
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

394 | P a g e

www.ijacsa.thesai.org

Integrating User Reviews and Issue Reports of

Mobile Apps for Change Requests Detection

Laila Al-Safoury, Akram Salah, Soha Makady

Department of Computer Science-Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt

Abstract—There is abundance of mobile Apps released

continuously on the App store, where developers are required to

maintain these Apps to attain user satisfaction. Developers

should consider all user feedback, as they are important

resources for planning of next App’s release. In order to consider

user feedback, many platforms host mobile Apps and allow users

to submit their opinions, such as: Google Play App store and

Github Open-Source Development platform. The automated

consolidation of user feedback from such platforms, and

transforming it into a list of change requests would result in

satisfying users across different platforms, and their analysis

helps developer to reduce cost of time and effort to plan for the

new release of the mobile App. In this paper, a framework is

proposed which integrates user feedback from different sources

and analyzes them using a state-of-art user reviews analysis tool

to obtain a list of change requests, such list is further examined

for similarity to remove duplicates and prioritize the identified

change requests. A prototype is designed to implement the

proposed framework and applied to AntennaPod. Consequently,

the framework experimentation results show that reviews and

issue reports can be analyzed almost equally despite the

difference of text’s nature.

Keywords—User review; feedback analysis; mobile app

maintenance; text similarity

I. INTRODUCTION

The mobile App stores play an important role in
distributing software products from different domains. In 2022
according to Statista website1, Google Play store offers 3.3
million Apps for Android, while App store roughly includes
2.11 million Apps for iOS. The number of Apps increases
over the years as they are widely discovered, purchased, and
updated through the mobile App stores (e.g., Google Play
store and App store). Recently, researchers have studied the
effect of App stores on software engineering practices [1, 2],
while others have analyzed the benefit of using user reviews
for software engineering [3, 4].

One of the most essential resources for the requirements
elicitation activity is user reviews [5], which is offered by App
stores allowing users to evaluate the downloaded Apps and to
express their opinions [6]. App reviews are textual feedback
associated with a star rating that indicates user satisfaction
from one to five, where one is the lowest rate and five is the
highest rate. However, the analysis of user reviews manually
for extracting user needs is a challenging and time-consuming
task [7]. As stated by Pagano et al. [8] 23 reviews per day are

1https://www.statista.com/statistics/276623/number-of-apps-available-in-

leading-app-stores/

submitted in non-popular mobile Apps approximately and on
average 4,275 reviews per day are received in popular Apps,
such as Facebook. Besides, the feedback is usually written as
unstructured text which cannot be parsed and analyzed easily.

Automated approaches are required to handle the
consolidation of large amount of reviews and to perform
review analysis tasks, such as: classifying feedback into
maintenance tasks [9] or classifying feedback based on
predefined topics [10] or based on user intention [11]. For
example, reviews had been classified by Sorbo et al. into four
intention categories based on user‟s intention while expressing
their opinion such as information giving (opinion),
information seeking (question), feature request (improvement
or new feature), and problem discovery (bug report) [11].

In a recent review analysis survey [4], it had been raised
that App store reviews can be integrated with other feedbacks
available for developers to attain users‟ needs from more than
one source, such as: Github [12, 13] and tweets [14, 15]. Since
a mobile App can be hosted across platforms, such integration
would demand a lot of manual effort from the App developer
a lot of time and effort from App developer. The manual effort
entails filtering manually such a large number of users‟
feedbacks from more than one platform to produce a list of
change request which might still include duplicate change
requests from different platforms.

In this paper, Google Play App store2 reviews and Github3
issue reports are integrated. GitHub is a leading open-source
software development platform worldwide, it has more than
one million android open-source repositories, four million
issue reports, and 69K contributors in 20224 . Accordingly,
Github is a good candidate as an additional source for
integration since there are a reasonable number of mobile
Apps exists on both platforms. The proposed framework aims
at combining Google Play reviews and Github issue reports
for a certain App‟s version release to obtain a list of change
requests which includes bugs and feature requests submitted
by users from both platforms and to group similar change
requests for producing a list of unique change request. This
list guides App‟s developers in planning for next release to
meet further users‟ satisfaction, while eliminating the manual
needed developer effort to analyze each platform‟s feedbacks
separately, and the possible error proneness of such process.

This paper is organized as follows: Section II presents a
brief background overview and motivating example which

2 https://play.google.com/
3 https://github.com/
4 https://github.com/search?q=Android

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://play.google.com/
https://github.com/
https://github.com/search?q=Android

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

395 | P a g e

www.ijacsa.thesai.org

demonstrate the importance of the proposed framework.
Section III, discusses the related work of issue reports and
user reviews integration and compares between the previous
work and the approach proposed. Section IV introduces the
proposed framework used for integration users‟ feedback to
obtain a unique list of informative user feedback of two
intentional category types. Section V describes a case study
for applying the framework‟s phases using a dataset and it also
discusses the evaluation metrics used for evaluating the
framework‟s results. Section VI presents the results of the case
study and its discussion. Finally, Section VII concludes the
study and explains the future avenues.

II. BACKGROUND AND MOTIVATION EXAMPLE

In this section, the Google Play store‟s reviews and
Github‟s issue reports are introduced to illustrate their
attributes, also the importance of users‟ feedbacks integration
across different platforms is explained further.

Fig. 1. Example of Google app review.

The App reviews are considered as one of the main
framework inputs, therefore, it is important to understand the
metadata associated per user review. As illustrated in Fig. 1,
an example is provided by Google Play App store where a
user named “Jon Dean” submitted a review on 12 May 2022,
rated the App by “4 stars”, and stated a bug experienced while
using Antenna pod App version 2.5.2 (i.e., a podcast manager
and player App). As shown in Fig. 1, each review has a date,
user name, title, body, rate, number of likes, and a reply.

Fig. 2. Example of Github issue report.

In Github platform, for each App‟s release there are a set
of issues submitted by users to be received by App developers
to inform them whether there is a bug or a feature request to
be considered in the following release and sometimes users
might ask a question, when the issue is executed, it became a
closed issue else it remains as an open issue. In Fig. 2, a user
named “PersimmomKnob” submitted issue #4210 in Github
platform, the user expressed a desired feature request regard
sorting subscription feature, and it was labeled as feature
request (not all issues are labeled). As shown in Fig. 2, each
issue has a date, an id., open or closed issue label, user name,
title, body, label (type of issue), number of likes, comments,
and Assignees (i.e., members who works on this issue to be
solved).

TABLE I. ANTENNAPOD MOBILE APP ISSUE REPORTS AND REVIEW

EXAMPLES

Feedback

Type
Description

Review
Downloads don't show in the downloads folder. Podcasts dont

seem to download automatically. I like the design though...

Issue

Report

When I add the Feed http://podcast.hr2.de/derTag/podcast.xml it

shows all files/episodes as 0 Byte. They are not automatically

downloaded. I can download manually and listen to every

episode. Every time the feed updates the first entry vanishes

(even when downloaded) until everything is gone. Recent

version (0.9.8.0) from play store on Android 4.1.1.

Issue

Report

When the automatic download updates the feeds and a new

episode is found, that episode is not downloaded immediately.

Instead AntennaPod will wait for your custom set update

interval (2h in my case). Leaving the house with an

undownloaded episode is a bit annoying, easpecially when the

download would have only taken a few seconds on your wifi. I

did not test if that issue appears when setting a high update

interval, but if it does one would receive all new episodes only

after a high delay. My personal fix is to regularly check for new

podcasts and hitting the update button manully, but I would like

AntennaPod to be purely push- and not pull-style.

In Table I, an example of AntennaPod mobile App‟s
version 0.9.8.0 reviews from Google Play5 and issue reports
from Github6 where users express the same problem regard
not being able to download their podcast automatically (i.e.,
underlined sentences). In contrast to reviews, the issue reports
are more detailed and all sentences are focused in describing
one problem rather than stating more than one information.
The problem is expressed using different keywords, such as
“download automatically” is similar to “download
immediately” and “Podcasts” is similar to “Episode” as a
podcast consists a set of episodes. Accordingly, the
automation of integrating reviews and issue reports prevents
the challenges of manual integration, such as: time-
consuming, error prone and redundancy. Besides, the
automation is needed to (i) handle the different usage of
phrases which is challenging automatically to group all such
reviews and issue reports, which express a bug or a feature
request, into one list, and (ii) consider the rate at which the
same problem is reported from different platform as a possible
priority/importance indicator for that problem.

III. RELATED WORK

A few approaches address integrating user reviews and
other resource and most of those researches aims at using one
source of data to enrich the other for a specific purpose which
fulfill their proposed approach‟s purpose. Such approaches are
discussed below in order to explain their aims and the
differences between the proposed framework and their work.

Zhang et al. [12] proposes an approach for tagging the
unlabeled Github issue reports using labeled issue reports and
user reviews. Github issue report have an associated label,
which define the type of this issue report (i.e. bug or feature
request), and this label are optionally added which leads into
some unlabeled issue reports. On the other hand, user reviews
are classified into bug and feature request using a tool then
both labeled issue reports and classified reviews are used as
input for calculating text similarity between unlabeled issue

5 https://play.google.com/store/apps/details?id=de.danoeh.antennapod
6 https://github.com/AntennaPod/AntennaPod/issues

https://play.google.com/store/apps/details?id=de.danoeh.antennapod
https://github.com/AntennaPod/AntennaPod/issues

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

396 | P a g e

www.ijacsa.thesai.org

reports and the input. On the contrary, the proposed
framework focuses on integrating both reviews and issue
reports for filling all issue reports‟ labels, which helps the
developer to filter issue reports according to its label without
dealing with redundant issue reports.

Zhang et al. [13] introduces an approach for grouping user
reviews as a cluster which addresses bugs and feature requests
of a certain mobile App, along with relevant issue reports for
enriching the cluster of user feedback. This approach utilizes
user feedback clusters for linking each cluster to set of
relevant code classes (i.e., affected classes if this group of
bugs or feature requests is implemented). The classes are
obtained through calculating the text similarity between
classes‟ names and text of reviews and issue reports within
each cluster producing a ranked list of classes recommended
for each cluster. The paper integrated reviews and issue
reports for enriching the reviews‟ cluster for recommending
more accurate classes, which guides the developer on having a
list of classes recommended per each cluster, unlike the
proposed framework, if an issue report is not similar to any
review, then it will be excluded, also if there are a number of
similar issue reports that are not similar to any review, they
will be excluded.

Yadav et al. [15] proposes a framework to analyze the
users‟ feedback, from Google Play store and Twitter, by
embedding their semantics. The framework classifies the
feedback into two classes of bug reports and feature requests
then it investigates whether the approach can identify the

similar feedbacks. This paper is an example for integration
using Twitter, where user can express their opinions regard
mobile Apps through posting a tweet with a limited 140
character. On the contrary, the proposed framework uses
different type of information which Github issue report where
users are able to write in more details as shown in Table I and
they are not limited to express their opinions briefly using
limited short text.

IV. PROPOSED FRAMEWORK

In this framework, as shown in Fig. 3, the Google Play
App store is used as a source of reviews while Github is used
as a source of issue reports where both reviews and issue
reports form feedback inputs. There are three main phases
which process the input to produce a unique change request
list, which are explained as follows:

1) Feedback pre-processing: Each feedback has a text

which is divided into sentences and pre-processed by applying

Snowball Stemming [16].

2) Feedback classification: Each sentence is parsed using

Stanford Typed Dependencies (STD) [17] then mapped to a

set of 246 natural language processing (NLP) heuristics7 to

obtain the sentence‟s structural patterns associated with one of

user‟s categories. Additionally, each sentence is analyzed to

get sentiment annotator using Stanford CoreNLP [18] for

improving the accuracy of intent classification. Both structural

patterns and sentiment features are used as an input for a pre-

7 https://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf

trained Machine Learning [19, 20]. The output of this phase is

a list of change requests classified as bug or feature request.

3) Text similarity calculation: According to previous

work [12], cosine similarity measure and BM2F model were

used for calculating textual similarity between issue reports,

while Jaccard similarity is used for calculating textual

similarity between issue reports and reviews because it

performs better when data is sparse. The output of this phase

is a unique change requests list where similar change requests

are grouped.

For applying phase 1 and phase 2, there are a set of
publicly-available App review mining tools according to the
recently published survey [4]. SURF (Summarizer of User
Reviews Feedback) was used in other research papers and
they showed promising results [12, 13]. For input processing,
SURF is used as a tool which summaries the feedback written
by users to assist developers in figuring out user needs and
dealing with an abundance number of reviews. The tool works
as follows: (i) classifies user‟s intention determining the type
maintenance task required to fulfill user‟s needs, (ii) gathers
sentences of the same topic, (iii) receives user feedback in
XML format and also generates the output in XML format
which allows integrating them in third party frameworks, and
(iv) produces a visualized report for browsing the summaries
easily.

Moreover, SURF is constructed based on User Reviews
Model (URM) [21, 19] which categorizes each sentence
contained in App reviews into two dimensions: (i) the user
intention: It is user‟s goals when writing a review (such as:
Information giving, Information seeking, Feature request,
Problem discovery, or other), and (ii) the review topics: It
finds the most relevant topic(s) belong to this review (such as:
App, GUI, Contents, Pricing, Feature or Functionality,
Improvement, Updates/Versions, Resources, Security,
Download, Model, or Company).

Fig. 3. Proposed framework phases.

Fig. 4. Example of output report.

https://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

397 | P a g e

www.ijacsa.thesai.org

Not all of the change request sentences will appear on the
output report in case it did not match an intention type or one
of the predefined topics. Moreover, a sentence can be
dismissed from the output report due to the sentence scoring
which is calculated to select 2/3 of total sentences having the
highest scores will be included on the report. The rewarding
factors of sentence scoring are: (i) sentences classified as
feature requests or bug reports, (ii) sentences related to
specific topics, (iii) longer sentences, and (iv) sentences
containing frequently discussed features. Afterwards, the
output report is obtained in XML format which can be easily
browsed through visualized utility supported in the SURF
replication package8. As illustrated in Fig. 4, the topics are
listed in rows where each topic has four types of intention
categories colored differently, each type has number of
sentences extracted from xml input file, and the sentences
appear when you click on the number.

The SURF tool produces XML file report which includes
each feedback‟s sentence and its user intention category. In
this paper, the sentences are considered as change request, if it
is classified as bug or feature request, extracted to form a list
of change requests, then the text similarity is applied for
reducing the list size by grouping similar sentences into one
change request.

V. FRAMEWORK CASESTUDY AND EVALUATION

A case study is applied on the proposed framework using
an open-source dataset for implementing and evaluating the
phases of the framework. In this section, the details of such
case study (section 5.1) and evaluation (section 5.2) are
presented to address two research questions: (RQ1) „Can the
framework classify the users‟ reviews and issues to obtain a
list of change requests?‟; (RQ2) „To what extend the
framework is capable of classifying all the change requests
into bug or feature request accurately?‟; (RQ3) „Does the
framework similarity percentage is reasonable and worth to be
a part of the proposed framework?‟.

A. Experimental Case Study

In phase 1, the dataset used for the experimentation had
been publicly shared by [12], it includes top 17 popular
android open-source mobile Apps which are available in both
Google Play store and Github. The user reviews and the issue
reports were collected for each App during a specific period
which is different from App to another, where the dataset
includes 20,135 issue reports and 43,649 reviews. The
framework is applied on “AntennaPod” App which includes
1108 Github issue reports and 2082 Google Play reviews, such
data was collected from 3 August 2012 till 9 January 2018.
Particularly, App version 0.9.8.0 was selected as input which
is gathered from 19 October 2013 to 26 February 2014 (i.e.
before version 0.9.8.1 publishing date on 27 Feb 2014) and it
has 43 issue reports and 50 reviews.

Additionally, the date attribute in issue xml file had been
added to the dataset for obtaining the version of App in which
the issue was submitted.

8 https://github.com/panichella/SURF/tree/SURF-v.1.0

Fig. 5. Example of dataset review and issue XML files.

As shown in Fig. 5, the dataset stores reviews and issue in
form of XML format, where a set of attributes are defined for
each review and issue report. In reviews, the xml file contains
user name, date, user rating, review title, and review text
(body), on the other hand, the issue reports xml file contains
label, issue id., issue URL, description (body), title, and date.

In phase 2, the SURF tool requires the input in form of
XML file, where attributes should be written in a specific
format (as shown in Fig. 6). Accordingly, the attributes of the
dataset xml files has to be converted to fit SURF tool input
prerequisite specification in attributes naming (e.g. the review
title attribute is named as <title> in issue report xml file, it has
to be changed into <review_title> for all stored issue reports
to fit SURF input file). For all reviews and Github issue
reports of a version App, the naming of attributes are changed
to match SURF input file, all non-English feedback are
removed because the tool only process English text, then both
feedbacks are gathered in one file for to be processed by the
tool.

Fig. 6. SURF tool input XML file format [11].

TABLE II. SURF CLASSIFIED SENTENCES FOR DATASET

Source of Classified Sentence Number of Sentences

Total Sentences (S) 70

Feature Requests in Reviews (RF) 9 (7)

Bugs in Reviews (RB) 4 (4)

Feature Requests in Issues (IF) 19 (14)

Bugs in Issues (IB) 10 (9)

https://github.com/panichella/SURF/tree/SURF-v.1.0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

398 | P a g e

www.ijacsa.thesai.org

In Table II, when SURF tool is used to process the input
only 70 sentences were classified while the rest did not appear
in the output XML report. The SURF tool does not provide a
sentence in output report unless it is able to classify its
intention type (i.e., according to “predefined patterns”
matching) and also if it is able to classify its topic (i.e., based
on “topic words dictionary” matching). Additionally, sentence
scoring results is reduced by 30% of total sentences according
to four factors which are previously mentioned. As shown in
Table II, the number of sentences per each type is mentioned
and the number of correctly classified types is written between
brackets. For example, the tool classified nine review‟s
sentences as feature requests and compared to the manually
labeled 19 sentences mentioned in Table IV only 7 sentences
were classified correctly. According to the results mentioned
in Table II, RQ1 is answered:

Answer to RQ1: the framework is able to classify both
reviews and issues using the same approach explained
previously in Section IV.

TABLE III. CHANGE REQUESTS SIMILARITY FEATURES

Change Request Issue Review

Login Dark Theme 2 0

Auto Delete 1 3

Auto Download 2 1

Pause Frequently 0 2

Stop Playing 1 2

fix widget 0 3

Download Scheduler 0 2

Less Cache 0 2

skip back 1 1

Total 7 16

In phase 3, the list of change requests is studied manually
to analyze the repeated requests, the results are depicted on
Table III which lists the name of the addressed feature, and the
number of issues or reviews mentioned this feature as a bug or
a feature request having similar change request. There are nine
change requests which had been expressed by more than one
user whether in Github or Google Play store platforms.

B. Case Study Evaluation and Results

After executing the framework, the dataset‟s sentences are
manually classified and labeled to be used in evaluating the
accuracy of the framework‟s output. Thus, the input is divided
into a set of sentences to be manually classified for obtaining
the user intention type for each sentence to be used as a
ground truth. For splitting the input into sentences, a natural
language toolkit (NLTK) has been utilized in python program
which offers NLP methodology implementation.

As shown in Table IV, the total number of sentences in the
dataset are 252, part of these sentences belongs to issue report
extracted from Github platform (135 sentences) and the other
sentences belong to reviews extracted from Google Play store
(117 sentences). The manually labeled sentences show that
16% of reviews‟ sentences are feature requests while 23% of

reviews‟ sentences are bugs, on the other hand, 17% of issue
report‟s sentences are feature requests while 39% of issue
report‟s sentences. Those percentages show that, in such
dataset, only half of the total sentences are useful for the
developers as they state the changes requested by the App‟s
users.

For evaluating accuracy of the change request list‟s output
sets (i.e. list of sentences), both ground truth‟s four sets (MIB,
MIF, MRB, and MRF) shown in Table IV and SURF tool‟s
produced sets (IB, IF, RB, and RF) shown in Table II are used to
measure recall and precision which are a well-established
metrics reported in Equations 1 and 2.

Recall
TP

TP+F
 (1)

Precision
TP

TP+FP
 (2)

TABLE IV. MANUALLY CLASSIFIED SENTENCES FOR DATASET

Source of Sentence Number of Sentences

Total Sentences (MS) 252

Google Play Reviews (MR) 117

Github Issue Reports (MI) 135

Feature Requests in Reviews (MRF) 19 (16%)

Bugs in Reviews (MRB) 27 (23%)

Feature Requests in Issues (MIF) 23 (17%)

Bugs in Issues (MIB) 53 (39%)

In particular, TP represents the number of true positives
reviews/issue reports classified correctly; False Positive (FP)
is the number of reviews/issue reports classified incorrectly by
the approach; and False Negative (FN) is the number of
correct reviews/issue reports (i.e., manually classified as bug
or feature request) that are not classified by the approach.

For applying accuracy measurement, three variables are
required to calculate precision and recall as in equation (1) and
(2), shown in Table V. Also, F-measure is used as it combines
both recall and precision by calculating the harmonic mean of
precision and recall to obtain the overall accuracy of the
proposed approach, known as the F-measure in Equation 3:

F-measure 2*
Precision*recall

Precision+recall
 (3)

After calculating accuracy measurements, it is noticed that
precision of bug is better than feature request (i.e. the ability
of predicting change requests correctly), as shown in Table VI
and Table VII, for both inputs issue reports or reviews. On the
other hand, the recall of feature request is better than bug (i.e.,
the ability of to find all manually labeled relevant cases) in
both issue reports and reviews. The SURF tool is able to
predict the intentional type as they follow predefined textual
patterns, such as: bug patterns “[something] is missing” and
“[someone] has an issue”, but these patterns are not sufficient
for covering all sentences expressing bugs and feature requests
to be matched with the dataset. According to the results
mentioned in Table VI and Table VII, RQ2 is answered:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

399 | P a g e

www.ijacsa.thesai.org

TABLE V. THE CALCULATION OF ACCURACY MEASUREMENTS'
VARIABLES

Accuracy

Measure
TP FN FP

Bug Issues

Numbers of issues

sentences

classified as “bug”

and manually

labeled as “bug”.

Numbers of issues

sentences

manually labeled

as “bug” but not

classified as

“bug”.

Numbers of issues

sentences not

manually labeled

as “bug” but

classified as

“bug”.

Feature

Request

Issues

Numbers of issues

sentences

classified as

“feature request”

and manually

labeled as “feature

request”.

Numbers of issues

sentences

manually labeled

as “feature

request” but not

classified as

“feature request”.

Numbers of issues

sentences not

manually labeled

as “feature

request” but

classified as

“feature request”.

Bug

Reviews

Numbers of

reviews sentences

classified as “bug”

and manually

labeled as “bug”.

Numbers of

reviews sentences

manually labeled

as “bug” but not

classified as

“bug”.

Numbers of

reviews sentences

not manually

labeled as “bug”

but classified as

“bug”.

Feature

Request

Reviews

Numbers of

reviews sentences

classified as

“feature request”

and manually

labeled as “feature

request”.

Numbers of

reviews sentences

manually labeled

as “feature

request” but not

classified as

“feature request”.

Numbers of

reviews sentences

not manually

labeled as “feature

request” but

classified as

“feature request”.

TABLE VI. CLASSIFICATION EVALUATION OF SURF RESULTS FOR ISSUE

REPORTS

Change Request

Type
TP FN FP Precision Recall F-measure

Bug 9 44 1 90% 17% 29%

Feature Request 14 9 5 74% 61% 67%

TABLE VII. CLASSIFICATION EVALUATION OF SURF RESULTS FOR

REVIEWS

Change Request

Type
TP FN FP Precision Recall F-measure

Bug 4 23 0 100% 15% 26%

Feature Request 7 12 2 78% 37% 50%

Answer to RQ2: The experiment‟s precision was better
than recall which affect negatively in F-measure, which means
that the tool is able to classify most of the sentences correctly
but it is not able to detect all relevant sentences in the used
dataset. A few of modifications are exerted in Section 6 for
enhancing the results of the tool used in phase 3.

The output list is reduced using similarity calculation to
reduce the total number of change requests (CR); thus, each
sentence Si text is compared to other sentences. If Si is similar
to one on more sentences, then they will be grouped as one
change request, else nothing will change. The evaluation is

performed by calculating the percentage of reduction using
CR which is the total number of change requests‟ sentences
before reduction (i.e., before grouping) and unique change
requests (UCR) which is the total number of unique change
requests‟ sentences, shown in Equation 4.

Reduction Percentage
#UCR*100

#CR
 (4)

According to Table III and Equation 4, the total number of
repeated change requests is 23 change requests (i.e., 7 issues
and 16 reviews), the change requests list will be reduced from
252 into 238 (i.e., reduced by 6%). According to such results
mentioned, RQ3 is answered:

Answer to RQ3: The framework‟s output of the similarity
percentage is slightly reduced in phase 3 compared to the
original change request list produced from phase 4, this
observation is related to the nature of selected App‟s version
dataset which needs to be investigated for other Apps‟ dataset.

VI. RESULTS ENHANCEMENT AND DISCUSSION

In this section, the impact of adding the title of the change
request (e.g., review or issue report) is investigated to the
change request body as an input to phase 2. Then, the output
of phase 2 is evaluated to check whether the added topic may
improve the recall values. Additionally, the patterns of SURF
tool were studied to examine their sufficiency for covering all
types of sentences belongs to bug or feature request.

Another experimental trial has been performed for
enhancing the results, which is adding the title of the change
request into the beginning of the body. Because SURF tool
only considers the review/issue report‟s body without
including its title, i.e., it is a sentence-based classifier,
although the title might contain valuable general information
about the bug or feature request itself while the body includes
extra explanatory information. Also, including the title might
increase the fourth factor of sentence scoring which increase
the feature discussed. In Table VIII, the evaluation results
slightly changed only in review input, and it was a minor
change where an extra bug was classified by SURF correctly
(i.e., increasing recall and f-measure) and a feature request
where misclassified (i.e., decreasing precision and f-measure).

As shown in Table IX, when the sentences are changed to
follow the predefined SURF pattern, such in all examples
except the third one (i.e., begin with the pattern by splitting
the sentence), the SURF tool was able to classify the sentences
correctly. Additionally, the position of the pattern affects the
ability of classification, since the tool is not able to detect the
pattern when it is embedded in the middle of a long sentence.
It is noticed that papers [12, 13], explained in Section II, used
SURF tool and both mentioned obtaining high overall
accuracy of 91.36% and 95.64% respectively which are stated
to be acceptable results. Although, this study uses the same
dataset as paper [12] but the accuracy obtained was 77% as
not all of the dataset was used, only one version of an App.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

400 | P a g e

www.ijacsa.thesai.org

TABLE VIII. CLASSIFICATION EVALUATION OF SURF RESULTS FOR

REVIEWS INPUT (INCLUDING TITLE)

Change

Request Type
TP FN FP Precision Recall F-measure

Bug 5 23 0 100% 19% 31%

Feature Request 7 12 2 70% 37% 48%

TABLE IX. ALTERING SENTENCES ACCORDING TO SURF PATTERNS

SURF Pattern Original Sentence Altered Sentence

“[something] can be

fixed by

[something]”

My personal fix is to

regularly check for

new podcasts and

hitting the update

button manully, but I

would like

AntennaPod to be

purely push- and not

pull-style.

This can be fixed by

regularly checking for new

podcasts and hitting the

update button manully, but

I would like AntennaPod to

be purely push- and not

pull-style.

“[something]

should be fixed”

The widget needs

fixing since it doesnt

always work.

The widget should be fixed

since it doesnt always

work.

[someone]

could/should

add/provide/offer/in

tegrate [something]

Congrats for your job

in this App, its so

amazing and for me

almost perfect, I don't

know if its hard to do

or not, but if you could

add the auto delete of

the podcast when we

finish it will be good.

Congrats for your job in

this App, its so amazing

and for me almost perfect, I

don't know if its hard to do

or not. if you could add the

auto delete of the podcast

when we finish it will be

good. Thanks!

Wish i could schedule

when it downloads the

podcast.

Wish i could add a schedule

when it downloads the

podcast.

VII. CONCLUSION AND FUTURE WORK

The users‟ contribution in expressing their opinions is
considered as an important source for evolving mobile Apps
and for better release planning. Mobile App can be distributed
on many platforms where each platform allows users to
submit their feedback for other users and App‟s developers to
ask questions, state information, report a bug, or suggest a
modification. Accordingly, the integration of more than one
feedback source assists developer to satisfy large number of
users which increase App‟s rating. Because of the large
amount of feedback provided by users, an automatic tool for
feedback analysis is required. In this paper, the proposed
framework analyzed Google Play reviews and Github issues to
filter them and to extract change requests out of the integrated
feedback. After performing two trials, the accuracy results of
reviews and issue reports showed slightly different values
which proves that the nature of both textual feedbacks did not
affect results after using the same tool. Despite the tool was
able to classify the integrated inputs into bugs and feature
requests, it was not able to extract all of them. Besides, the
similarity can assist on reducing the number of change
requests to decrease of the time needed for developer to check
the list of change requests. In the future, we are interested in
including more Apps feedback from dataset to be able to
evaluate whether the results‟ insights are repeated using other
versions or other Apps. Also, the similarity will be automated

and examined in larger dataset versions and Apps to evaluate
further the effect of reducing the list of change request.
Finally, other analysis tools can be investigated for producing
better results of the integrated users‟ feedback classification.

REFERENCES

[1] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra and M. Harman, "App
store effects on software engineering practices," IEEE Transactions on
Software Engineering, vol. 47, no. 2, pp. 300-319, 2019.

[2] A. A. Al-Subaihin, "Software Engineering in the Age of App Stores:
Feature-Based Analyses to Guide Mobile Software Engineers," PhD
diss., UCL (University College London), 2019.

[3] W. Martin, F. Sarro, Y. Jia, Y. Zhang and M. Harman, "A survey of app
store analysis for software engineering," IEEE transactions on software
engineering, vol. 43, no. 9, pp. 817-847, 2016.

[4] J. Dabrowski, E. Letier, A. Perini and A. Susi, "Analysing app reviews
for software engineering: a systematic literature review.," Empirical
Software Engineering, vol. 27, no. 2, pp. 1-63, 2022.

[5] E. A. AlOmar, W. Aljedaani, M. Tamjeed, M. W. Mkaouer and Y. N.
El-Glaly, "Finding the needle in a haystack: On the automatic
identification of accessibility user reviews.," in Proceedings of the 2021
CHI conference on human factors in computing systems, 2021.

[6] S. Lim, A. Henriksson and J. Zdravkov, "Data-driven requirements
elicitation: A systematic literature review.," SN Computer Science, vol.
2, no. 1, pp. 1-35, 2021.

[7] Y. Zhang, J. Du, X. Ma, H. Wen and G. Fortino, "Aspect-based
sentiment analysis for user reviews," Cognitive Computation, vol. 13,
no. 5, pp. 1114-1127, 2021.

[8] P. Dennis and W. Maalej, "User feedback in the appstore: An empirical
study," in 21st IEEE international requirements engineering conference,
2013.

[9] A. Al-Hawari, H. Najadat and R. Shatnaw, "Classification of application
reviews into software maintenance tasks using data mining techniques,"
Software Quality Journal, vol. 29, no. 3, pp. 667-703, 2021.

[10] M. v. Vliet, E. C. Groen, F. Dalpiaz and S. Brinkk, "Identifying and
classifying user requirements in online feedback via crowdsourcing," in
International Working Conference on Requirements Engineering:
Foundation for Software Quality, 2020.

[11] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio and G.
Canfora, "SURF: summarizer of user reviews feedback," in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017.

[12] T. Zhang, H. Li, Z. Xu, J. Liu, R. Huang and Y. Shen, "Labelling issue
reports in mobile apps," vol. 13, no. 6, pp. 528-542, 2019.

[13] T. Zhang, J. Chen, X. Zhan, X. Luo, D. Lo and H. Jiang,
"Where2Change: Change Request Localization for App Reviews," IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2590-2616,
2019.

[14] P. R. Henao, J. Fischbach, D. Spies, F. Julian and A. Vogelsang,
"Transfer Learning for Mining Feature Requests and Bug Reports from
Tweets and App Store Reviews.," in 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW), 2021.

[15] A. Yadav, R. Sharma and F. H. Fard, "A semantic-based framework for
analyzing app users' feedback," in IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2020.

[16] M. Bounabi, K. El Moutaouakil and K. Satori, "A comparison of text
classification methods using different stemming techniques.,"
International Journal of Computer Applications in Technology, vol. 60,
no. 4, pp. 298-306, 2019.

[17] J. Kleenankandy and A. N. KA, "An enhanced Tree-LSTM architecture
for sentence semantic modeling using typed dependencies.," Information
Processing & Management, vol. 57, no. 6, p. 102362, 2020.

[18] C. D. Manning, M. Surdeanu, J. Bauer, J. . R. Finkel, S. Bethard and D.
McClosky, "The Stanford CoreNLP natural language processing
toolkit," in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014.

[19] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora and H. C. Gall, "How can I improve my app?

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

401 | P a g e

www.ijacsa.thesai.org

Classifying user reviews for software," in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016.

[20] S. Panichella, A. . D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfor and
H. C. Gall, "Ardoc: App reviews development oriented classifier," in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016.

[21] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora and H. C. Gall, "What would users change in my
app? summarizing app reviews for recommending software changes," in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016.

