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Abstract—COVID-19 is a global pandemic that significantly 

impacts all aspects. The number of victims who died makes this 

disease so terrible. Various policies continue to be pursued to 

reduce the spread and impact of COVID-19. The spread of a 

disease can be modeled in differential equation modeling. This 

differential equation modeling is known as the SIR Model. A 

differential equation can be expressed in a state-space model. The 

state-space model is a model that is widely used to design a 

modern control system. This research carried out the 

transmission rate and recovery rate estimates in the SIR 

pandemic model. Estimation of the transmission rate and 

recovery rate in this study poses a challenge to the value of the 

number of people confirmed as infected. The experimental result 

shows that the transmission and recovery rates can be estimated 

using the data for the infected and recovered persons. Estimates 

of infected and recovered people were conducted using the 

Kalman Filter. 
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I. INTRODUCTION 

COVID-19 is a global pandemic disease that is currently 
challenging for various countries worldwide. The current effort 
is to prevent an explosion of infected cases, considering the 
limited medical facilities available. This condition will be more 
difficult if not controlled because the growth in cases of 
infection is exponential [1]. The spread of a disease can be 
modeled in differential equation modeling. This differential 
equation modeling is known as the SIR Model. A differential 
equation can be expressed in a state-space model. The state-
space model is a model that is widely used to design a modern 
control system. Modeling the distribution of COVID-19 to the 
SIR state-space model is interesting because this model can 
control the spread of measured diseases. The advantage of 
controlling using state-space modeling is that the model 
supports MIMO (Multiple Input and Multiple Output) cases. 
Two essential parameters must be known in the SIR model: 
transmission and recovery rate. 

Transmission and recovery rates are the points to observe a 
process of controlling a disease outbreak in this model. The 
system model can be divided into input, output, and process. In 
this study, the input in the model is a suspect person (a person 
who is likely to be infected). Meanwhile, state-space modeling 
is carried out in the process stage with the state of the infected 
person and recovered person. At the same time, the output is an 
active case of an infected person. The output becomes a 
dynamic system because it adds a migration factor to the 
control system model. 

According to previous research, the SIR model is used to 
predict and control a pandemic [2]–[9]. However, the 
pandemic SIR pandemic model has a problem because the 
transmission rate and recovery rate in the SIR model are 
constant [10]–[16]. Using these constants in predicting the 
number of infected and recovered is unsuitable for a condition 
that does not restrict population movement [17]–[22]. In this 
study, the authors are interested in identifying the transmission 
and recovery rates of the SIR model in real time. The updated 
results of the transmission rate and recovery rate values are 
then used to predict the number of states in the SIR model. 
State estimation needs to be done because detection bias of 
infected people can occur in a pandemic control. 

Kalman filter is an algorithm that can be used to estimate 
the state of the SIR model. The Kalman filter is a two-step 
process that involves prediction and measurement updates. In 
the prediction step, the Kalman filter uses the current state of 
the system and the system's dynamics to predict the state at the 
next time step. In the measurement update step, the Kalman 
filter uses the predicted state and the new measurement to 
compute a more accurate estimate of the system's state. 

The rest of this paper is organized as follows. Section II 
presents the related works of the SIR model implementation in 
various pandemics. Section III describes the proposed methods 
used in this study. Section IV presents the result and 
discussion. Finally, Section V concludes this study. 

II. RELATED WORKS 

Research on SIR models was conducted in 2010, and an 
H1N1 disease distribution model was designed using the SIR 
Model [2]. G. Yang [3] also carried out the control design 
using the SIR model. Based on these two studies, it can be 
concluded that the pandemic can be modeled into a control 
system. Research related to control systems using the SIR 
Model continues to grow. H. Weiss [4] formulated several 
policy examples to prevent the spread of disease based on the 
SIR model. W. Chen [5] modeled the Ebola distribution model 
using the SIR Model. Using the SIR model, W. Huang and G. 
Provan [6] designed several forecasting filters. The use of the 
SIR model to form state space was carried out in [7] and [8] 
forecasted the spread of influenza using the SIR state-space 
model approach. 

Meanwhile, related to the COVID-19 pandemic, Chen et al. 
[10] added an undetectable infected person factor to the SIR 
model for the COVID-19 disease. The model uses two types of 
infected people: detachable infected persons, people with 
symptoms, and Asymptomatic infected persons. The SIR 
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equation turns into a matrix with the order of 3×3. The dataset 
was taken from the National Health Commission of the 
People's Republic of China (NHC) daily Outbreak Notification. 
The experimental result showed that the method could predict 
infected and recovered persons with an error of 3%. 

G. Fabricius and A. Maltz [11] have identified the threshold 
for disease spread in the SIR model with local and global 
contacts. The study modeled a SIR model into the Stochastic 
and deterministic models. The research built space detection 
parameters in a region to avoid the exponential spread of 
disease. In comparison, [12] and [13] carried out mathematical 
modeling of the transmission and control of COVID-19. The 
method used in [12] is the stochastic transmission method, 
while in [13], the logistic equation is used to describe and 
interpret the SIR epidemic model. This study indicates that 
research [12] made early predictions of locations with the 
potential to transmit disease based on data models that had 
occurred in Wuhan. Whereas [13] shows that identifying the 
transmission rate in the SIR model can be done using the 
logistics equation model. 

C. Tsay et al. [14] use the SEAIR model. The SEAIR 
model is a modification of the SEIR (Susceptible-Exposed-
Infected-Recovered) model. The research built an optimal 
control for the model by using the parameters of social 
distancing, quarantining, rate of testing, recovery rate, death 
rate, and initial exposure. In comparison, [18] used a modified 
generalized Lotka-Volterra (gLV) model. It developed a 
control for the model using immigration, infection, recovery, 
dead, and control parameters. At the same time, the form of the 
augmented model is to add a birth factor. While the state in the 
model used is estimated using the Extended Kalman Filter 
method. In comparison, [17] uses the SEIQR (Susceptible- 
Exposed-Infected- Quarantine-Recovered) model. It used a 
fixed control parameter on the migration parameter (M). The 
main finding of this study was that researchers were able to 
develop a mathematical model that could be used to observe 
the dynamics of COVID-19. 

A. Abuhasel et al. [19] use the SIR model to predict cases 
of the spread of COVID-19 in the Kingdom of Saudi Arabia 
(KSA). At the same time, the ARIMA model is used to predict 
prevalence cases. The data used in this research is daily case 
data in Saudi Arabia (KSA). The results show that the SIR 
model can predict the development of infection cases and 
shows that the policies taken by the government are 
appropriate. At the same time, the ARIMA model shows that 
this model is an estimation model with current and past data 
with a high correlation and showed a small error. In 
comparison, [20] used the SIR model to predict the distribution 
of disease in a community. This prediction helps determine 
what anticipation needs to be done to control the spread of 
COVID-19. The data used in this study are data from various 
countries such as China, South Korea, India, Australia, the 
USA, and Italy. 

III. PROPOSED METHOD 

The SIR Pandemic model is simple. The model consists of 
S (susceptible person), I (Infected person), and R (recovered 
person). A susceptible person is a person who has the potential 
to be infected with the disease. Meanwhile, infected people are 

people who have been infected with the disease. The rate of 
change from susceptible persons to infected persons is known 
as the transmission rate. Meanwhile, the rate of change from an 
infected person to a recovered person is called the recovery 
rate. In this study, an estimate of the transmission rate and 
recovery rate of the COVID-19 epidemic was carried out. The 
dataset used in this study is the confirmation data for COVID-
19 based on the public database. 

To estimate the transmission rate and recovery rate, the SIR 
epidemic model is first carried out in the form of a differential 
equation which is written as follows, 
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 is the rate of change of susceptible persons,  

     

  
 is the rate of change of confirmed infected persons, and 

     

  
 is the rate of change of people recovering from infection. 

A susceptible person is a person who has the potential to be 
infected. 

The differential equation (1) to (3) is then changed to the 
form of the differential equation into: 
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where n is the known population in an area. The differential 
equation (4) to (6) is then converted into the state-space model 
equation with the assumption that n = S(t) becomes: 
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with: 

S(t)= Susceptible person. 

X(t)= Infected person. 

R(t)= Recovered person.  

β(t)= Transmission rate 

Ɣ(t)= Recovery rate 

In (7), the infected persons and the recovered person do not 
depend on the state of susceptible person. Thus (7) can be 
converted into: 
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with the output equation: 
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Estimates of X (t) (infected person) and R (t) (recovered 
person) were performed using the Kalman Filter method. The 
steps of the Kalman filter algorithm are presented in Fig. 1. 

 
Fig. 1. The flow diagram of the proposed method. 

Step 1: Initialization Process 

1) Initialization of         and         

2) Initialization of β(t) using: 

     
                           

      
 (10) 

3) Initialization of Ɣ(t) using: 

     
           

      
  (11) 

4) Initialization of covariance matrices 

Step 2: Prediction Process 

1) State prediction using: 

[
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] (12) 

2) Covariance prediction using: 

 ̂              
     (13) 

with Q is a covariance noise and A is transition matrices 
written as: 
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] (14) 

Step 3: Correction Process 

1) Calculate Kalman Gain using: 
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  (15) 

which R is measurement noise, and H represents 
measurement matrices written as: 
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]  (16) 

2) State Correction using: 
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which zk is the measurement data 

3) Covariance correction using: 

        [
   
  

]  ̂      (18) 

Step 4: Parameter Update 

1) Transmission rate β(t) update using: 

     
                               

       
 (19) 

2) Recovery rate Ɣ(t) update using: 

     
             

       
  (20) 

Step 5: Go to Step 2 
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IV. EXPERIMENTAL RESULTS 

Estimating the number of infected and recovered people is 
a topic to do because early detection of COVID-19 infection is 
less massive. This detection is increasingly difficult with the 
community's attitude, who still think that being infected with 
COVID-19 is a bad thing that has the impact of being excluded 
by the community. Awareness of the dangers of COVID-19 
has not been good because it was found that people had not 
implemented health protocols in an orderly manner. With both 
conditions, matters are complicated because the movement of 
people who ignore health protocols increases the potential for 
infection and becomes an infection agent for others. This 
condition is amplified by the lack of mass testing for COVID-
19 and undetectable infected person in the early pandemic. 

In this study, the transmission rate and recovery rate are 
estimated using the SIR pandemic model. The estimation of the 
transmission rate and recovery rate in this study poses a 
challenge to the value of the number of people confirmed as 
infected. The number of people confirmed as infected is 
essential in determining the value of the transmission and 
recovery rate. An estimate of the number of infected people 
and the number of people recovered was carried out to 
overcome this problem. Estimation is done using the Kalman 
Filter. 

The results of estimating the infected and recovered person 
using the Kalman Filter are depicted in Fig. 2 and Fig. 3. The 
estimation results show that the estimates and the confirmed 
data have the same trend. An error covariance matrix tunning 
in the estimation algorithm is performed to obtain the slightest 
difference between the estimated recovered person and the 
confirmed recovered person. The difference between the 
estimate and the confirmed recovered person is used as a 
reference. 

The difference between the estimates and the confirmed 
recovered person is then used to determine the estimation error 
of the proposed algorithm. The recovered person estimation 
error is depicted in Fig. 4. Fig. 4 shows that a fairly large 
estimation error occurs in the first 15 days of the estimation. 
This error occurs because of the low number of cases of 
confirmed recovered, so the percentage of estimation error is 
large. After the 20th day, the estimated error of the recovered 
person is decreased to less than 5%. 

The error of the recovered person is then used as the basis 
for determining the estimated error of the infected person. 
Given the estimated error value, an upper and lower limit of 
the estimate can be made. This limit is then used as the basis 
for the validation of the data for the confirmed infected person. 
If the data for the confirmed infected person are within the 
estimated range, then the data has good validity. However, the 
data has dubious validity if it is outside the estimated range. 
The estimated range of the infected person is depicted in Fig. 5. 
In Fig. 5, the lower limit of the estimate is depicted using the 
yellow line, and the blue line represents the upper limit of the 
estimate. Meanwhile, the confirmed infected person is depicted 
using the orange line. From the comparative data between the 
confirmed infected person and the estimated range of the 
infected person in Fig. 5, it can be seen that the position of the 
confirmed infected person is not always within the estimation 

range. Thus there are several data of confirmed infected 
persons who are in doubt. 

 
Fig. 2. The confirmed and estimation of the recovered person. 

 
Fig. 3. The confirmed and estimation of the infected person. 

 
Fig. 4. The error estimation of the recovered person. 
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Fig. 5. The confirmed and estimated range of the infected person. 

Fig. 6 shows data for confirmed infected persons outside 
the estimated limits. In Fig. 6, it can be seen that for the 
estimated day 0 to day 100, the confirmed infected person is 
still within the estimated limit, and if it exceeds the estimated 
limit, it only has a slight difference, namely a maximum of 2. 
However, after the 100th day, the confirmed infected person is 
almost always outside the estimated range. So the number of 
confirmed infected persons has questionable validity. On the 
other hand, the estimated recovered person has a reasonably 
good estimation error. Thus the transmission rate and recovery 
rate are predicted using estimated data. 

Estimated infected people and estimated recovered people 
are used to estimate the transition rate and recovery rate. The 
results of the transmission rate estimation are depicted in Fig. 
7. Fig. 7 shows that the transmission rate values from day 0 to 
day 40 experience convergence characterized by decreasing 
oscillations. After convergence, the transmission rate oscillates 
with a value above zero. This value indicates that the 
transmission process is still occurring. Meanwhile, the 
transmission rate is said to stop if the transmission rate is zero. 

 
Fig. 6. The confirmed infected person outside the range. 

 
Fig. 7. The estimation of the transmission rate. 

The results of the recovery rate estimation are depicted in 
Fig. 8. Fig. 8 shows that the recovery rate values from day 0 to 
day 40 experience a convergence like what happened to the 
transmission rate marked by reduced estimation oscillations. 
After convergence, the recovery rate also experiences an 
oscillation like what happens in the transmission rate. 
However, the oscillation amplitude at the recovery rate is 
smaller than at the transmission rate. The recovery rate of the 
oscillation value is also above zero. It means that the recovery 
process of an infected person is also in progress. 

 
Fig. 8. The estimation of the recovery rate. 

V. CONCLUSIONS 

The research shows that the transmission rate and recovery 
rate can be estimated using the estimated data for the infected 
and recovered persons. Estimates of infected and recovered 
people are carried out using the Kalman Filter. Estimates of the 
infected and recovered people are carried out to address the 
data of the confirmed infected persons whose validity is 
doubtful. In further research, developing a more 
comprehensive pandemic model is necessary. In pandemic 
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modeling, SIR has not included factors for the asymptomatic 
infected person. Thus, research on developing pandemic 
models needs to be carried out. 
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