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Abstract—Most real-world datasets contaminated by quality 

issues have a severe effect on the analysis results. Duplication is 

one of the main quality issues that hinder these results. Different 

studies have tackled the duplication issue from different 

perspectives. However, revealing the sensitivity of supervised and 

unsupervised learning models under the existence of different 

types of duplicates, deterministic and probabilistic, is not broadly 

addressed. Furthermore, a simple metric is used to estimate the 

ratio of both types of duplicates regardless of the probability by 

which the record is considered duplicate. In this paper, the 

sensitivity of five classifiers and four clustering algorithms 

toward deterministic and probabilistic duplicates with different 

ratios (0% - 15%) is tracked. Five evaluation metrics are used to 

accurately track the changes in the sensitivity of each learning 

model, MCC, F1-Score, Accuracy, Average Silhouette 

Coefficient, and DUNN Index. Also, a metric to measure the ratio 

of probabilistic duplicates within a dataset is introduced. The 

results revealed the effectiveness of the proposed metric that 

reflects the ratio of probabilistic duplicates within the dataset. All 

learning models, classification, and clustering models are 

differently sensitive to the existence of duplicates. RF and 

Kmeans are positively affected by the existence of duplicates 

which means that their performce increase as the percentage of 

duplicates increases. Furthermore, the rest of classifiers and 

clustering algorithms are sensitive toward duplicates existence, 

especially within high percentage that negatively affect their 

performance. 
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I. INTRODUCTION 

Data quality has been an active research area that affects 
different domains. Many data quality dimensions have been 
addressed through the literature[1]–[5], Data Duplication has 
been considered as one of the most intriguing dimensions. 
Data duplication is defined as multiple representation of the 
same real world object or a measure of undesirable duplicates 
within a certain field, record or dataset[6]. The duplication can 
be found in two different types, the Deterministic and the 
Probabilistic duplications[7], [8]. The Deterministic (exact) 
duplication, where two records or more are identical and 
Probabilistic (near/fuzzy) duplication, where multiple records 
are nonidentical and refer to the same real world entity[9], 
[10]. 

Duplicates can occur due to two main causes. The intra 
source duplicates, and the inter source duplicates[11]. The 

intra source duplicates occurs when a single data object can be 
entered many times into the same database. Whereas the 
duplicates that appear while merging multiple data source are 
called inter source duplicates[11]. The process of removing 
the intra source duplicates is called deduplication[12] which is 
the main scope of this paper. Whereas removing duplicates 
from inter source duplicates is called Record Linkage[13]. 

Data quality dimensions are assessed to evaluate by how 
much the data is qualified for a task at hand. Dimensions are 
measured either objectively or subjectively. Subjective 
measurements are based on consumers’ opinions like 
questionnaires, and surveys. Whereas Objective measurements 
are used to give a simple ratio between the undesirable 
outcomes and the total[14]. For example, to calculate the 
percentage of duplicates in the dataset, the following equation 
can be used (number of duplicate records/Total number of 
records). This simple metric can be perfectly used within exact 
duplicates, however, in the case of near duplicates the 
probability of these duplicate records should be considered to 
reflect the true percentage of duplicates within a dataset. 

The research effort in duplication area is diverse. 
However, little work has focused on clarifying the effect of 
both data duplicate types on the analysis results. In the domain 
of android malware [15], has addressed the sensitivity of the 
supervised and unsupervised learning models due to the 
existence of near duplicates. Thus, in this paper an initiative is 
taken to clarify the effect of both types of duplicates on 
classification and clustering learning models. 

This paper investigates the impact of the deterministic and 
the probabilistic duplicates on the results of descriptive 
(clustering task), and predictive (classification task) data 
analytics. Five classification models namely, Decision Tree 
(DT), Support Vector Machine (SVM), Naïve Bayes (NB), 
Linear Discriminant Analysis (LDA) and Random Forest (RF) 
are used to clarify the effect of the deterministic duplicates 
with different ratios. The sensitivity of the five classifiers has 
been evaluated using three evaluation metrics, Accuracy[16], 
Matthews Correlation Coefficient (MCC)[17] and F1-
Score[18]. While the impact of probabilistic duplicates is 
investigated through four clustering algorithms namely, The 
Partition Around Medoids (PAM), Clustering for Large 
Application (CLARA), K-means and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN). 
Furthermore, two evaluation indices namely the Average 
Silhouette Coefficient (ASC)[19] and DUNN Index (DI)[20] 
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are used to track the sensitivity of the four clustering 
algorithms. 

Since that the simple metric doesn’t consider the 
probability of the near duplicates, thus a metric is introduced 
to estimate the true percentage of near duplicates within a 
dataset. 

The remainder of this paper is organized as follows, 
Section II, reviews the state of the art and presents the related 
studies. Where the used clustering evaluation indices are 
described in Section III. The experimental framework and 
results are discussed in Section IV. Section V concluded the 
paper. 

II. RELATED WORK 

The field of duplication and its treatment methods is 
immense in the literature. It is addressed from different 
perspectives and domains, started from an overview of the 
duplication and techniques[21]–[23], improving the detection 
techniques[24], [25], evaluating the impact of the 
duplicates[26], and proposing new frameworks[27], [28] and 
methods[29], [30] to effectively enhance the detection 
process. However, little research addresses the impact of 
duplicates on the analysis results. Some studies are presented 
below. 

In [15], they examined the effect of duplication on the 
supervised and unsupervised learning in the domain of android 
malware detection. From their perspective, duplication in this 
domain means that data samples (e.g., the APK, the DEX 
code, etc.) appear many times within a corpus. They declared 
that duplication has limited impact on the supervised 
classification model, however, it has a significant effect on the 
unsupervised clustering model. 

In [31], two of the benchmark datasets are cleaned from 
near duplicate images. Deep leaning models are tested against 
the datasets before and after removing near duplicates. The 
results revealed a decrease in the classification accuracy by 
9% to 14% which means that the duplicates’ existence can 
give more inflated results. 

Furthermore in[32], the author examined the impact of 
code duplication while evaluating machine learning models. 
He declared that code duplication has a negative effect on the 
machine learning models’ performance which sometimes 
inflated by 100%. So, he recommended removing any exact or 
near duplicates to have more reliable and accurate results. 

In the image processing field[33], the near images between 
training and test sets are removed to improve the quality of 
machine learning results. Four classifiers, RF, DT, SGD, and 
perceptron classifiers are used, and their performance is 
recorded. There is a slight decrease in the accuracy of four 
classifiers after removing near images which means that 
duplicates can give deceptive performance. 

The authors[10], introduced a new technique to detect the 
near duplicates. Their technique doesn’t depend on columns to 
detect duplicates, but on the metadata that describes the 
datasets. Their experiments declared around 95% accuracy 
rate. 

While [34] propose a new record linkage deduplication 
framework through six steps that detects and visualizes 
duplicates in the datasets. 

Within another study[35] the natural language 
preprocessing and machine learning are used to detect the 
duplicates with 90% for area under the curve. 

The probabilistic duplicates detection approaches, such as 
similarity-based derivation, and decision-based derivation, are 
presented in[36]. To effectively detect duplicates they 
examine the adaptation of search space reduction, like using 
Blocking and Sorted Neighborhood methods which effectively 
reduces the record pair comparisons. 

A new duplication detection framework is proposed[37]. It 
depends on metric functional dependencies (MFDs) to 
enhance the detection accuracy. Their experimental results on 
three real datasets show an improvement of 25% and 34% in 
precision and recall respectively. 

Most of the studies have focused on introducing the 
duplicates detection techniques and reducing the search space 
of the records comparison. However, few studies investigated 
the effect of duplicates on the analytical results. Most of them 
tackled the problem of probabilistic (near) duplicates[38]–[43] 
due to its complexity than the exact ones[44]. 

III. CLUSTERING EVALUATION INDICES 

A. Average Silhouette Coefficient 

Average Silhouette Coefficient is a measure of the 
separation distance between clusters, (1). It is a graphical 
display of how well each data point is clustered. The 
silhouette coefficient ranges from −1 to +1, higher values that 
are closer to 1, indicate more coherent clusters[45]. 

  
   

   {   }
                             (1) 

Where (a) is the mean of the intra-cluster distance, the 
average dissimilarity of data points in the same cluster. And 
(b) is the mean value of the nearest-cluster distance, the 
cluster with the smallest average dissimilarity. 

B. DUNN Index 

The Dunn Index quantifies the ratio between the smallest 
distance between cases in different clusters and the largest 
distance within a cluster, (2). A high DI means better 
clustering since observations in each cluster are closer 
together, while clusters themselves are further away from each 
other[46]. 

             (2) 

Where k is the number of clusters, Ci is the ith cluster, d 
(Ci, Cj) is the distance between cluster Ci and Cj, and diam 
(Ci, Cj) is the diameter between the two clusters[46]. 

IV. EXPERIMENTAL DESIGN 

The main target is clarifying the effect of the presence and 
absence of duplication on data analytics. The two types of 
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duplication are investigated, the deterministic and the 
probabilistic duplication. The effect of the deterministic 
duplicates is examined through five different classifiers: DT 
and RF follow decision tree manner, SVM follows linear 
algorithms that separates between classes with a hyperplane, 
NB works using Probabilistic technique, and LDA works on 
discriminating between classes by maximizing distance and 
minimizing scale between them. The five classifiers are tested 
against a dataset with different ratios of deterministic 
duplicates (5%, 10% and 15%). For more accurate tracking of 
the changes in the performance of each classifier, three 
evaluation metrics are used, Accuracy, F1-Score and MCC. 

Due to the lack of the labelled benchmark datasets within 
probabilistic duplicates, unsupervised learning is applicable in 
this case. The sensitivity of four clustering algorithms toward 
probabilistic duplicates is evaluated through different ratios of 
probabilistic duplicates (Zero, 3.06% and 5.54%). The PAM, 
CLARA and K-means are partitioning based clustering. 
Where DBSCAN is a density-based clustering. The 
performance of the four clustering algorithms is validated 
using Average Silhouette Coefficient and DUNN Index. The 
full description of the used datasets, experimental steps, and 
results are presented below. 

A. Datasets 

For a classification task, a synthetic dataset obtained from 
UCI Machine Learning Repository [47] is used. Whereas two 
benchmark datasets[48] are used in clustering task. Table I 
shows more description about these datasets. 

TABLE I. DESCRIPTION OF THE DATASETS 

Dataset Name Size Features Data Type Dataset Type 

Dry Beans 13,611 17 Numeric Synthetic 

DBLP 2616 5 Mixed Benchmark 

ACM 2294 5 Mixed Benchmark 

B. Experimental Design 

A total of 84 experiments were conducted to measure the 
effect of different types of duplicates on the results of 
descriptive and predictive data analytics. The detailed 
experimental steps are presented below. 

1) Experimental steps for deterministic duplicates: The 

sensitivity of five classifiers toward the presence and absence 

of deterministic duplicates is investigated through 60 

experiments, divided into four groups. Group 1, zero 

duplicates, where the classifiers are tested against the original 

dataset to report the baseline performance. Group 2, the 5% 

duplicates, where 5% of the deterministic duplicates are 

inserted into the original dataset then the sensitivity of the 

classifiers are measured using the three-evaluation metrics, 

Accuracy, F1-Score and MCC. Group 3, the 10% duplicates, 

and Group 4, the 15% duplicates, follow the same structure as 

Group 2 except that the percentage of the deterministic 

duplicates is changed before testing the sensitivity of the 

classifiers toward the duplicates. The 60 experiments, 15 for 

each Group (5 classifiers x 1 dataset x 3 evaluation metrics), 

are conducted to clearly report the changes of each classifier’s 

performance. The upper part of Fig. 1 shows a general 

description of the four groups of experiments. 

2) Experimental steps for probabilistic duplicates: In this 

section the sensitivity of four clustering algorithms toward the 

presence and absence of probabilistic duplicates is measured 

through 24 experiments. The experimental steps have been 

divided into 3 groups, 8 experiments in each group (4 

clustering algorithms x 1 dataset x 2 evaluation indices). 

Group A, the DBLP dataset has been integrated with ACM 

dataset to be one dataset with 0% of probabilistic duplicates. 

The four clustering algorithms are tested against the integrated 

dataset and have been evaluated using the Average Silhouette 

Coefficient and DUNN Index. In Group B, the percentage of 

the duplicates increased to 3.06%, then the sensitivity of the 

four clustering algorithms was tested and evaluated. In Group 

C, the ratio of probabilistic duplicates increased to 5.54%. 

Then the performance of the four clustering algorithms is 

measured and reported using the evaluation indices.  In the 

three groups of experiments, Group A, B, and C, the 

percentage of near duplicates is measured using our proposed 

metric. The lower part of Fig.1 represents a general 

description of the three groups of experiments. 

 

Fig. 1. Framework of all duplication experiments. 

C. Experimental Results 

The experimental results are addressed in two sections, the 
first section includes the results of the effect of deterministic 
duplicates on predictive analytics. Whereas the second section 
interprets the effect of probabilistic duplicates on descriptive 
analytics. 

1) Results of deterministic duplicates effect: This section 

takes place into four subsections, the first subsection presents 

the baseline performance. The three other subsections show 

the experimental results of Group 2, 3 and 4 when having 

different ratios of deterministic duplicates. 

a) The Zero Duplicates Experiment: The five classifiers 

are tested against the original dataset (zero duplicates) and 

their performance is reported and evaluated using three 

evaluation metrics as shown in Table II. The best classifier 

performance is recorded for RF followed by SVM, DT, LDA 

and NB respectively when evaluated by MCC, Accuracy and 

F1-Score measures. 
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b) The 5% Duplicates Experiment: In this group of 

experiments, 5% of deterministic duplicates are added to the 

original dataset. This duplicate percentage is measured using 

the simple equation, (3), that measures the ratio of duplicates. 

            
                              

                    
        (3) 

The sensitivity of the five classifiers toward these 
duplicates is tested and recorded by the evaluation metrics. It 
is obviously clear that the performance of the five classifiers 
increased across all evaluation metrics compared with the 
baseline performance, Table III. 5% of duplicates positively 
affected the classifiers, which means that the five classifiers 
are positively sensitive to the existence of deterministic 
duplicates in this case. Higher performance means higher 
sensitivity. In this case, SVM reported higher sensitivity 
across all metrics, then comes RF, followed by DT and LDA. 
Whereas NB has the lowest sensitivity compared to other 
classifiers. 

However, the performance of the five classifiers increased, 
this performance doesn’t reflect the reality, true performance 
as in Table II, thus it can’t be trusted or even used in making 
decisions. 

c) The 10% Duplicates Experiment: Following the same 

steps in Group 2 experiment, the original dataset is 

contaminated by 10% of deterministic duplicates calculated by 

the same Eq., (3). As shown in Table IV, the performance of 

the five classifiers is still increasing after adding the 10% of 

duplicates compared with their performances in the previous 

two Groups of experiments, Table (II and III). The results 

declared that the five classifiers are still positively sensitive to 

the presence of deterministic duplicates. Furthermore, the 

performance of the five classifiers is still unreliable and can’t 

be trusted. SVM and RF reported higher positive sensitivity in 

this case. NB has the lowest positive sensitivity, where DT 

and LDA have middle sensitivity toward 10% of exact 

duplicates. 

d) The 15% Duplicates Experiment: The sensitivity of 

the five classifiers is measured and evaluated after adding 

15% of deterministic duplicates into the original dataset. Table 

V shows that the performance of all classifiers except RF 

drastically decreased under the baseline performance. This 

indicates that DT, SVM, NB, and LDA are negatively 

sensitive to the existence of deterministic duplicates with large 

percentages more than 10%. However, the performance of RF 

is still increasing through the three-evaluation metrics (MCC, 

F1-Score, and Accuracy) compared with its performance 

across all previous experiments. In the case of negative 

sensitivity, NB has the highest sensitivity, then DT and SVM. 

Whereas LDA has the lowest negative sensitivity in this case. 
Following are some observations after executing the four 

Groups of experiments: 

 The performance of the RF classifier is positively 
affected by the presence of deterministic duplicates 
under small and large ratios, Fig. 2(a). 

 As shown in Fig. 2(b), (c), (d), and (e), the DT, SVM, 
LDA and NB are positively sensitive to deterministic 
duplicates with certain percentages of duplicates 
ranging from 5% to 10%. 

 However, they are negatively sensitive when having 
deterministic duplicates of more than 10%, Fig. 2(b), 
(c), (d), and (e). 

 In general, the presence of deterministic duplicates 
limited to 10% has a positive effect on a classification 
task. As this percentage increases the effect of the 
deterministic duplicates differs based on the classifier 
used. 

 Neither the positive nor the negative classifiers’ 
sensitivity are good results. The classifiers in both 
cases are giving deceptive performance that doesn’t 
reflect the reality. Hence, any decision taken based on 
a dataset contaminated by deterministic duplicates with 
any ratio is a completely wrong decision which can 
have negative implications on any business. 

TABLE II. THE BASELINE PERFORMANCE 

Dataset Metrics DT SVM NB LDA RF 

Dry 

Beans 

MCC 89.51% 91.00% 87.45% 87.86% 90.72% 

F1-

Score 
91.30% 92.50% 89.50% 89.70% 92.30% 

Acc. 91.31% 92.53% 89.54% 89.72% 92.31% 

TABLE III. THE SENSITIVITY OF THE CLASSIFIERS WITH 5% OF 

DETERMINISTIC DUPLICATES 

Dataset Metrics DT SVM NB LDA RF 

Dry 

Beans 

MCC 90.10% 91.78% 88.10% 88.57% 91.41% 

F1-

Score 
91.70% 93.20% 90.00% 90.40% 92.90% 

Acc. 91.72% 93.17% 90.04% 90.37% 92.87% 

TABLE IV. THE SENSITIVITY OF THE CLASSIFIERS WITH 10% OF 

DETERMINISTIC DUPLICATES 

Dataset Metrics DT SVM NB LDA RF 

Dry 

Beans 

MCC 90.42% 92.11% 88.51% 89.02% 91.77% 

F1-

Score 
92.00% 93.40% 90.40% 90.70% 93.10% 

Acc. 92.02% 93.44% 90.39% 90.73% 93.15% 

TABLE V. THE SENSITIVITY OF THE CLASSIFIERS WITH 15% OF 

DETERMINISTIC DUPLICATES 

Dataset Metrics DT SVM NB LDA RF 

Dry 

Beans 

MCC 88.70% 90.20% 86.40% 87.40% 92.13% 

F1-

Score 
90.50% 91.80% 88.60% 89.20% 93.40% 

Acc. 90.53% 91.78% 88.57% 89.24% 93.43% 
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(a) RF 

 
(b) DT 

 
(c) LDA 

 
(d) SVM 

 
(e) NB 

Fig. 2. Performance of the five classifiers with different ratios of 

deterministic duplicates. 

2) Results of probabilistic duplicates effect: The 

experimental results on the effect of probabilistic duplicates 

are presented into three subsections. In the three subsections, 

the performance of the clustering algorithms with different 

ratios of probabilistic duplicates ranged from 0% to 5.54% is 

reported and evaluated using the Average Silhouette 

Coefficient and DUNN Index, both distance functions, 

Manhattan, and Euclidean functions, are used to calculate 

DUNN Index. 

a) Group A Experiments: In this experimental group, 

the ACM and DBLP datasets are merged to have one cleaned 

integrated dataset. Then the four clustering algorithms are 

applied, and their quality is measured. Table VI shows the 

baseline performance of all clustering algorithms with zero 

duplicates. Generally, the performance of all clustering 

models is low, this is due to the dimensionality reduction 

problem. As stated in the literature [49]–[51], reducing the 

dimensions of the dataset improves the clustering results, 

however this is not the scope of this paper but showing the 

effect of near duplicates on the performance of the clustering 

models within different ratios. 

TABLE VI. THE SENSITIVITY OF THE CLUSTERING ALGORITHM WITHOUT 

PROBABILISTIC DUPLICATES 

Evaluation Indices PAM CLARA Kmeans DBSCAN 

DUNN- Manhattan 0.018 0.017 0.016 0.096 

DUNN- Euclidean 0.029 0.026 0.021 0.149 

AVG.silhouette Coefficient 0.2 0.26 0.159 0.076 

 
(a) CLARA 

 
(b) DBSCAN 

 
(c) Kmeans 

 
(d) PAM 

Fig. 3. Performance of the four clustering algorithms with zero probabilistic 

duplicates. 

The evaluation done by DUNN index using the two 
distance functions shows that DBSCAN has the higher 
performance, followed by PAM then, CLARA whereas 
Kmeans reported the lowest performance. However, this is not 
the case when evaluating the quality of the four algorithms 
with Average Silhouette Coefficient. CLARA reported highest 
value, followed by PAM then Kmeans whereas DBSCAN has 
the lowest performance in this case. The baseline performance 
of the four clustering algorithms is depicted in Fig. 3. 

The clusters created using DBSACN and CLARA are 
clearly depicted, Fig. 3(a) and (b). Whereas the clusters 
created by PAM and Kmeans, as shown in Fig. 3(c) and (d), 
overlapped, and cannot be detected clearly. 

b) Group B Experiments: In this group of experiments, 

the integrated dataset is contaminated by 3.06% of 

probabilistic duplicates. The following example is given to 

explain how this percentage is calculated. 

A dataset is given with the following: 

Total Number of Records = 2,667 Unique Records = 2,388 

Duplicate Records = 279 Probabilistic Match 

The Data Uniqueness of the given dataset using the old 
metric is: 

             
                  

                        
 = 2388/2667 

= 0.895 
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So, the data duplication will be: 

                         

    
                 

          

 
                              

                    
 

= 1-0.895 = 0.105=10.5% 

However, the total number of duplicate records in the 
above equation refers to the deterministic duplicates and it 
does not consider the probability or the similarity by which the 
record is considered duplicates. To consider the probabilistic 
duplicate records, a new metric is proposed. 

                   
 

 
 ∑   
 
                   (4) 

Where N is the total number of records, i is the record 
number, and Pi is the probability that I record has a duplicate. 
So, if the i record is unique then Pi = 0, if it has a deterministic 
duplicate, Pi = 1, and if it is probably duplicate, then Pi is the 
similarity measure between this record and its linkage. 

Data Duplication = (0.2* 162 + 0.4*105+ 0.6*12) / 2667 = 
81.6/2667 = 0.0306. 

This means that the uniqueness of the integrated dataset = 
(1-0.0306) = 0.969. 

Thus the 10.5% of duplicates measured using old metric 
doesn’t reflect the similarity of the probabilistic records, 
whereas the proposed metric considers the probability of 
probabilistic duplicates while measuring, thus the true 
percentage of near duplicates in this case is 3.06%. 

Fig. 4. shows different effects of near duplicates on 
clustering algorithms as the ratio of duplicates increased. 
Generally, DBSCAN is a robust algorithm as its performance 
doesn’t change from its baseline. Whereas Kmeans is 
positively affected by such increased ratio. PAM and CLARA 
give different performances depending on the evaluation 
indices used. A detailed description of the sensitivity for each 
clustering algorithm is presented in Table VII. 

The following observations can be derived from this group 
of experiment: 

 DBSCAN has robust performance when evaluated by 
DUNN index. While it is negatively affected by the 
increase of the duplicates when Average Silhouette 
Coefficient used, which means that its performance 
degraded from its baseline performance. It decreased 
by 0.022%. 

 The performance of Kmeans is increased by around 
0.006% when evaluated by DUNN index. Kmeans has 
a positive sensitivity in this case. But this is not the 
case while using Average Silhouette Coefficient, 
Kmeans is negatively affected by near duplicates, its 
performance decreased by 0.012%. 

 PAM shows different sensitivity, robust and negatively 
affected by near duplicates, within DUNN index using 
both distances Manhattan and Euclidean respectively. 

Also, Average Silhouette Coefficient shows negative 
sensitivity for PAM. 

 CLARA has different sensitivity, positive, robust, and 
negative sensitivity, when evaluated by Manhattan, 
Euclidean, and Average Silhouette Coefficient 
respectively. 

c) Group C Experiments: The ratio of probabilistic 

duplicates increased to 5.54% within the integrated dataset 

using the new metric, (4) within the given dataset: 

Total Number of Records = 2,947 Unique Records = 2,389 

Duplicate Records = 558 Probabilistic Match 

Thus, Data Duplication = (0.2* 324 + 0.4*210+ 
0.6*24)/2,947 = 163.2/2,947 = 0.0554 

The four clustering algorithms are tested against the 
integrated dataset and their sensitivity is assessed using the 
evaluation indices. In Fig. 5, it is obviously clear that the 
performance of the four clustering algorithms except Kmeans 
is low. This means that the clustering algorithm, CLARA, 
PAM, and DBSCAN are negatively affected by the new ratio 
of probabilistic duplicates, Fig. 5(a), (b), and (d). However, 
Kmeans is positively affected by such increase in the 
duplicate’s ratio, Fig. 5(c). 

TABLE VII. THE SENSITIVITY OF THE CLUSTERING ALGORITHM WITH 

3.06% OF PROBABILISTIC DUPLICATES 

Evaluation Indices PAM CLARA Kmeans DBSCAN 

DUNN- Manhattan 0.018 0.022 0.021 0.096 

DUNN- Euclidean 0.023 0.026 0.028 0.149 

AVG.silhouette Coefficient 0.19 0.2 0.147 0.054 
 

 
(a) CLARA 

 
(b) BBSCAN 

 
(c) Kmeans 

 
(d) PAM 

Fig. 4. Performance of the four clustering algorithms with 3.06% of 

probabilistic duplicates. 
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(a) CLARA 

 
(b) DBSCAN 

 
(c) Kmeans 

 
(d) PAM 

Fig. 5. Performance of the four clustering algorithms with 5.54% of 

probabilistic duplicates. 

TABLE VIII. THE SENSITIVITY OF THE CLUSTERING ALGORITHM WITH 

5.54% OF PROBABILISTIC DUPLICATES 

Evaluation Indices PAM CLARA Kmeans DBSCAN 

DUNN- Manhattan 0.011 0.012 0.023 0.045 

DUNN- Euclidean 0.018 0.017 0.035 0.073 

AVG. silhouette 

Coefficient 
0.2 0.21 0.196 0.008 

Based on the quantitative results presented in Table VIII, 
we can conclude that DBSCAN is highly sensitive toward a 
high ratio of duplicates, PAM came in the second rank of 
sensitivity, whereas CLARA has the lowest sensitivity 
compared with other algorithms. In this case the performance 
of Kmeans increases as ratio of probabilistic duplicates 
increased too. Thus, Kmeans is the only algorithm that has a 
positive sensitivity toward near duplicates. 

Fig. 6 and Fig. 7 show the sensitivity observation of the 
four clustering algorithms after conducting all groups of 
Experiments, Group A (zero duplicates), Group B (3.06% 
duplicates), and Group C (5.54% duplicates). 

1) Sensitivity measured by DUNN index 

a) PAM Algorithm has a negative sensitivity toward the 

existence of probabilistic duplicates which means that its 

performance decreases as the percentage of the duplicates 

increases Fig. 6(a). 

b) Fig. 6(b) shows that CLARA has a negative 

sensitivity only in the case of a high percentage of 

probabilistic duplicates, 5.54%. The performance of CLARA 

remains the same or slightly increases (by 0.005%) when the 

percentage of duplicates increased from zero to 3.06%. 

c) DBSCAN has the same performance as CLARA, its 

performance is negatively affected by high ratios of the 

probabilistic duplicates, Fig. 6(c). Its performance remains the 

same when having zero and 3.06% of these duplicates. 

d) On the other flip of the coin, comes Kmeans. Kmeans 

has a positive sensitivity to the existence of probabilistic 

duplicates with different ratios. Fig. 6(d) shows that the 

performance of Kmeans increases as the ratio of probabilistic 

duplicates increases too. 

2) Sensitivity measured by average silhouette coefficient 

a) As depicted in Fig. 7(a), the performance of PAM 

algorithm decreased from its baseline when 3.06% of 

duplicates were inserted into the dataset. Then it started to 

increase again as a larger ratio of probabilistic duplicates 

inserted. This indicates that PAM has no clear performance. 

b) CLARA is a negatively sensitive clustering algorithm 

to the presence of near duplicates, Fig. 7(b). Its performance 

decreases when probabilistic duplicates exist. However, the 

performance of CLARA during different ratios of duplicates 

(3.06% and 5.54%) is almost the same, only 0.01% difference. 

c) In Fig. 7(c), the performance of DBSCAN algorithm 

is negatively affected by the existence of probabilistic 

duplicates. The performance of DBSCAN clearly decreased 

when the ratio of the duplicates increased. Thus, we can 

conclude that DBSCAN is the highly sensitive algorithm 

toward probabilistic duplicates. 

d) Fig. 7(d) declared that generally Kmeans is 

considered as a positively sensitive algorithm. Compared with 

the baseline, its performance increased (by 0.037%) as high 

ratios of probabilistic duplicates increased too. 

Neither the positive nor the negative sensitivity of the 
clustering models toward probabilistic duplicates is good 
performance. The same as concluded from deterministic 
experiments, any decision taken in these cases will cause 
severe harm to any business either financially wise or 
management wise. 

The experimental results agreed with what mentioned in 
different studies [15], [31]–[33], that the existence of both 
types of duplicates is somehow has an effect either positive or 
negative on the performance of the learning models. 

Based on the quantitative results for each experiment, the 
existence of duplicates has a significant effect on the 
performance of supervised learning models, whereas it has a 
moderate impact on the performance of unsupervised learning 
models, which is the opposite of what mentioned in [15]. Fig. 
8 shows the sensitivity of the learning models toward 
duplicates. 
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Fig. 6. The sensitivity of the four clustering algorithms using DUNN index. 

 
(a) PAM 

 
(b) CLARA 

 

(c) DBSCAN 

 
 

(d) Kmeans 

Fig. 7. The sensitivity of the four clustering algorithms using average silhouette coefficient. 
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Fig. 8. The sensitivity of all learning models toward different types of duplicates. 
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In Fig. 8. the Dunn index using Manhattan function is 
referred to as (DI-Man), whereas Dunn index using Euclidean 
function as (DI-Ecu). The Average silhouette Coefficient is 
referred to as (ASC). Furthermore, the accuracy is shortened 
in (ACC). 

The difference in the average performance from the 
baseline performance is calculated and depicted in Fig.  8. It is 
clearly noted that DT, SVM, NB, and LDA are highly 
sensitive toward the existence of deterministic duplicates. 
Whereas RF is positively sensitive in this case. Thus, 
generally deterministic duplicates have a severe influence on 
most of the classifiers. 

However, most of the clustering models are moderately 
sensitive toward the existence of probabilistic duplicates. Only 
DBSCAN is extremely sensitive toward near duplicates. Thus, 
the existence of probabilistic duplicate has a moderate 
influence on the unsupervised learning models. 

 The existence of both types of duplicates can cause 
significant harm to the analysis results and then the whole 
business. Thus, it is highly recommended to remove any 
duplicates from the dataset before putting it through the 
processing phase. 

V. CONCLUSION 

Cleaning the data from quality issues like missing values, 
inconsistencies, duplication, etc. is an essential step if accurate 
decision is needed. Thus, in this paper the sensitivity of 
supervised (DT, SVM, RF, NB, and LDA) and unsupervised 
(DBSCAN, Kmeans, CLARA, and PAM) learning models 
toward the existence of two types of duplicates, probabilistic 
and deterministic, with different ratios (0%-15%) is 
investigated. The results of these models are validated using 
five evaluation metrics, MCC, F1-Score, Accuracy, Average 
Silhouette Coefficient, and DUNN Index. Three datasets are 
used through 84 experiments. The experimental results can be 
concluded as follows. First, both types of duplicates have an 
influence on the sensitivity of the learning models, which 
differs based on the learning model itself. Second, small 
percentages of deterministic duplicates have a positive impact 
on the five classifiers. This declares that the performance of 
five classifiers increased when exact duplicates exist with 
small ratios. Third, RF is the only algorithm that has a positive 
sensitivity toward exact duplicates with ratios more than 10%, 
whereas negative sensitivity is reported for the rest of 
classifiers under high ratio of exact duplicates. Fourth, 
Kmeans clustering algorithm has a positive sensitivity when 
having near duplicates with either small or large ratios. Fifth, 
generally the rest of clustering algorithms are negatively 
sensitive toward near duplicates especially with high 
percentages. Sixth, the proposed duplicate metric proved its 
effectiveness in measuring the true percentage of near 
duplicates within a dataset. 
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