

To obtain average metrics, we randomly repeated this 
process ten times. As module number six is illustrated in 
section VI, bar graphs are used to inform classification metrics 
such as accuracy, F1 score, area under the curve (AUC) score, 
precision, sensitivity (SEN), and specificity (SPEC). 

V. EXPERIMENT RESULTS AND EVALUATION METRICS 

WITH TEST DATASET 

The proposed architecture was developed using R studio 
with Bioconductor, with dependencies on the following 
packages: h2o, dplyr, tidyr, GEOquery, ggplot2, FCBF, 
pheatmap, devtools, ggbiplot, factoextra, ROCR, limma, psych, 
caret, foreach, DESeq2, MLSeq, affy, genefilter, hgu133a.db, 

AnnotationDbi, org, M3C, matrixTests, impute, and gbm The 
implementation was carried out on a computer server with a 
core CPU (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz, 32 
GB RAM) and 64-bit operating system, but it may also work 
on less powerful machines. 

The results indicate that the feedforward neural network 
algorithm is statistically superior in the metric when compared 
to other algorithms, with an area under the curve score of 0.982 
for RNA-Seq breast adenocarcinoma data and 0.980 for RNA-
Seq NSCLC cancer data. Whole evaluation metrics are applied 
to test datasets, as discussed in Table IV. 

So, all evaluation metrics achieved higher rates in breast 
adenocarcinoma data than in NSCLC cancer data, as plotted in 
Fig 5. By utilizing a feedforward neural network, this 
suggested model can assist in the early detection and diagnosis 
of malignancies in women and, consequently, aid in the 
formulation of preliminary treatment methods to improve 
survival. Finally, NSCLC and breast adenocarcinoma cancer 
may be affected by the top ten possible hub-gene biomarker 
discoveries. 

Biomarkers of lung cancer identified by RNA-non-small-
cell sequencing as stated in table V, the top seven choices for 
differentially expressed genes were found to be shared by all 
methods. All algorithms found COL10A1 as a common factor, 
indicating that this gene may be important in NSCLC. 

As stated in Table V, the top seven choices for 
differentially expressed genes were found to be shared by all 
methods. All algorithms found COL10A1 as a common factor, 
indicating that this gene may be important in NSCLC. As 
stated in Table VI, the top four choices for differentially 
expressed genes were found to be shared by all methods. 

 
Fig. 5. Evaluation metrics for GSE70947. 
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TABLE IV. PERFORMANCE EVALUATION OF CLASSIFICATION MODELS ON TEST DATASET 

Women's cancers RNA-Seq gene expression Classification using Deep learning with a hybrid Model with Tuning Parameters for Non-Small-Cell Lung 

Cancer 

Test Datasets Algorithm Accuracy Sensitivity Specificity Precision F1 score 
AUC 

score 

GSE19804 

FNN 0.957 0.971 0.946 0.956 0.965 0.980 

NN 0.9201 0.9316 0.9094 0.9101 0.921 0.9650 

SVMRadial 0.883 0.653 0.927 0.8542 0.891 0.885 

PDA 0.8889 0.7778 1.0000 1.0000 0.875 0.8923 

NB 0.905 0.663 0.920 0.9284 0.907 0.910 

RF 0.892 0.568 0.946 0.8542 0.891 0.877 

GaussprPoly 0.878 0.560 0.939 0.8441 0.882 0.881 

Glmboost 0.906 0.600 0.945 0.9286 0.907 0.911 

Women's cancers RNA-Seq gene expression Classification using Deep learning with a hybrid Model with Tuning Parameters for Breast Adenocarcinoma Cancer 

GSE70947 

FNN 0.9659 0.9772 0.9545 0.9555 0.9662 0.982 

NN 0.9432 0.9091 0.9773 0.9756 0.9412 0.971 

SVMRadial 0.9205 0.9318 0.9091 0.9111 0.9213 0.964 

PDA 0.9318 0.8864 0.9773 0.9750 0.9286 0.957 

NB 0.8864 0.8409 0.9318 0.9250 0.8810 0.975 

RF 0.9205 0.9318 0.9091 0.9111 0.9213 0.957 

GaussprPoly 0.9545 0.9318 0.9773 0.9762 0.9535 0.969 

Glmboost 0.9318 0.8864 0.9773 0.9750 0.9286 0.968 

TABLE V. THE BIOMARKERS FOR NON-SMALL-CELL LUNG CANCER RNA-SEQ 

SYMBOL GENE name 

COL10A1 Collagen Type X Alpha 1 Chain 

SH3GL3.1 SH3 Domain Containing GRB2 Like 3, Endophilin A3 

GOLM1.1 golgi membrane protein 1 

RTKN2 rhotekin 2 

EFNA4 ephrin A4 

FUT2 fucosyltransferase 2 

CLIC5.4 chloride intracellular channel 5 

TABLE VI. THE BIOMARKERS FOR BREAST ADENOCARCINOMA RNA-SEQ 

SYMBOL GENE name 

EZH2.1 enhancer of zeste 2 polycomb repressive complex 2 subunit 

COL10A1.1 collagen type X alpha 1 chain 

COL1A1.1 collagen type I alpha 1 chain 

CDH1.4 cadherin 1 
 

VI. CONCLUSION 

Women's cancers are a group of illnesses exhibiting 
abnormal cell proliferation that have the potential to attack or 
spread to various body areas. Due to improvements in 
efficiency and accuracy, RNA-Seq has previously greatly 
increased the analysis of human genetics and helped to better 
understand the nature of cancer disorders. In order to classify 
two different types of cancer, non-small-cell lung cancer and 
breast adenocarcinoma, this paper introduced an intelligent 

framework based on a feedforward neural network with an 
optimization model and applied other integrated learning 
models suitable for gene expression data for women's cancers. 
The five modules that made up the suggested strategy were: A 
core gene identification (such as the Entrez Gene id) is used in 
the first module, "Feature mapping," which applies an 
organism-level package (an "org" package) and which contains 
mappings between this identifier and other types of identifiers 
(e.g., GenBank or Uniport accession number, etc.). 
Preprocessing is covered in the second module. The deseq-rlog 
approach and z-score Normalization and transformation are 
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two techniques used for normalization and transformation. The 
dimension transformer is the third module. After the RNA-Seq 
reads have been mapped to a reference genome or 
transcriptome, the number of reads mapped to the reference 
genome can be tallied to determine the abundance of the 
transcripts. For the approaches to be used, it is crucial that the 
count values be raw sequencing read counts. 

The feature selector module, is the fourth module. The fast 
correlation-based filter (FCBF) was chosen as the method for 
feature selection in this framework. A deep learning technique, 
machine predictors with hyper-parameters, and prediction 
biomarkers with hyper-parameters comprise the final module. 
Accuracy, sensitivity, specificity, precision, the F1 score, and 
the area under the curve (AUC) score are among the 
performance evaluation metrics. Given that the results show 
that the feedforward neural network approach has an area 
under the curve score of 0.982 for RNA-Seq breast 
adenocarcinoma data and 0.980 for RNA-Seq NSCLC cancer 
data, it is statistically considerably superior to other algorithms 
in the measure. 
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