
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

388 | P a g e

www.ijacsa.thesai.org

A Comparison of Pathfinding Algorithm for Code

Optimization on Grid Maps

Azyan Yusra Kapi1, Mohd Shahrizal Sunar2*, Zeyad Abd Algfoor3

Computing Sciences Studies-College of Computing-Informatics and Media, Universiti Teknologi MARA,

Johor Branch, Pasir Gudang Campus, 81700 Johor, Malaysia1

Department of Emergent Computing-Faculty of Computing, Universiti Teknologi Malaysia,

81310 Johor Bahru, Johor, Malaysia1, 2

Media and Game Innovation Centre of Excellence-Institute of Human Centered Engineering,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia1, 2

Department of Computer Science-College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq3

Abstract—There have been various pathfinding algorithms

created and developed over the past few decades to assist in

finding the best path between two points. This paper presents a

comparison of several algorithms for pathfinding on 2D grid

maps. As a result, this study identified Jump Point Search Block

Based Jumping (JPS (B)) as a potential algorithm in term of five

evaluation metrics including search time. The comparisons

pointed out the potential algorithm and code optimization was

performed on the selected JPS(B) algorithm, and it was named

JPS(BCO). This paper also explores issues regarding the JPS(B)

and how to resolve them in order to optimize access to the index

pointer. The presented enhance JPS(BCO) is capable to search

optimal path quicker than the original JPS(B) as demonstrated

by experimental findings. An experiment of different size grid

maps is conducted to validate the ability of the proposed

algorithm in term of search time. The comparative study with

original JPS (B) exhibits the enhancement that has more benefits

on grid maps of different size in terms of search time.

Keywords—Comparative; jump point search; optimization;

pathfinding; path planning

I. INTRODUCTION

Pathfinding algorithm has become one of the popular
techniques to search for a path while avoiding obstacles at the
same time. There have been numerous applications of
pathfinding such as robotics, virtual reality [1], and commercial
games [2]. In the past, pathfinding has traditionally focused on
finding the shortest route. However, nowadays, it also focuses
on finding the safest, cheapest, or most convenient route to
avoid tolls, roads, or other obstacles [3].

Maps and graphs are common methods for representing
environments in pathfinding. Most pathfinding algorithms
consider the pathfinding environment as a key attribute to
determine navigation performance [4]. Navigation meshes, grid
maps, and waypoint graphs are three popular pathfinding
environments. The superiority of one pathfinding environment
over another has been debated for many years. A few
advantages and limitations of the most common pathfinding
environments used in games are summarized in [5]. Grid maps
are the most popular pathfinding environment due to the
simplicity and ease of use [6]. Furthermore, it is also relatively
fast to generate a grid map and it only includes two categories

of cells: passable and block able [7]. The movement of an
agent in grid map is limited to eight possible directions. Every
vertical and horizontal movement in the grid has one cost unit,
while the diagonal movement has a cost of 1.4 units.

Over the past decades, the performance of the pathfinding
has been evaluated through various comparisons and analysis.
Recently, [8] has compared traditional pathfinding which is A*
algorithm and Depth First Search (DFS) with state-of-the-art
algorithms, Jump Point Search (JPS) and Subgoal Graph. By
testing the four algorithms on eight different grid maps, the
author discussed several of the advantages and disadvantages
of each algorithm according to the grid maps. As another
example, [9] also compared two well-known algorithms: A*
and Iterative Deepening A∗ (IDA*). They concluded that when
there are no obstacles on the map, IDA* generally performs
better than A*. However, when it comes to memory and time
usages, IDA* may perform worse if opponent characters are in
parallel positions and blocked by obstacles.

On the other hand, [10] conducted an analysis to compare
performance of A∗ and Basic Theta∗ algorithm. Results from
this study indicate that the A* and Basic Theta* algorithms
have both similar completeness and time taken, but the A* has
the benefit of searching less nodes, while the Basic Theta*
algorithm returns shorter results.

Despite being one of the oldest algorithms, A* is still being
favored to be included in the various researches for
comparison. Although there are numerous researches in the
literature on the comparative analysis of several pathfinding
algorithms, however, to date, there have been very few
research on the comparative analysis of Jump Point Search
algorithm. This paper aims to compare A* and four versions of
Jump Point Search using source code which are made available
by the author [6]. The total five algorithms which included in
this study are A*, JPS, JPS(B), JPS+, and JPS+ (P).

One of the evaluation metrics that is commonly used in
comparisons and analyses is the amount of time taken during
search. In video games [11], search and rescue (SAR) [12], and
unmanned aerial vehicle (UAV) navigation [13], the search
time is one of the most critical aspects. Therefore, the key
motivation for this study is to reduce the search time.

*Corresponding Author

Ministry of Education Malaysia and Universiti Teknologi MARA

(sponsors).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

389 | P a g e

www.ijacsa.thesai.org

Apart from comparing the pathfinding algorithms, this
paper will also discuss code optimizations on the potential
algorithm JPS(B) which are derived from the preliminary
analysis. The code optimization yields a slight increase in
terms of the search time. Thus, the fundamental objective and
contribution of the current paper aim to present a comparative
analysis on several pathfinding algorithm and a slight code
optimization to the potential algorithm. This comparative
analysis is important to other researcher for evaluating the
performance of pathfinding algorithm and the code
optimization performs on it.

In the remainder of the paper, the sections are arranged as
follows. In Sections II, reviews of related works on JPS
algorithms and descriptions of the JPS are provided. The
methodological approach for the experimental setup was
explained in Section III. Experimental result is presented in
Section IV, while JPS(BCO) optimization and result is
discussed in Sections V and VI, respectively. Conclusions and
recommendations for future work are presented in Section VII.

II. RELATED WORKS

It was found that most pathfinding algorithms are based on
A*, regardless of whether they are single or multi-agent
pathfinding. A* algorithm was successful in solving
pathfinding problems, and since that, numerous studies have
concentrated on improving and optimizing A* algorithm. Path
scoring is used by A* algorithm to determine the optimal path
from the initial node to the end node [14]. Another prominent
pathfinding algorithm is the Jump Point Search (JPS) which is
the successor of A* variants introduced by [15]. They affirmed
that the JPS accelerated more than A* and JPS has gain many
attentions from other researcher after that.

Using JPS, an undirected and eight-connected grid map can
be identified and eliminated from many path symmetries
through combination of A* search and pruning rules. JPS
algorithm utilizes pruned neighbor rules to determine which
nodes should be searched while jump points are determined by
their location relative to forced neighbor. Later in 2014,
enhanced JPS is presented in [6] which includes four varieties
of enhancement which includes jumping by block, new
pruning rules and adds a pre-processing step prior to searching
process.

The existing literature on JPS is extensive and focuses
particularly on describing some of the more recent
developments and enhancements. A summary of the research
on JPS’s improvement can be found in Table I.

Based on Table I, it is shown how JPS has been enhanced
and applied to several areas, including home service robots and
even in logistics for AGV. Most of the improvements were
focused on reducing search times, which are considered
valuable even for a few seconds. Apart from that, the aim is to
minimize or shorten the path length as shown in (Ma et al.,
2019). The related works conclude that the trends in optimizing
the JPS algorithm focus on faster search times, which is also
the motivation for this study.

TABLE I. SUMMARY OF JPS’S ENHANCEMENT

Ref.
Explanation

Objectivity Description Application

[16]

Improve waiting

steps and movement

steps

IJPS combines JPS with

Congestion control in

two stages: online and

offline mode.

Autonomous

Ground

Vehicle (AGV)

[17]

Decrease search

time and secure

distance for robot

and the barrier

SD-JPS merge the idea

of a jump point with the

node domain matrix to

suggest a different jump

point and limitation that

satisfy the JPS 's quick

search results and

achieve the secure

distance between the

robot and the barriers

Robotic

[18]

In addition to

identifying the

direction of the next

path point relative

to the current path

point, it uses vector

cross product to

verify connectivity

between the

previous and last

points of each

original point.

Enhancements are

presented in this paper to

minimize redundant path

points and optimize path

length by shortening

paths.

In order for a robot to

move, its pose must be

adjusted in points, so the

vector cross product and

the vector dot product

are applied.

Home Service

Robot

[19]

Using grid signage,

the grid

environment is pre-

processed, and a

valuation function is

used to determine

the optimal path

through the grid.

To improve the path

efficiency, this algorithm

optimizes the open list

with the minimum

binary tree, and enlarges

the weight coefficient to

choose the appropriate

valuation function.

Radar

simulation

system

[20]

The InvJPS

algorithm attempts

to resolve the

problem of

inventory-driven

pathfinding in the

literature

When used in inventory-

based variants of game

maps, InvJPS maintains

JPS's optimality

guarantees and its

symmetry breaking

benefits.

Video Games

III. EXPERIMENTAL SETUP

Original source code from [6] can be downloaded from
https://bitbucket.org/dharabor/pathfinding. The given source
code consists of several pathfinding algorithm in the same
program. In Table II, an overview of the five pathfinding
algorithms selected for comparison is presented in detail.

Table II shows that all algorithms were unweighted, except
for the A* algorithm. A weighted version of A* algorithm is
also available as used in [21] for their enhancements. However,
for the purpose of simplification and standardization, only the
unweighted version of the algorithms has been considered in
this study, and the weighted version has been discarded.

While the given source code is in C++, [6] developed the
code on Linux 20.04. Computer with Windows 10 operating
system were used for the purpose of this study. Therefore, an
Oracle VM VirtualBox 6.1.30 and Ubuntu 20.04 platform was
used to match the original platform.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

390 | P a g e

www.ijacsa.thesai.org

TABLE II. OVERVIEW OF PATHFINDING ALGORITHM USED IN THIS STUDY
A

lg
o

ri
th

m

A
lg

o
ri

th
m

n
a

m
e

(s
o

u
rc

e
co

d
e)

D
es

cr
ip

ti
o

n

U
n

w
ei

g
h

te
d

W
ei

g
h

te
d

A* astar

Traditional algorithm which

utilizes an open list and close

list to store each visited and

unvisited nodes.

JPS jps

Enhance A* by utilizing a jump

point to skip unnecessary nodes

by following two set of pruning

rules.

 X

JPS (B) jps2

In order to boost the original

JPS's performance, it uses

block-based

jumping

 X

JPS+

jps+

This algorithm differs from

original JPS as it adds pre-

processing to the search method

 X

JPS+ (P) jps2+

This algorithm similar to JPS+

which use pre-processing and

also enhance pruning rules

 X

The computer has a minimum specification of 3.40GHz
Intel Core i7-6700 processor with 4MB of RAM and 8MB of
L3 cache. The first test data consists of four benchmark
problem sets which were generated by [22]. Maps are taken
from commercial games that are standards for 2D
benchmarking. Only four maps and problem sets were selected
to be included in the study. A description of the four selected
benchmark files is presented in Table III.

From Table III, it is apparent that this selection of
benchmark file was made to represent different dimension and
problem sets complexity. For example, arena file represents
smallest dimension which is 49x49 while orz700d contain
3880 problem sets with 1260x1104 dimension.

The comparison analysis relies on a five-evaluation
metrics; the descriptions of these metrics can be found in
Table IV.

The evaluation metrics used in this analysis are similar to
those in [6] as shown in Table IV.

TABLE III. DESCRIPTION OF BENCHMARK FILES USED IN THIS STUDY

Map’s

name
Preview Dimension

Number of

problem set

Maximum

length in

scenario

arena

49 x 49 130 51.84

den501d

338 x 320 1170 466.90

brc202d

481 x

530
2550 1019.05

orz700d

1260 x

1104
3880 1551.98

TABLE IV. EVALUATION METRICS USED IN THIS STUDY

Metrics Description

Total of

expanded nodes

Since time is usually a hardware and software dependent

factor, it is recommended to also determine the total

number of expanded nodes in the search.

Total of

generated nodes

An indicator of how many nodes are added to an open

list after they are generated.

Total of touched

nodes

Number of nodes undergoing evaluation, which may

result in an update to priority queue.

Search time

Search time is measured in microseconds (wall clock

time) which represents how long it takes the algorithm

to find solution to the problem. Milliseconds are equal to

microseconds multiplied by 1,000.

Memory cost
Metric that measures how much memory in bytes the

algorithm uses in finding the end result.

IV. EXPERIMENTAL RESULT ON ANALYSIS OF PATHFINDING

ALGORITHMS

Using the experimental procedure described by [23], all
experiments were repeated 10 times and the average results
calculated for each evaluation metric. A complete disconnect
from the internet is kept throughout the experiment to prevent
any disruptions caused by unwanted activity. Based on the
five-evaluation metrics described previously, the following
section discusses the results of the analysis. Results for the
expanded nodes (average) are depicted in Table V.

To measure algorithm performance during pathfinding, the
average of expanded nodes is an important criterion. In
general, as the number of nodes grows, it takes longer time to
find the path. Based on Table V, out of five algorithms, there is
a tie between JPS (B) and JPS+ (P), whereas JPS+ (P) wins the
remaining three benchmark files. Table IV and Table VII
compare the result in term of generated nodes and touched
nodes, respectively.

TABLE V. COMPARISON RESULT IN TERMS OF EXPANDED NODES

Algorithm
Expanded nodes (average)

arena den501d brc202d orz700d

A* 31.42 5862.18 15997.63 29104.21

JPS 4.87 196.80 578.16 919.00

JPS (B) 1.55 113.43 342.81 479.53

JPS+ 3.90 195.86 577.22 918.09

JPS+(P) 1.55 113.43 342.81 479.53

TABLE VI. COMPARISON RESULT IN TERMS OF GENERATED NODES

Algorithm
Generated nodes (average)

arena den501d brc202d orz700d

A* 99.05 6100.47 16294.91 29497.70

JPS 11.11 224.03 606.61 951.14

JPS (B) 10.94 151.64 386.26 527.28

JPS+ 9.46 222.27 604.85 949.36

JPS+(P) 11.05 151.80 386.45 527.44

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

391 | P a g e

www.ijacsa.thesai.org

TABLE VII. COMPARISON RESULT IN TERM OF TOUCHED NODES

Algorithm
Touched Nodes (Average)

arena den501d brc202d orz700d

A* 274.07 48830.13 133876.84 247457.73

JPS 17.05 465.26 1336.50 2177.84

JPS (B) 13.69 334.51 1022.47 1565.88

JPS+ 14.45 462.73 1333.97 2175.27

JPS+(P) 13.92 335.51 1023.80 1567.10

In Table VI, the average generated nodes that are injected
into the open list show JPS+ to be the winner for the arena file,
while JPS (B) is the winner for the rest of the files. In Table
VII, in term touched nodes, JPS (B) is the most excellent for all
four benchmarks file as it exhibits the smallest number of
touched nodes in average. In terms of search time, the obtained
result is presented in Table VIII.

In Table VIII, in terms of search time in microseconds,
JPS+ is the winner for arena, while JPS+ (P) for the rest of
three benchmark files. This situation is because the JPS+ and
JPS+ (P) is based on pre-processing enhancement, thus, it will
speed up the search time.

For the final evaluation metrics, the algorithms were
compared in terms of memory in bytes. The comparison result
is depicted in Table IX.

Based on Table IX, the lowest memory consumption for
arena file is A*, while JPS (B) is the top algorithm for the rest
of the files.

As a continuation of the analysis described previously, this
study includes further calculations to find the potential and
superior algorithm for further code optimization. To identify
the superior algorithm among five previously tested
algorithms, a scoring method was used.

TABLE VIII. COMPARISON RESULT IN TERMS OF SEARCH TIME

Algorithm
Search Time (microseconds)

arena den501d brc202d orz700d

A* 18.86 3510.18 12111.38 24633.38

JPS 7.01 86.00 238.84 414.97

JPS (B) 3.36 69.91 206.85 319.55

JPS+ 2.37 73.52 220.77 332.63

JPS+(P) 2.57 57.88 171.90 268.09

TABLE IX. COMPARISON RESULT IN TERMS OF MEMORY

Algorithm
Memory (bytes)

arena den501d brc202d orz700d

A* 6182968 6551496 7215324 8400304

JPS 6183768 6301944 6721476 7513048

JPS (B) 6183728 6301904 6721436 7248744

JPS+ 6239296 8224656 10925668 30021816

JPS+(P) 6239256 9017384 12775476 40856424

TABLE X. OVERALL SCORE FOR THE SUPERIOR ALGORITHM

Algorithm
The Superior Algorithm (Overall)

arena den501d brc202d orz700d
Total

score

A* 1 0 0 0 1

JPS 0 0 0 0 0

JPS (B) 0.5 3 3 3 9.5

JPS+ 2 0 0 0 2

JPS+(P) 2 2 2 2 8

For this experiment, each winner algorithm receives a score
of 1 and a score of 0.5 for a tie situation. Scoring calculation
has been summarized and presented in Table X.

Table X shows that according to five evaluation metrics as
explained previously, JPS (B) is the superior and potential
algorithm among the five algorithms tested in the given source
code. Thus, JPS(B) is the chosen algorithm for further testing
and code optimization which will be explained in the following
section.

V. JPS(B) CODE OPTIMIZATION

For the implementation of JPS(B), the use of vector is
widely utilized in the program’s code as highlighted in Fig. 1.

As depicted in Fig. 1, JPS (B) in its implementation spends
numerous of its time accessing the vector, thus, impeding, and
slow down the overall process to search the path. For example,
there are 130 scenarios in arena.scen benchmarking file, and it
requires almost 1448 method invocation by the syntax
“jp_ids_at(i)” in the loop. Every time the program runs the
syntax “at(i)” to access the vector’s element, compiler will do a
range checking. When the program trying to access an element
that does not exist in the vector, it throws an exception. Errors
will be more easily found using this checking procedure
through the syntax “at(i)”. However, as mentioned earlier, the
syntax “at(i)” will cause overhead to the overall program in
terms of search time.

In this code optimization for JPS(B), the original
implementation access values from the “std::vect” class by
using syntax “at(i)”. The implementation is changed from
syntax “at(i)” to syntax “[i]” to access the vector as highlighted
in Fig. 2.

The two differ significantly: “at()” checks boundaries while
operator “[]” does not. Thus, this will result in a reduction of
overhead for the program's code since the syntax for accessing
the vector has been changed.

Fig. 1. Snippet for JPS(B) source file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

392 | P a g e

www.ijacsa.thesai.org

Fig. 2. Snippet for JPS (BCO) source file.

VI. RESULT AND DISCUSSION FOR CODE OPTIMIZATION OF

JPS (BCO)

Based on the results of previous preliminary tests, it is
necessary to gain a good understanding of the JPS (B)
algorithm in order to optimize it.

In the given source code implementation, JPS (B) were
noticed to make good use of vectors and it can be manipulated
to take advantage to shorten the search time. In JPS (B) source
code, the way vectors are accessed has been modified, and the
optimized code version is named JPS (BCO). The following
Table XI is the comparison between JPS (B) and JPS (BCO) in
terms of search time. The same four benchmark files were
selected as used in previous preliminary testing. The
experiment is also repeated 10 times and the average is
calculated as shown in Table XI.

Based on Table XI, for the comparison, in terms of
expanded, generated, and touched nodes, there are no
differences between the JPS (B) and JPS (BCO). This is also
the same with memory consumption. It is because the changes
made to the vector did not affect any nodes. However, the
result was placed in the same table as search time, to
demonstrate the differences of overall performance.

TABLE XI. COMPARISON OF JPS (B) AND JPS (BCO)

E
v

a
lu

a
ti

o
n

m
et

ri
cs

A
lg

o
ri

th
m

a
re

n
a

d
en

5
0

1
d

b
rc

2
0

2
d

o
rz

7
0
0

d

Expanded

nodes

JPS (B) 1.554 113.429 342.806 479.533

JPS

(BCO)
1.554 113.429 342.806 479.533

Generated

nodes

JPS (B) 10.938 151.638 386.259 527.278

JPS

(BCO)
10.938 151.638 386.259 527.278

Touched

nodes

JPS (B) 13.692 334.507 1022.475 1565.875

JPS

(BCO)
13.692 334.507 1022.475 1565.875

Search time

(micro

seconds)

JPS (B) 4.987 98.240 273.451 430.474

JPS

(BCO)
4.021 90.212 264.906 416.608

Memory

(bytes)

JPS (B) 6185888 6304568 6719204 7245720

JPS

(BCO)
6185888 6304568 6719204 7245720

Fig. 3. Boxplot of result of JPS (B) and JPS (BCO).

In terms of search time, the average result is shown in
microseconds which is much smaller unit than second and
milliseconds. For arena file, the average search time using JPS
(BCO) is only a microsecond shorter than JPS(BCO)
performance. For the rest of the three benchmark files, each
represents 8.0, 8.5 and 13.9 microseconds of faster acceleration
in terms of search time. In order to provide a clear
understanding of the code optimization results, a comparison of
JPS(B) and JPS(BCO) search times is shown in Fig. 3.

From Fig. 3, in this boxplot, average time for JPS(B) take
longer time in microseconds than JPS(BCO). In this
modification of vector access’s syntax, switching from “at()” to
operator “[]” was a straightforward fix, but it resulted in a
speed boost for the average of search time.

VII. CONCLUSION

Several pathfinding algorithms were compared including
the well-known and traditional algorithm A*. The preliminary
comparisons identify JPS(B) as a potential and the superior
algorithms among the five tested algorithm. Thus, this paper
performs a code optimization to the JPS(B) and called it as
JPS(BCO). JPS(BCO) enhance JPS(B) performance by slightly
shorten the search time.

In future, several modifications to the code implementation
need to be studied in order to improve and enhance the
performance of the JPS(B) significantly. The optimization
should aim to improve not only the search time, but other
evaluation metric such as total expanded nodes. Generally, it is
not necessary to record time across platforms or machines for
total expanded nodes to prove their performance, since the
average is constant regardless of the platform.

In conclusion, this study has provided insight into potential
and superior algorithms among JPS family members. As a
result, this proposed work presents a comparison of existing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

393 | P a g e

www.ijacsa.thesai.org

algorithms. Apart from that, this study improved the JPS(B)
search time through code optimization. The direction of future
research can be explored in other areas, such as SAR and UAV
navigation for pathfinding optimization.

ACKNOWLEDGMENT

This research was conducted during the main author’s
study leave under the 2019 Academic Training Scheme for
Bumiputera (SLAB) scholarship scheme. A special thanks is
extended to the Ministry of Education Malaysia and Universiti
Teknologi MARA for the generous funding and support. It is
with great appreciation that this research is being conducted
with the assistance of postgraduate students from the Media
and Game Innovation Centre of Excellence (MaGICX) at
Universiti Teknologi Malaysia (UTM).

REFERENCES

[1] N. Nor, M. Sunar, and A. Kapi, “A review of gamification in virtual
reality (VR) sport,” EAI Endorsed Trans. Creat. Technol., vol. 6, no. 21,
2019.

[2] A. Y. Kapi, M. S. Sunar, and M. N. Zamri, “A review on informed
search algorithms for video games pathfinding,” Int. J. Adv. Trends
Comput. Sci. Eng., vol. 9, no. 3, pp. 2756–2764, 2020, doi:
10.30534/ijatcse/2020/42932020.

[3] A. Y. Kapi, M. S. Sunar, and Z. A. Algfoor, “Summary of Pathfinding in
Off-Road Environment,” in 2020 6th International Conference on
Interactive Digital Media (ICIDM), 2020, pp. 1–4, doi:
10.1109/ICIDM51048.2020.9339639.

[4] Z. Abd Algfoor, M. S. Sunar, and H. Kolivand, “A comprehensive study
on pathfinding techniques for robotics and video games,” Int. J. Comput.
Games Technol., vol. 2015, 2015, doi: 10.1155/2015/736138.

[5] S. Rabin and N. R. Sturtevant, “Choosing a Search Space
Representation,” Game AI Pro 360, vol. 1, no. c, pp. 13–18, 2019, doi:
10.1201/9780429055096-2.

[6] D. Harabor and A. Grastien, “Improving jump point search,” in
Proceedings of the International Conference on Automated Planning and
Scheduling, 2014, vol. 24, pp. 128–135.

[7] A. N. Sabri, N. Haizan, M. Radzi, and H. Hassan, “The State of Art
Heuristic Pathfinding in Games,” vol. 24, no. 2, pp. 1273–1278, 2018,
doi: 10.1166/asl.2018.10731.

[8] X. Wei and D. Lu, “A Comprehensive Study on Pathfinding Algorithm
for Static 2D Square Grid,” Proc. - 2022 2nd Asia Conf. Inf. Eng. ACIE
2022, pp. 77–80, 2022, doi: 10.1109/ACIE55485.2022.00024.

[9] A. Primanita, R. Effendi, and W. Hidayat, “Comparison of A∗ and
Iterative Deepening A∗ algorithms for non-player character in Role
Playing Game,” ICECOS 2017 - Proceeding 2017 Int. Conf. Electr. Eng.

Comput. Sci. Sustain. Cult. Herit. Towar. Smart Environ. Better Futur.,
pp. 202–205, 2017, doi: 10.1109/ICECOS.2017.8167134.

[10] E. R. Firmansyah, S. U. Masruroh, and F. Fahrianto, “Comparative
analysis Of A∗ and basic theta∗ algorithm in android-based pathfmding
games,” Proc. - 6th Int. Conf. Inf. Commun. Technol. Muslim World,
ICT4M 2016, pp. 275–280, 2017, doi: 10.1109/ICT4M.2016.56.

[11] A. Rafiq, T. A. A. Kadir, and S. N. Ihsan, “Pathfinding Algorithms in
game development,” in IOP Conference Series Materials Science and
Engineering, 2020, vol. 769, no. 1, p. 12021.

[12] A. Goyal, P. Mogha, R. Luthra, and N. Sangwan, “Path finding: A* or
dijkstra’s?,” Int. J. IT Eng., vol. 2, no. 1, pp. 1–15, 2014.

[13] Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: A RRT-Based
Optimal Path Finding Method,” Appl. Sci., vol. 11, no. 24, p. 11777,
2021.

[14] J.-Y. Wang and Y.-B. Lin, “Game AI: Simulating Car Racing Game by
Applying Pathfinding Algorithms,” Int. J. Mach. Learn. Comput., vol. 2,
no. 1, pp. 13–18, 2012, doi: 10.7763/ijmlc.2012.v2.82.

[15] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on
grid maps,” Proc. Natl. Conf. Artif. Intell., vol. 2, pp. 1114–1119, 2011.

[16] Y. Zhang and H. Huang, “Multi-AGVs Pathfinding Based on Improved
Jump Point Search in Logistic Center,” in Algorithmic Aspects in
Information and Management, 2020, pp. 358–368.

[17] X. Zheng, X. Tu, and Q. Yang, “Improved JPS Algorithm Using New
Jump Point for Path Planning of Mobile Robot,” in 2019 IEEE
International Conference on Mechatronics and Automation (ICMA),
Aug. 2019, pp. 2463–2468, doi: 10.1109/ICMA.2019.8816410.

[18] L. Ma, X. Gao, Y. Fu, and D. Ma, “An Improved Jump Point Search
Algorithm for Home Service Robot Path Planning,” Proc. 31st Chinese
Control Decis. Conf. CCDC 2019, pp. 2477–2482, 2019, doi:
10.1109/CCDC.2019.8833422.

[19] J. Wang and J. Jiang, “Jump point search plus algorithm based on radar
simulation target path planning,” Proc. - 2017 Int. Conf. Comput.
Technol. Electron. Commun. ICCTEC 2017, pp. 480–483, 2017, doi:
10.1109/ICCTEC.2017.00110.

[20] D. Aversa, S. Sardina, and S. Vassos, “Path planning with Inventory-
driven Jump-Point-Search,” no. September, 2016, [Online]. Available:
http://arxiv.org/abs/1607.00715.

[21] Z. A. Algfoor, M. S. Sunar, and A. Abdullah, “A new weighted
pathfinding algorithms to reduce the search time on grid maps,” Expert
Syst. Appl., vol. 71, pp. 319–331, 2017, doi:
10.1016/j.eswa.2016.12.003.

[22] N. R. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE Trans.
Comput. Intell. AI Games, vol. 4, no. 2, pp. 144–148, 2012.

[23] C. McMillan, E. Hart, and K. Chalmers, “Collaborative diffusion on the
gpu for path-finding in games,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9028,
pp. 418–429, 2015, doi: 10.1007/978-3-319-16549-3_34.

