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Abstract—There is abundance of mobile Apps released 

continuously on the App store, where developers are required to 

maintain these Apps to attain user satisfaction. Developers 

should consider all user feedback, as they are important 

resources for planning of next App’s release. In order to consider 

user feedback, many platforms host mobile Apps and allow users 

to submit their opinions, such as: Google Play App store and 

Github Open-Source Development platform. The automated 

consolidation of user feedback from such platforms, and 

transforming it into a list of change requests would result in 

satisfying users across different platforms, and their analysis 

helps developer to reduce cost of time and effort to plan for the 

new release of the mobile App. In this paper, a framework is 

proposed which integrates user feedback from different sources 

and analyzes them using a state-of-art user reviews analysis tool 

to obtain a list of change requests, such list is further examined 

for similarity to remove duplicates and prioritize the identified 

change requests. A prototype is designed to implement the 

proposed framework and applied to AntennaPod. Consequently, 

the framework experimentation results show that reviews and 

issue reports can be analyzed almost equally despite the 

difference of text’s nature. 

Keywords—User review; feedback analysis; mobile app 

maintenance; text similarity 

I. INTRODUCTION 

The mobile App stores play an important role in 
distributing software products from different domains. In 2022 
according to Statista website1, Google Play store offers 3.3 
million Apps for Android, while App store roughly includes 
2.11 million Apps for iOS. The number of Apps increases 
over the years as they are widely discovered, purchased, and 
updated through the mobile App stores (e.g., Google Play 
store and App store). Recently, researchers have studied the 
effect of App stores on software engineering practices [1, 2], 
while others have analyzed the benefit of using user reviews 
for software engineering [3, 4]. 

One of the most essential resources for the requirements 
elicitation activity is user reviews [5], which is offered by App 
stores allowing users to evaluate the downloaded Apps and to 
express their opinions [6]. App reviews are textual feedback 
associated with a star rating that indicates user satisfaction 
from one to five, where one is the lowest rate and five is the 
highest rate. However, the analysis of user reviews manually 
for extracting user needs is a challenging and time-consuming 
task [7]. As stated by Pagano et al. [8] 23 reviews per day are 

                                                           
1https://www.statista.com/statistics/276623/number-of-apps-available-in-

leading-app-stores/ 

submitted in non-popular mobile Apps approximately and on 
average 4,275 reviews per day are received in popular Apps, 
such as Facebook. Besides, the feedback is usually written as 
unstructured text which cannot be parsed and analyzed easily. 

Automated approaches are required to handle the 
consolidation of large amount of reviews and to perform 
review analysis tasks, such as: classifying feedback into 
maintenance tasks [9] or classifying feedback based on 
predefined topics [10] or based on user intention [11]. For 
example, reviews had been classified by Sorbo et al. into four 
intention categories based on user‟s intention while expressing 
their opinion such as information giving (opinion), 
information seeking (question), feature request (improvement 
or new feature), and problem discovery (bug report) [11]. 

In a recent review analysis survey [4], it had been raised 
that App store reviews can be integrated with other feedbacks 
available for developers to attain users‟ needs from more than 
one source, such as: Github [12, 13] and tweets [14, 15]. Since 
a mobile App can be hosted across platforms, such integration 
would demand a lot of manual effort from the App developer 
a lot of time and effort from App developer. The manual effort 
entails filtering manually such a large number of users‟ 
feedbacks from more than one platform to produce a list of 
change request which might still include duplicate change 
requests from different platforms. 

In this paper, Google Play App store2 reviews and Github3 
issue reports are integrated. GitHub is a leading open-source 
software development platform worldwide, it has more than 
one million android open-source repositories, four million 
issue reports, and 69K contributors in 20224 . Accordingly, 
Github is a good candidate as an additional source for 
integration since there are a reasonable number of mobile 
Apps exists on both platforms. The proposed framework aims 
at combining Google Play reviews and Github issue reports 
for a certain App‟s version release to obtain a list of change 
requests which includes bugs and feature requests submitted 
by users from both platforms and to group similar change 
requests for producing a list of unique change request. This 
list guides App‟s developers in planning for next release to 
meet further users‟ satisfaction, while eliminating the manual 
needed developer effort to analyze each platform‟s feedbacks 
separately, and the possible error proneness of such process. 

This paper is organized as follows: Section II presents a 
brief background overview and motivating example which 

                                                           
2 https://play.google.com/ 
3 https://github.com/ 
4 https://github.com/search?q=Android 

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://play.google.com/
https://github.com/
https://github.com/search?q=Android
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demonstrate the importance of the proposed framework. 
Section III, discusses the related work of issue reports and 
user reviews integration and compares between the previous 
work and the approach proposed. Section IV introduces the 
proposed framework used for integration users‟ feedback to 
obtain a unique list of informative user feedback of two 
intentional category types. Section V describes a case study 
for applying the framework‟s phases using a dataset and it also 
discusses the evaluation metrics used for evaluating the 
framework‟s results. Section VI presents the results of the case 
study and its discussion. Finally, Section VII concludes the 
study and explains the future avenues. 

II. BACKGROUND AND MOTIVATION EXAMPLE 

In this section, the Google Play store‟s reviews and 
Github‟s issue reports are introduced to illustrate their 
attributes, also the importance of users‟ feedbacks integration 
across different platforms is explained further. 

 
Fig. 1. Example of Google app review. 

The App reviews are considered as one of the main 
framework inputs, therefore, it is important to understand the 
metadata associated per user review. As illustrated in Fig. 1, 
an example is provided by Google Play App store where a 
user named “Jon Dean” submitted a review on 12 May 2022, 
rated the App by “4 stars”, and stated a bug experienced while 
using Antenna pod App version 2.5.2 (i.e., a podcast manager 
and player App). As shown in Fig. 1, each review has a date, 
user name, title, body, rate, number of likes, and a reply. 

 
Fig. 2. Example of Github issue report. 

In Github platform, for each App‟s release there are a set 
of issues submitted by users to be received by App developers 
to inform them whether there is a bug or a feature request to 
be considered in the following release and sometimes users 
might ask a question, when the issue is executed, it became a 
closed issue else it remains as an open issue. In Fig. 2, a user 
named “PersimmomKnob” submitted issue #4210 in Github 
platform, the user expressed a desired feature request regard 
sorting subscription feature, and it was labeled as feature 
request (not all issues are labeled). As shown in Fig. 2, each 
issue has a date, an id., open or closed issue label, user name, 
title, body, label (type of issue), number of likes, comments, 
and Assignees (i.e., members who works on this issue to be 
solved). 

TABLE I. ANTENNAPOD MOBILE APP ISSUE REPORTS AND REVIEW 

EXAMPLES 

Feedback 

Type 
Description 

Review 
Downloads don't show in the downloads folder. Podcasts dont 

seem to download automatically. I like the design though... 

Issue 

Report 

When I add the Feed http://podcast.hr2.de/derTag/podcast.xml it 

shows all files/episodes as 0 Byte. They are not automatically 

downloaded. I can download manually and listen to every 

episode. Every time the feed updates the first entry vanishes 

(even when downloaded) until everything is gone. Recent 

version (0.9.8.0) from play store on Android 4.1.1. 

Issue 

Report 

When the automatic download updates the feeds and a new 

episode is found, that episode is not downloaded immediately. 

Instead AntennaPod will wait for your custom set update 

interval (2h in my case). Leaving the house with an 

undownloaded episode is a bit annoying, easpecially when the 

download would have only taken a few seconds on your wifi. I 

did not test if that issue appears when setting a high update 

interval, but if it does one would receive all new episodes only 

after a high delay. My personal fix is to regularly check for new 

podcasts and hitting the update button manully, but I would like 

AntennaPod to be purely push- and not pull-style. 

In Table I, an example of AntennaPod mobile App‟s 
version 0.9.8.0 reviews from Google Play5 and issue reports 
from Github6 where users express the same problem regard 
not being able to download their podcast automatically (i.e., 
underlined sentences). In contrast to reviews, the issue reports 
are more detailed and all sentences are focused in describing 
one problem rather than stating more than one information. 
The problem is expressed using different keywords, such as 
“download automatically” is similar to “download 
immediately” and “Podcasts” is similar to “Episode” as a 
podcast consists a set of episodes. Accordingly, the 
automation of integrating reviews and issue reports prevents 
the challenges of manual integration, such as: time-
consuming, error prone and redundancy. Besides, the 
automation is needed to (i) handle the different usage of 
phrases which is challenging automatically to group all such 
reviews and issue reports, which express a bug or a feature 
request, into one list, and (ii) consider the rate at which the 
same problem is reported from different platform as a possible 
priority/importance indicator for that problem. 

III. RELATED WORK 

A few approaches address integrating user reviews and 
other resource and most of those researches aims at using one 
source of data to enrich the other for a specific purpose which 
fulfill their proposed approach‟s purpose. Such approaches are 
discussed below in order to explain their aims and the 
differences between the proposed framework and their work. 

Zhang et al. [12] proposes an approach for tagging the 
unlabeled Github issue reports using labeled issue reports and 
user reviews. Github issue report have an associated label, 
which define the type of this issue report (i.e. bug or feature 
request), and this label are optionally added which leads into 
some unlabeled issue reports. On the other hand, user reviews 
are classified into bug and feature request using a tool then 
both labeled issue reports and classified reviews are used as 
input for calculating text similarity between unlabeled issue 

                                                           
5 https://play.google.com/store/apps/details?id=de.danoeh.antennapod 
6 https://github.com/AntennaPod/AntennaPod/issues 

https://play.google.com/store/apps/details?id=de.danoeh.antennapod
https://github.com/AntennaPod/AntennaPod/issues
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reports and the input. On the contrary, the proposed 
framework focuses on integrating both reviews and issue 
reports for filling all issue reports‟ labels, which helps the 
developer to filter issue reports according to its label without 
dealing with redundant issue reports. 

Zhang et al. [13] introduces an approach for grouping user 
reviews as a cluster which addresses bugs and feature requests 
of a certain mobile App, along with relevant issue reports for 
enriching the cluster of user feedback. This approach utilizes 
user feedback clusters for linking each cluster to set of 
relevant code classes (i.e., affected classes if this group of 
bugs or feature requests is implemented). The classes are 
obtained through calculating the text similarity between 
classes‟ names and text of reviews and issue reports within 
each cluster producing a ranked list of classes recommended 
for each cluster. The paper integrated reviews and issue 
reports for enriching the reviews‟ cluster for recommending 
more accurate classes, which guides the developer on having a 
list of classes recommended per each cluster, unlike the 
proposed framework, if an issue report is not similar to any 
review, then it will be excluded, also if there are a number of 
similar issue reports that are not similar to any review, they 
will be excluded. 

Yadav et al. [15] proposes a framework to analyze the 
users‟ feedback, from Google Play store and Twitter, by 
embedding their semantics. The framework classifies the 
feedback into two classes of bug reports and feature requests 
then it investigates whether the approach can identify the 

similar feedbacks. This paper is an example for integration 
using Twitter, where user can express their opinions regard 
mobile Apps through posting a tweet with a limited 140 
character. On the contrary, the proposed framework uses 
different type of information which Github issue report where 
users are able to write in more details as shown in Table I and 
they are not limited to express their opinions briefly using 
limited short text. 

IV. PROPOSED FRAMEWORK 

In this framework, as shown in Fig. 3, the Google Play 
App store is used as a source of reviews while Github is used 
as a source of issue reports where both reviews and issue 
reports form feedback inputs. There are three main phases 
which process the input to produce a unique change request 
list, which are explained as follows: 

1) Feedback pre-processing: Each feedback has a text 

which is divided into sentences and pre-processed by applying 

Snowball Stemming [16]. 

2) Feedback classification: Each sentence is parsed using 

Stanford Typed Dependencies (STD) [17] then mapped to a 

set of 246 natural language processing (NLP) heuristics7 to 

obtain the sentence‟s structural patterns associated with one of 

user‟s categories. Additionally, each sentence is analyzed to 

get sentiment annotator using Stanford CoreNLP [18] for 

improving the accuracy of intent classification. Both structural 

patterns and sentiment features are used as an input for a pre-

                                                           
7 https://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf 

trained Machine Learning [19, 20]. The output of this phase is 

a list of change requests classified as bug or feature request. 

3) Text similarity calculation: According to previous 

work [12], cosine similarity measure and BM2F model were 

used for calculating textual similarity between issue reports, 

while Jaccard similarity is used for calculating textual 

similarity between issue reports and reviews because it 

performs better when data is sparse. The output of this phase 

is a unique change requests list where similar change requests 

are grouped. 

For applying phase 1 and phase 2, there are a set of 
publicly-available App review mining tools according to the 
recently published survey [4]. SURF (Summarizer of User 
Reviews Feedback) was used in other research papers and 
they showed promising results [12, 13]. For input processing, 
SURF is used as a tool which summaries the feedback written 
by users to assist developers in figuring out user needs and 
dealing with an abundance number of reviews. The tool works 
as follows: (i) classifies user‟s intention determining the type 
maintenance task required to fulfill user‟s needs, (ii) gathers 
sentences of the same topic, (iii) receives user feedback in 
XML format and also generates the output in XML format 
which allows integrating them in third party frameworks, and 
(iv) produces a visualized report for browsing the summaries 
easily. 

Moreover, SURF is constructed based on User Reviews 
Model (URM) [21, 19] which categorizes each sentence 
contained in App reviews into two dimensions: (i) the user 
intention: It is user‟s goals when writing a review (such as: 
Information giving, Information seeking, Feature request, 
Problem discovery, or other), and (ii) the review topics: It 
finds the most relevant topic(s) belong to this review (such as: 
App, GUI, Contents, Pricing, Feature or Functionality, 
Improvement, Updates/Versions, Resources, Security, 
Download, Model, or Company). 

 
Fig. 3. Proposed framework phases. 

 
Fig. 4. Example of output report. 

https://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf
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Not all of the change request sentences will appear on the 
output report in case it did not match an intention type or one 
of the predefined topics. Moreover, a sentence can be 
dismissed from the output report due to the sentence scoring 
which is calculated to select 2/3 of total sentences having the 
highest scores will be included on the report. The rewarding 
factors of sentence scoring are: (i) sentences classified as 
feature requests or bug reports, (ii) sentences related to 
specific topics, (iii) longer sentences, and (iv) sentences 
containing frequently discussed features. Afterwards, the 
output report is obtained in XML format which can be easily 
browsed through visualized utility supported in the SURF 
replication package8. As illustrated in Fig. 4, the topics are 
listed in rows where each topic has four types of intention 
categories colored differently, each type has number of 
sentences extracted from xml input file, and the sentences 
appear when you click on the number. 

The SURF tool produces XML file report which includes 
each feedback‟s sentence and its user intention category. In 
this paper, the sentences are considered as change request, if it 
is classified as bug or feature request, extracted to form a list 
of change requests, then the text similarity is applied for 
reducing the list size by grouping similar sentences into one 
change request. 

V. FRAMEWORK CASESTUDY AND EVALUATION 

A case study is applied on the proposed framework using 
an open-source dataset for implementing and evaluating the 
phases of the framework. In this section, the details of such 
case study (section 5.1) and evaluation (section 5.2) are 
presented to address two research questions: (RQ1) „Can the 
framework classify the users‟ reviews and issues to obtain a 
list of change requests?‟; (RQ2) „To what extend the 
framework is capable of classifying all the change requests 
into bug or feature request accurately?‟; (RQ3) „Does the 
framework similarity percentage is reasonable and worth to be 
a part of the proposed framework?‟. 

A. Experimental Case Study 

In phase 1, the dataset used for the experimentation had 
been publicly shared by [12], it includes top 17 popular 
android open-source mobile Apps which are available in both 
Google Play store and Github. The user reviews and the issue 
reports were collected for each App during a specific period 
which is different from App to another, where the dataset 
includes 20,135 issue reports and 43,649 reviews. The 
framework is applied on “AntennaPod” App which includes 
1108 Github issue reports and 2082 Google Play reviews, such 
data was collected from 3 August 2012 till 9 January 2018. 
Particularly, App version 0.9.8.0 was selected as input which 
is gathered from 19 October 2013 to 26 February 2014 (i.e. 
before version 0.9.8.1 publishing date on 27 Feb 2014) and it 
has 43 issue reports and 50 reviews. 

Additionally, the date attribute in issue xml file had been 
added to the dataset for obtaining the version of App in which 
the issue was submitted. 

                                                           
8 https://github.com/panichella/SURF/tree/SURF-v.1.0 

 

 

Fig. 5. Example of dataset review and issue XML files. 

As shown in Fig. 5, the dataset stores reviews and issue in 
form of XML format, where a set of attributes are defined for 
each review and issue report. In reviews, the xml file contains 
user name, date, user rating, review title, and review text 
(body), on the other hand, the issue reports xml file contains 
label, issue id., issue URL, description (body), title, and date. 

In phase 2, the SURF tool requires the input in form of 
XML file, where attributes should be written in a specific 
format (as shown in Fig. 6). Accordingly, the attributes of the 
dataset xml files has to be converted to fit SURF tool input 
prerequisite specification in attributes naming (e.g. the review 
title attribute is named as <title> in issue report xml file, it has 
to be changed into <review_title> for all stored issue reports 
to fit SURF input file). For all reviews and Github issue 
reports of a version App, the naming of attributes are changed 
to match SURF input file, all non-English feedback are 
removed because the tool only process English text, then both 
feedbacks are gathered in one file for to be processed by the 
tool. 

 
Fig. 6. SURF tool input XML file format [11]. 

TABLE II. SURF CLASSIFIED SENTENCES FOR DATASET 

Source of Classified Sentence Number of Sentences 

Total Sentences (S) 70 

Feature Requests in Reviews (RF) 9 (7) 

Bugs in Reviews (RB) 4 (4) 

Feature Requests in Issues (IF) 19 (14) 

Bugs in Issues (IB) 10 (9) 

https://github.com/panichella/SURF/tree/SURF-v.1.0
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In Table II, when SURF tool is used to process the input 
only 70 sentences were classified while the rest did not appear 
in the output XML report. The SURF tool does not provide a 
sentence in output report unless it is able to classify its 
intention type (i.e., according to “predefined patterns” 
matching) and also if it is able to classify its topic (i.e., based 
on “topic words dictionary” matching). Additionally, sentence 
scoring results is reduced by 30% of total sentences according 
to four factors which are previously mentioned. As shown in 
Table II, the number of sentences per each type is mentioned 
and the number of correctly classified types is written between 
brackets. For example, the tool classified nine review‟s 
sentences as feature requests and compared to the manually 
labeled 19 sentences mentioned in Table IV only 7 sentences 
were classified correctly. According to the results mentioned 
in Table II, RQ1 is answered: 

Answer to RQ1: the framework is able to classify both 
reviews and issues using the same approach explained 
previously in Section IV. 

TABLE III. CHANGE REQUESTS SIMILARITY FEATURES 

Change Request Issue Review 

Login Dark Theme 2 0 

Auto Delete 1 3 

Auto Download 2 1 

Pause Frequently 0 2 

Stop Playing 1 2 

fix widget 0 3 

Download Scheduler 0 2 

Less Cache 0 2 

skip back 1 1 

Total 7 16 

In phase 3, the list of change requests is studied manually 
to analyze the repeated requests, the results are depicted on 
Table III which lists the name of the addressed feature, and the 
number of issues or reviews mentioned this feature as a bug or 
a feature request having similar change request. There are nine 
change requests which had been expressed by more than one 
user whether in Github or Google Play store platforms. 

B. Case Study Evaluation and Results 

After executing the framework, the dataset‟s sentences are 
manually classified and labeled to be used in evaluating the 
accuracy of the framework‟s output. Thus, the input is divided 
into a set of sentences to be manually classified for obtaining 
the user intention type for each sentence to be used as a 
ground truth. For splitting the input into sentences, a natural 
language toolkit (NLTK) has been utilized in python program 
which offers NLP methodology implementation. 

As shown in Table IV, the total number of sentences in the 
dataset are 252, part of these sentences belongs to issue report 
extracted from Github platform (135 sentences) and the other 
sentences belong to reviews extracted from Google Play store 
(117 sentences). The manually labeled sentences show that 
16% of reviews‟ sentences are feature requests while 23% of 

reviews‟ sentences are bugs, on the other hand, 17% of issue 
report‟s sentences are feature requests while 39% of issue 
report‟s sentences. Those percentages show that, in such 
dataset, only half of the total sentences are useful for the 
developers as they state the changes requested by the App‟s 
users. 

For evaluating accuracy of the change request list‟s output 
sets (i.e. list of sentences), both ground truth‟s four sets (MIB, 
MIF, MRB, and MRF) shown in Table IV and SURF tool‟s 
produced sets (IB, IF, RB, and RF) shown in Table II are used to 
measure recall and precision which are a well-established 
metrics reported in Equations 1 and 2. 

Recall  
TP

TP+F 
  (1) 

Precision  
TP

TP+FP
  (2) 

TABLE IV. MANUALLY CLASSIFIED SENTENCES FOR DATASET 

Source of Sentence Number of Sentences 

Total Sentences (MS) 252 

Google Play Reviews (MR) 117 

Github Issue Reports (MI) 135 

Feature Requests in Reviews (MRF) 19 (16%) 

Bugs in Reviews (MRB) 27 (23%) 

Feature Requests in Issues (MIF) 23 (17%) 

Bugs in Issues (MIB) 53 (39%) 

In particular, TP represents the number of true positives 
reviews/issue reports classified correctly; False Positive (FP) 
is the number of reviews/issue reports classified incorrectly by 
the approach; and False Negative (FN) is the number of 
correct reviews/issue reports (i.e., manually classified as bug 
or feature request) that are not classified by the approach. 

For applying accuracy measurement, three variables are 
required to calculate precision and recall as in equation (1) and 
(2), shown in Table V. Also, F-measure is used as it combines 
both recall and precision by calculating the harmonic mean of 
precision and recall to obtain the overall accuracy of the 
proposed approach, known as the F-measure in Equation 3: 

F-measure 2*
Precision*recall

Precision+recall
   (3) 

After calculating accuracy measurements, it is noticed that 
precision of bug is better than feature request (i.e. the ability 
of predicting change requests correctly), as shown in Table VI 
and Table VII, for both inputs issue reports or reviews. On the 
other hand, the recall of feature request is better than bug (i.e., 
the ability of to find all manually labeled relevant cases) in 
both issue reports and reviews. The SURF tool is able to 
predict the intentional type as they follow predefined textual 
patterns, such as: bug patterns “[something] is missing” and 
“[someone] has an issue”, but these patterns are not sufficient 
for covering all sentences expressing bugs and feature requests 
to be matched with the dataset. According to the results 
mentioned in Table VI and Table VII, RQ2 is answered: 
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TABLE V. THE CALCULATION OF ACCURACY MEASUREMENTS' 
VARIABLES 

Accuracy 

Measure 
TP FN FP 

Bug Issues 

Numbers of issues 

sentences 

classified as “bug” 

and manually 

labeled as “bug”. 

Numbers of issues 

sentences 

manually labeled 

as “bug” but not 

classified as 

“bug”. 

Numbers of issues 

sentences not 

manually labeled 

as “bug” but 

classified as 

“bug”. 

Feature 

Request 

Issues 

Numbers of issues 

sentences 

classified as 

“feature request” 

and manually 

labeled as “feature 

request”. 

Numbers of issues 

sentences 

manually labeled 

as “feature 

request” but not 

classified as 

“feature request”. 

Numbers of issues 

sentences not 

manually labeled 

as “feature 

request” but 

classified as 

“feature request”. 

Bug 

Reviews 

Numbers of 

reviews sentences 

classified as “bug” 

and manually 

labeled as “bug”. 

Numbers of 

reviews sentences 

manually labeled 

as “bug” but not 

classified as 

“bug”. 

Numbers of 

reviews sentences 

not manually 

labeled as “bug” 

but classified as 

“bug”. 

Feature 

Request 

Reviews 

Numbers of 

reviews sentences 

classified as 

“feature request” 

and manually 

labeled as “feature 

request”. 

Numbers of 

reviews sentences 

manually labeled 

as “feature 

request” but not 

classified as 

“feature request”. 

Numbers of 

reviews sentences 

not manually 

labeled as “feature 

request” but 

classified as 

“feature request”. 

 

TABLE VI. CLASSIFICATION EVALUATION OF SURF RESULTS FOR ISSUE 

REPORTS 

Change Request 

Type 
TP FN FP Precision Recall F-measure 

Bug 9 44 1 90% 17% 29% 

Feature Request 14 9 5 74% 61% 67% 

TABLE VII. CLASSIFICATION EVALUATION OF SURF RESULTS FOR 

REVIEWS 

Change Request 

Type 
TP FN FP Precision Recall F-measure 

Bug 4 23 0 100% 15% 26% 

Feature Request 7 12 2 78% 37% 50% 

Answer to RQ2: The experiment‟s precision was better 
than recall which affect negatively in F-measure, which means 
that the tool is able to classify most of the sentences correctly 
but it is not able to detect all relevant sentences in the used 
dataset. A few of modifications are exerted in Section 6 for 
enhancing the results of the tool used in phase 3. 

The output list is reduced using similarity calculation to 
reduce the total number of change requests (CR); thus, each 
sentence Si text is compared to other sentences. If Si is similar 
to one on more sentences, then they will be grouped as one 
change request, else nothing will change. The evaluation is 

performed by calculating the percentage of reduction using 
CR which is the total number of change requests‟ sentences 
before reduction (i.e., before grouping) and unique change 
requests (UCR) which is the total number of unique change 
requests‟ sentences, shown in Equation 4. 

Reduction Percentage  
#UCR*100

#CR
  (4) 

According to Table III and Equation 4, the total number of 
repeated change requests is 23 change requests (i.e., 7 issues 
and 16 reviews), the change requests list will be reduced from 
252 into 238 (i.e., reduced by 6%). According to such results 
mentioned, RQ3 is answered: 

Answer to RQ3: The framework‟s output of the similarity 
percentage is slightly reduced in phase 3 compared to the 
original change request list produced from phase 4, this 
observation is related to the nature of selected App‟s version 
dataset which needs to be investigated for other Apps‟ dataset. 

VI. RESULTS ENHANCEMENT AND DISCUSSION 

In this section, the impact of adding the title of the change 
request (e.g., review or issue report) is investigated to the 
change request body as an input to phase 2. Then, the output 
of phase 2 is evaluated to check whether the added topic may 
improve the recall values. Additionally, the patterns of SURF 
tool were studied to examine their sufficiency for covering all 
types of sentences belongs to bug or feature request. 

Another experimental trial has been performed for 
enhancing the results, which is adding the title of the change 
request into the beginning of the body. Because SURF tool 
only considers the review/issue report‟s body without 
including its title, i.e., it is a sentence-based classifier, 
although the title might contain valuable general information 
about the bug or feature request itself while the body includes 
extra explanatory information. Also, including the title might 
increase the fourth factor of sentence scoring which increase 
the feature discussed. In Table VIII, the evaluation results 
slightly changed only in review input, and it was a minor 
change where an extra bug was classified by SURF correctly 
(i.e., increasing recall and f-measure) and a feature request 
where misclassified (i.e., decreasing precision and f-measure). 

As shown in Table IX, when the sentences are changed to 
follow the predefined SURF pattern, such in all examples 
except the third one (i.e., begin with the pattern by splitting 
the sentence), the SURF tool was able to classify the sentences 
correctly. Additionally, the position of the pattern affects the 
ability of classification, since the tool is not able to detect the 
pattern when it is embedded in the middle of a long sentence. 
It is noticed that papers [12, 13], explained in Section II, used 
SURF tool and both mentioned obtaining high overall 
accuracy of 91.36% and 95.64% respectively which are stated 
to be acceptable results. Although, this study uses the same 
dataset as paper [12] but the accuracy obtained was 77% as 
not all of the dataset was used, only one version of an App. 
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TABLE VIII. CLASSIFICATION EVALUATION OF SURF RESULTS FOR 

REVIEWS INPUT (INCLUDING TITLE) 

Change 

Request Type 
TP FN FP Precision Recall F-measure 

Bug 5 23 0 100% 19% 31% 

Feature Request 7 12 2 70% 37% 48% 

TABLE IX. ALTERING SENTENCES ACCORDING TO SURF PATTERNS 

SURF Pattern Original Sentence Altered Sentence 

“[something] can be 

fixed by 

[something]” 

My personal fix is to 

regularly check for 

new podcasts and 

hitting the update 

button manully, but I 

would like 

AntennaPod to be 

purely push- and not 

pull-style. 

This can be fixed by 

regularly checking for new 

podcasts and hitting the 

update button manully, but 

I would like AntennaPod to 

be purely push- and not 

pull-style. 

“[something] 

should be fixed” 

The widget needs 

fixing since it doesnt 

always work. 

The widget should be fixed 

since it doesnt always 

work. 

[someone] 

could/should 

add/provide/offer/in

tegrate [something] 

Congrats for your job 

in this App, its so 

amazing and for me 

almost perfect, I don't 

know if its hard to do 

or not, but if you could 

add the auto delete of 

the podcast when we 

finish it will be good. 

Congrats for your job in 

this App, its so amazing 

and for me almost perfect, I 

don't know if its hard to do 

or not. if you could add the 

auto delete of the podcast 

when we finish it will be 

good. Thanks! 

Wish i could schedule 

when it downloads the 

podcast. 

Wish i could add a schedule 

when it downloads the 

podcast. 

VII. CONCLUSION AND FUTURE WORK 

The users‟ contribution in expressing their opinions is 
considered as an important source for evolving mobile Apps 
and for better release planning. Mobile App can be distributed 
on many platforms where each platform allows users to 
submit their feedback for other users and App‟s developers to 
ask questions, state information, report a bug, or suggest a 
modification. Accordingly, the integration of more than one 
feedback source assists developer to satisfy large number of 
users which increase App‟s rating. Because of the large 
amount of feedback provided by users, an automatic tool for 
feedback analysis is required. In this paper, the proposed 
framework analyzed Google Play reviews and Github issues to 
filter them and to extract change requests out of the integrated 
feedback. After performing two trials, the accuracy results of 
reviews and issue reports showed slightly different values 
which proves that the nature of both textual feedbacks did not 
affect results after using the same tool. Despite the tool was 
able to classify the integrated inputs into bugs and feature 
requests, it was not able to extract all of them. Besides, the 
similarity can assist on reducing the number of change 
requests to decrease of the time needed for developer to check 
the list of change requests. In the future, we are interested in 
including more Apps feedback from dataset to be able to 
evaluate whether the results‟ insights are repeated using other 
versions or other Apps. Also, the similarity will be automated 

and examined in larger dataset versions and Apps to evaluate 
further the effect of reducing the list of change request. 
Finally, other analysis tools can be investigated for producing 
better results of the integrated users‟ feedback classification. 
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