
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Microcontrollers Programming Framework based on
a V-like Programming Language

Fernando Martı́nez Santa1, Santiago Orjuela Rivera2, Fredy H. Martı́nez Sarmiento3
Universidad Distrital, Francisco José de Caldas, Bogotá, Colombia1,3

Corporación Nacional Unificada, de Educación Superior CUN, Bogotá, Colombia2

Abstract—This paper describes the design of a programming
framework for microcontrollers specially the ones with low
program and data memory, using as a base a programming
language with modern features. The proposed programming
framework is named Aixt Project and took inspiration from
other similar projects such as Arduino, Micropython and TinyGo
among others. The project’s name is inspired on the weasel pet
of the V programming language and at the same time it is a
tribute to Ticuna people who live in the Amazon rain-forest, just
between Colombia, Perú and Brasil. Aixt comes from Aixtü or
Aitü rü which means otter in Ticuna language. The proposed
programming framework has three main components: the Aixt
language based on the V syntax, a transpiler that turns the
defined V-like source code into C, and a generic cross-platform
Application Programming Interface (API). The target of this
project is obtaining a cross-platform programming framework
over the same language modern language an the same API, for
programming different microcontrollers especially the ones with
low memory resources. Aixt language is based on the syntax
of V programming language but it uses mutable variables by
default. V language was selected to be used as base of this
project due to it is a new compiled programming language with
interesting modern features. In order to turn the Aixt source
code into C, a transpiler is implemented using Python and the
some specialized libraries to design each part of its translation
process. The transpiled code is compiled by the native C compiler
of each microcontroller to obtain the final binary file, that is
why the API has to be adapted for each native C compiler.
The complete project is released as a free and open source
project. Finally, different application test were done over the XC8
and XC16 compilers for the PIC16, PIC18, PIC24 and dsPIC33
microcontrollers families, demonstrating the correct working of
the overall framework. Those tests show that the use modern
language framework to program any microcontrollers is perfectly
feasible using the proposed programming framework.

Keywords—Microcontroller; transpiler; API; programming lan-
guage; V; V-lang; Aixt project

I. INTRODUCTION

The different processor architectures used by the com-
mercial microcontrollers, make the programming process de-
pendent on those architectures and thus not universal. Even,
when the microcontrollers are programmed on high level
languages, tasks such as peripherals, timers, setup registers,
and others, keep depending on the programmer’s knowledge of
the processor’s architecture [1], [2]. There are some different
projects which pretends to generate cross-platform program-
ming frameworks [3], using different programming languages
like JavaScript [4], and other implementations using virtual
machines [5], [6], [7]. An example of those programming
frameworks (and one of the most popular) is Arduino[8], [9],

[10], which is based on C language in addition to an API
which makes the programming process easier. That API works
on a predefined hardware setup to reduce the setup process
by the programmer. Another popular programming framework
for microcontrollers is Micropython which implements on
several devices a subset of Python language. Micropython has
specific relatively high memory requirements which makes
it impossible to run on small microcontrollers, but it has
been ported to a large number of different architectures [11]
mainly in internet of things IoT implementations. Arduino
is compiled but its C syntax lacks modern features, on the
other hand Micropython is interpreted and therefore non time
optimized as compiled language, but there is an intermediate
framework named Tinygo which implements Go language on
Microcontrollers, offering modern features like Python and the
advantage of being compiled [12] like Arduino (C). However,
most of the microcontroller with limited memory features does
not fit to the memory requirements of the projects previously
described, so for those ones it is necessary to use their native
C compiler.

In order to obtain the best execution times and the best code
optimization level [13], [3] it is necessary to use the native C
compiler of each architecture. Then, if there is a programming
framework with an upper modern language layer, a transpiler
to C and the native C compiler as a part of the framework, this
could have high level language features along with optimiza-
tion levels similar to the ones reached with only the native
compilers. The described programming framework needs to
have a transpiler [14], which is a translator from the upper layer
language to the native C [15]. Transpilers are highly utilized
nowadays [16], [17], in several languages both compiled and
interpreted [18], [19], [20], and even in languages based on
virtual machines [21]. Those transpilers are mainly used in
order to reuse source code that comes from another different
language [18], or improve the execution times or another
performance feature of the program [22], [23] changing the
platform or language (for instance turn Python (interpreted)
into Rust (compiled) [19]), even translating source code to
gate-based hardware [24] like FPGAs or other processor-less
devices.

Several new programming languages have emerged nowa-
days, mainly to solve some of the issues of the traditional ones
such as safety, memory management among others. Among
these new languages are Go, Swift, Dart, F# and Rust, being
this last is one of the most preferred ones[25], having even
implementations on microcontrollers [26], [27], [28]. There are
some other other languages such as Peregrine which is based
on the Python’s syntax and the V programming language [29]

www.ijacsa.thesai.org 32 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

wish is inspired on Rust and other languages. V is an statically-
typed programming language with several modern features that
make the development easy, and a better learning curve than
other modern languages like Rust.

This paper proposed a programming framework for micro-
controllers that is composed by a high level language based
on V as the main language, a transpiler from this V-like
language named Aixt to C, and the microcontrollers’ native C
compiler which finally generates output binary file. In order to
generalized the programs across the different microcontrollers,
a general API is designed, which is implemented on each
C compiler of the supported devices (in this first stage for
XC8 and XC16 compilers). For the transpiler implementation
Python and the module SLY were used, to write the lexer
analyzer and the Parser. This project is based on a previous
one named Sokae [30] developed by the same authors.

The paper is organized as follows: Section II presents
the methodology for implementing the overall proposed pro-
gramming framework, including the Aixt language definition
(Section II - A), the Python implementation of the Aixt-to-C
transpiler (Section II - B), and the API implementation for the
XC16 compiler and PIC24 microcontrollers family (Section
II - C). Section III shows the Aixt language functionality
by implementing several examples, as well as it presents the
results of implementing the proposed programming framework
by several test source codes. Finally, Section IV shows the
conclusions about this research’s main ideas, including possi-
ble future jobs.

II. METHODOLOGY

With the name Aixt Project, a microcontroller programming
framework is implemented. This framework uses an homonym
language which is based on the V programming language. A
transpiler from Aixt language to C is the most important block
of this framework, as well as an Application Programming
Interface (API) written in both languages. As part of the
proposed structure, the native C compiler of the specific micro-
controller finally generates the output binary file, as shown in
Fig. 1. Using the proposed framework, the users will be able to
write the source code in Aixt language using a standard API
and obtains the binary file for a specific microcontroller or
board without having further knowledge of the programming
architecture. This framework pretends to be highly modular
and relatively easy to include other microcontrollers or boards.
The Fig. 1 shows the general structure of the programming
framework indicating that for each new microcontroller to be
supported it is necessary to adapt the API (Fig. 1 right) to this
and invoke its specific native C compiler (Fig. 1 left down).
The specific test done for this paper were implemented on
some different Microchip® microcontroller families such as
PIC16, PIC18, PIC24 and dsPIC33 using the XC8 and XC16
compilers, these microcontrollers were selected because their
limited amount of implemented memory.

A. Aixt Language

Aixt is the name given to the proposed language and the
overall programming framework. This language is based on the
V programming language [29] and shares most of its syntax.
Due to its relatively short learning curve, V language was

Fig. 1. General programming framework diagram

selected for this implementation instead other new languages
like Rust [30]. The framework and language name is inspired
in the Weasel pet of V Language, and at the same time is a
tribute to Ticuna people who live in the Amazon rain-forest in
the borders between Colombia, Brasil and Perú. Weasels are
mustelids just like otters, so the name Aixt comes from Aixtü
or Aitü rü which is a way to say otter in Ticuna language.

Aixt is a compiled and statically typed programming lan-
guage based on the V syntax. This is designed to be used
on a wide range of microcontrollers no matter their memory
limitations. Aixt syntax shares some feature with languages
such as Rust and Go, therefore also it shares syntax features
with C, which makes Aixt easy to understand and transpile.

Listing 1 shows an example code using Aixt language and
API, which makes blinking a LED for a specific microcon-
troller’s pin. Likewise, the Listing 2 shows the C equivalent
of the same Aixt source code.

Some of the basic features of Aixt language are listed as
follows:

• the := operator is used for declaring variables.

• Unlike V, variables are mutable by default in Aixt.

• ix, ux and fx variable types for regular integers,
unsigned integers and floating point variables.

• isize and usize for integers with same size of the
processor.

• rune type for character variables.

• Default type inference in declaring.

• Underscore character in literals for improving its read-
ability.

www.ijacsa.thesai.org 33 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

• The main function is the first entry of a V program. In
case of having only one source code, the main function
definition can be ommited.

• All instructions end with a new line character, whit a
semicolon or with a curly bracket close.

• The semicolon is optional. It has to be used when
having two simple instructions in the same code line.

• All the code blocks are delimited by curly braces.

• All function declarations start with the reserved word
fn.

• The names for all the identifiers (variables, constants,
functions, etc.) prefer to use snake case as in V, for
instance the function pin_low(). This feature is
implemented in order to keep a standard format for
all the V source code.

• There is only a loop instruction which is used for
implementing all the supported loops, changing only
its input parameters syntax.

• The reserved word import is used for including
different complete modules or libraries.

• In order to reduce the C obtained code, it is possi-
ble to include individual components from a global
module using the curly braces following the syntax:
import module { comp1, comp2, ...}

Listing 1: Blinking LED example in Aixt

import machine { p i n }
import t ime { s l eep ms }

p i n (A6 ,OUT)
f o r {

p i n h i g h (A6)
s l eep ms (5 0 0)
p in low (A6)
s l eep ms (5 0 0)

}

Listing 2: Resultant C code for the Blinking LED example

i n c l u d e ” . / s e t t i n g s . h ”
i n c l u d e ” . / machine / p i n . h ”
i n c l u d e ” . / t ime / s l eep ms . h ”

i n t main (void) {
p i n (A6 ,OUT) ;
whi le (t r u e) {

p i n h i g h (A6) ;
s l eep ms (5 0 0) ;
p in low (A6) ;
s l eep ms (5 0 0) ;

}
re turn 0 ;

}

B. Transpiler

A transpiler is a program that translates source code
between programming languages with the same abstraction
levels, by contrast a compiler translate source code generally
to another low level language. The proposed programming
framework does not compile directly the Aixt source code
but transpile it to C. The Transpiler from Aixt language to
C is implemented with Python and using the PLY module
in order to implement the lexer analyzer and parser for the
input source code. The complete working diagram of the
implemented transpiler is shown in Fig. 2, where and input file
with .v extension get in to the transpiler and it generates the
output .c file. The transpiler implementation is based on part
of the V language grammar, the Listing 3 shows and extract
of that grammar in Backus-Naur form (BNF). This part of the
grammar shows the definition of the four different ways to do
loops in Aixt using the reserved word for, including infinite
loops.

Fig. 2. Transpiler diagram

Listing 3: Aixt language BNF definition (extract)

. . .
f o r S t m t : : = f o r b l o c k

| f o r exp r b l o c k
| f o r f o r C l a u s e b l o c k
| f o r i n C l a u s e b l o c k

f o r C l a u s e : : = s impStmt ; exp r ; s impStmt

i n C l a u s e : : = e x p r L i s t in IDENTIFIER
. . .

For the implementation of the lexer analyzer, all of the to-
kens of V language are supported, such as keywords, operands
and other punctuation symbols, as shown in the code extract
of Listing 4.

Listing 4: Aixt Lexer implementation (extract)

. . .
t o k e n s = {

I8 , I16 , I32 , I64 , ISIZE ,
. . .
F32 , F64 , BOOL, RUNE,
IMPORT , IN , MAP, MATCH, RETURN,

www.ijacsa.thesai.org 34 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

. . .
}

BOOL = r ’ boo l ’ # Types
RUNE = r ’ rune ’
. . .
IDENTIFIER = r ’ [a−zA−Z] [a−zA−Z0−9]* ’
. . .

BINARY LIT = r ’ 0b [01]+ ’
. . .
l i t e r a l s = { ’ (’ , ’) ’ , ’{ ’ , ’} ’ , ’ [’ ,

’] ’ , ’ ; ’ , ’ , ’ , ’ . ’ ,
}

. . .

Once the Lexer analyzer reduced the character flux of the
source code to an token flux, the parser analyzes the syntactic
rules of language in order to find possible syntactic error and
transpile it to C. The most of the syntactic rules of V are
implemented in Aixt using the SLY module as shown in the
extract source code of Listing 5, which matches with the BNF
definition shown in Listing 6.

Listing 5: Aixt Parser implementation (extract)

. . .
@ (’ i d e n t L i s t DECL ASGN e x p r L i s t ’ ,

)
def v a r D e c l (s e l f , p) :
. . .

re turn r e t v a l u e

@ (’ IDENTIFIER ’ ,
’ i d e n t L i s t ” , ” IDENTIFIER ’
)

def i d e n t L i s t (s e l f , p) :
. . .

re turn p [0]
. . .

Listing 6: Aixt BNF rules (extract)

v a r D e c l : : = i d e n t L i s t DECL ASGN e x p r L i s t

i d e n t L i s t := IDENTIFIER
| i d e n t L i s t ” , ” IDENTIFIER

SLY library uses Python’s function decorators to implement
the syntactic rules of the language to be compiled or transpiled,
applying them to each syntactic production, for example the
production varDecl is the implementation of variable declara-
tions in Aixt language.

As previously said, the transpiler reads the source code
written in Aixt, which for compatibility with standard source
code editors, the .v file extension.

C. Application Programming Interface

One of the main goals of the proposed framework is
designing a cross-platform API, which includes the basic
features and peripherals of most microcontrollers. In order

to make the microcontroller’s programming process easier, a
general Application Programming Interface is implemented in
both the Aixt programming language and C for the specific
native compiler. This API includes the peripherals and features
shown in Tables from I to IV.

TABLE I. GENERAL PURPOSE INPUT/OUTPUT

Description Function name
pin type declaration pin()
setting high and low pin_low() pin_high()

setting specific binary value pin_value()
reading an input value pin_value()

TABLE II. ANALOG TO DIGITAL CONVERTER (ADC)

Description Function name
ADC setting up adc()

ADC reading value adc_read()

TABLE III. UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER
(UART)

Description Function name
UART setting up uartx()

single byte transmitting uartx_put()
single byte receiving uartx_get()

TABLE IV. TIMING FEATURES

Description Function name
delays in microseconds sleep_us()
delays in millisecond sleep_ms()

delays in second sleep()

Table I shows the pin and GPIO functions like setup,
input capture and output set. Some devices even could support
exchange state functions (pin_toggle). The rest of API
functions follow the same rules:

• The setup function has the same name of the module.

• The rest of name functions of the same module follow
the syntax: module_function(). For instance:
adc_read() function of machine { adc }
module (Table II).

• Devices with more than one peripheral of the
same time follow this name function syntax:
modulex_function() where the x refers to the
number that identify each peripheral. For instance:
uart2_get() as shown in Table III.

• Some API modules refers to a inner features of the
device different to hardware peripherals, for instance
software delays (Table IV).

The Fig. 3 shows the folder structure designed for the
overall API, this structure has to be followed for each of the
supported microcontrollers and boards to maintain the com-
patibility across all the hardware devices. Following strictly
this folder structure allow the transpiler to correctly redirect
the module including tasks when it is necessary to include to
the project isolated components of a module.

As previously mentioned, the module including
follows the next syntax in Aixt: import module

www.ijacsa.thesai.org 35 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

for complete modules, which will be transpiled as
#include \./module.h". Likewise, the sub-modules
or module components including follows the syntax:
import module { sub1, sub2, ...}, which will
be transpiled to #include \./module/sub1.h" etc.
That is very important to optimize the resultant binary file.
On the other hand, when a complete module is included, the
./module.h header file has to include all of the .h files in
the correspondent folder on the folder’s API structure.

Fig. 3. General API structure

III. RESULTS

The overall project including the Aixt language defini-
tion, the transpiler from Aixt to C and the API, is pub-
lished by the authors as a free software project at the URL
https://gitlab.com/fermarsan/aixt-project. The authors hope this
project works as a starting point of a great free programming
framework for microcontrollers or as seed for other similar
projects.

The complete programming framework was successfully
tested using some of the 8-bit and 16-bit PIC microcontroller
families from Microchip ®. Those devices were selected due to
their low amount of implemented data and program memories.

Several different working tests have been performed to
check the correctness of most Aixt features. Listings 7 and
8 show a comparison of the variable declarations in Aixt
and the corresponding transpiled C code for XC8 and XC16
compilers. In Aixt the variable declaration is always along with
an assignment. The declaration and assignment process uses
the operator := to differentiate with only assignment =. At
the same time it is necessary to use the conversion predefined
functions such as i8(), u32() and f64() among others,
in order to specify the number of bits and the type of integer
and floating point variables. One of the benefits of using the
conversion functions of V for the variable definitions is that
each variable is bit-width explicit, independent of hardware
device. Listing 7 shows too the use of the underscore symbol
"_" for improving the large numbers readability. Also the
special notations for hexadecimal, octal, and binary literals,

are shown. The only difference with C is the octal literals
beginning with the sequence "0o" (zero + o), instead of only
0 as in C.

Listing 7: Aixt variable declaring and assignment example.

va r2 := i 8 (1 2 9)
va r3 := i 6 4 (−6 835 292)
va r4 := u8 (0 b0011 0101)
va r5 := u16 (0 o073452)
va r7 := u64 (0 xAAFF 7625)
va r8 := f32 (1 342 . 5 6)
va r9 := f64 (−34 .035 440)

Listing 8: C resultant variable declaring and assignment ex-
ample.

i n t 8 t va r2 = 129 ;
i n t 6 4 t va r3 = −6835292;
u i n t 8 t va r4 = 0 b00110101 ;
u i n t 1 6 t va r5 = 0073452;
u i n t 6 4 t va r7 = 0xAAFF7625 ;
f l o a t va r8 = 1 3 4 2 . 5 6 ;
long double va r9 = −34 .035440;

Modern programming languages like V has some useful
features such as the type inference, which simplifies program-
ming in most cases. Type inference gives programmers peace
of mind about variable types when they are not needed, thereby
reducing development time. The implementation of this feature
in Aixt is reached by using the standard types for integer
and floating point variables. In the case of XC8 compiler
the standard integer type is int8_t and for XC16 compiler
int16_t. For the floating point variables the default type
is float. Listings 9 and 10 show the transpiling result for
some variable declarations by inference, including Boolean,
character (named runes), integer and floating point literals, for
the XC8 compiler.

Listing 9: Aixt variable declaring and assignment by inference
example.

va r0 := t r u e
va r1 := f a l s e
va r2 := 1345
va r3 := 7 1 . 4
va r4 := −457
va r5 := −10.445
va r6 := ‘d ‘

Listing 10: C resultant variable declaring and assignment by
inference example.

bool va r0 = t rue ;
bool va r1 = f a l s e ;
i n t 8 t va r2 = 1345 ;
f l o a t va r3 = 7 1 . 4 ;
i n t 8 t va r4 = −457;
f l o a t va r5 = −10 .445 ;
char va r6 = ’ d ’ ;

www.ijacsa.thesai.org 36 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

On the other hand, Aixt language syntax provides support
for some of V’s looping statements, such as: condition for
(while in C), bare for or infinite loop (while(true) in C),
infinite loops, regular for loop and C-like for loop. Listing 10
shows an example of the loop statements currently supported
by the Aixt syntax and Listing 11 shows the C equivalent of
each one. The Aixt-like for loop includes and integer range
notation with the syntax: i..f, where i is the initial value
and f is the final value.

Listing 11: Aixt available loops.

/ / c o n d i t i o n f o r
f o r a < 10 {

a += 1
}
/ / b a r e f o r
f o r {

a += 1
}
/ / range f o r
f o r i in 0 . . 1 0 {

a r r [i] = 0
}
/ / c f o r
f o r i : = 0 ; i <=10; i ++ {

a r r [i] = 0
}

Listing 12: C equivalent loops.

whi le (a < 10){
a += 1 ;

}
whi le (t rue){

a += 1 ;
}
f o r (i n t i =0 , i <10 , i ++){

a r r [i] = 0 ;
}
f o r (i n t i =0 , i <=10 , i ++){

a r r [i] = 0 ;
}

A. Microcontrollers Setting Up

In order to setup a specific new microcontroller or board
added to the Aixt programming framework, a configuration
file has to be written. The chosen format for this configuration
file is YAML which means Yet Another Markup Language,
and is a very simple format to implement setup file for
software projects. In that configuration file the designer can
setup features such as: type equivalences between Aixt and the
native C compiler, the microcontroller fuses or configuration
bytes, the part or device number, the default header files among
others. This configuration file is expected to be modified once
by the designer and not to be modified by a regular user. The
Listing 12 shows an extract of the configuration file for a
PIC24FJ device.

Listing 13: YAML microcontroller or board configuration file
(extract).

i 8 : i n t 8 t
. . .
u16 : u i n t 1 6 t
. . .
d e f a u l t i n t : i n t 1 6 t
. . .
d e v i c e : p24FJ128GA010
. . .
h e a d e r s :

− <xc . h>
− < s t d i n t . h>

. . .
c o n f i g u r a t i o n :

− ”POSCMOD = XT”
− ”OSCIOFNC = ON”

. . .

On the other hand, a batch file has to be included for each
new device. This file works as a Makefile, following the steps
and invoking the different component of the framework, in
order to obtain the final binary file starting from the Aixt source
code. The batch file has to be provided in .ps1 (PowerShell)
format for Windows and in .sh format for Linux.

IV. CONCLUSION

Using the proposed programming framework, the micro-
controllers programmer can utilize a modern high level lan-
guage programming environment, using a compiled language
with its benefits and at the same time taking advantage of the
modern features of the language. Aixt Language pretends to
be a highly level programming language for microcontrollers
with a short learning curve due to its simplicity compared with
other modern languages. Aixt utilizes modern V-based features
such as type inference but at the exact same time obtains
binary files with similar optimization degrees of standard
compiled languages such as C and similar execution times. Aixt
Language and the proposed programming framework could
enable programming microcontrollers with ease, as long as
they have a native C compilers. At the same time Aixt does not
need a fixed amount of memory to work, the finally binary file
depends only the source code. So it has not the problem of the
memory needed to run a program written with an interpreted
language such as MicroPython or Javascript.

The transcompilation process between Aixt and C is suc-
cessful because both languages are similar, mainly due to all
variables in Aixt are mutable by default like in C, and some
other similar features like curly braces and others. Transpile
another language such Python to C for instance, would be
a little bit difficult because the differences between both
languages.

Aixt Language and programming framework could allow
individuals with little electronics know how to program easily
embedded systems, just like Arduino, mbed, and MicroPy-
thon among other frameworks. Likewise, Aixt could enable
experienced embedded system programmers only learning one
programming language and API, to program a wide variety of
microcontrollers no matter their memory sizes.

All of the features in the proposed programming framework
was completely tested, however not all the modern features of

www.ijacsa.thesai.org 37 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

the V programming language were implemented. That means
this project can highly improve implementing more features
and adapting it to other microcontrollers and boards. It is
perfectly able to use Aixt language and this framework in the
classroom in Basic courses of microcontroller and embedded
systems, due to currently this project is highly functional.

In spite of the short learning curve of V and therefore Aixt
languages, it is possible to explore another simple languages
to improve the proposed programming scheme, or even giving
support to another main languages maintaining the same API.
One of the candidates is the Peregrine Language who is based
on the Python syntax.

As future work, the development of other useful features
of V language are proposed. For example, the array definition,
direct array indexing using the array for loop, array inter-
polation, matching statements among others. Likewise, it is
important to keep giving support to other MCUs and board
especially those with low program and data memories, which
are the motivation for this project. For instance Atmel ® AT
mega and AT tiny will be included to the project soon due
to they use also the XC8 compiler. Finally, it is possible
to combine PC graphical application developed in V with
embedded application developed in Aixt, taking the advantage
of learning only one programming basis to develop a complete
embedded-based graphical application.

ACKNOWLEDGMENT

This work was supported by Universidad Distrital Fran-
cisco José de Caldas and Corporación Unificada Nacional de
Educación Superior CUN. The views expressed in this docu-
ment are not necessarily endorsed by Universidad Distrital or
CUN. The authors thank the ARMOS and IDECUN research
groups for the simulations and tests.

REFERENCES

[1] A. Radovici and I. Culic, Embedded Systems Software Development.
Berkeley, CA: Apress, 2022, pp. 27–47.

[2] E. Kusmenko, B. Rumpe, S. Schneiders, and M. von Wenckstern,
“Highly-optimizing and multi-target compiler for embedded system
models: C++ compiler toolchain for the component and connector
language embeddedmontiarc,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems, ser. MODELS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 447–457. [Online]. Available:
https://doi.org/10.1145/3239372.3239388

[3] A. K. Rachioti, D. E. Bolanakis, and E. Glavas, “Teaching strategies for
the development of adaptable (compiler, vendor/processor independent)
embedded c code,” in 2016 15th International Conference on Informa-
tion Technology Based Higher Education and Training (ITHET), 2016,
pp. 1–7.

[4] K. Grunert, “Overview of javascript engines for resource-constrained
microcontrollers,” in 2020 5th International Conference on Smart and
Sustainable Technologies (SpliTech), 2020, pp. 1–7.

[5] K. Zandberg and E. Baccelli, “Minimal virtual machines on iot mi-
crocontrollers: The case of berkeley packet filters with rbpf,” in 2020
9th IFIP International Conference on Performance Evaluation and
Modeling in Wireless Networks (PEMWN). IEEE, 2020, pp. 1–6.

[6] S. Varoumas, B. Pesin, B. Vaugon, and E. Chailloux, “Programming
microcontrollers through high-level abstractions,” in Proceedings of the
12th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages, 2020, pp. 5–14.

[7] R. Gurdeep Singh and C. Scholliers, “Warduino: a dynamic webassem-
bly virtual machine for programming microcontrollers,” in Proceedings
of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, 2019, pp. 27–36.

[8] D. E. Bolanakis, “A survey of research in microcontroller education,”
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 14,
no. 2, pp. 50–57, 2019.

[9] S.-M. Kim, Y. Choi, and J. Suh, “Applications of the open-source
hardware arduino platform in the mining industry: A review,” Applied
Sciences, vol. 10, no. 14, p. 5018, 2020.

[10] H. K. Kondaveeti, N. K. Kumaravelu, S. D. Vanambathina, S. E.
Mathe, and S. Vappangi, “A systematic literature review on prototyping
with arduino: Applications, challenges, advantages, and limitations,”
Computer Science Review, vol. 40, p. 100364, 2021.

[11] V. M. Ionescu and F. M. Enescu, “Investigating the performance of
micropython and c on esp32 and stm32 microcontrollers,” in 2020 IEEE
26th International Symposium for Design and Technology in Electronic
Packaging (SIITME), 2020, pp. 234–237.

[12] A. Suarez Ruiz, “Diseño de hardware y firmware para un sistema
inalámbrico de adquisición de datos daq de bajo costo,” Departamento
de Ingenierı́a Eléctrica, Electrónica y Computación, 2019.

[13] H. Wu, C. Chen, and K. Weng, “An energy-efficient strategy for
microcontrollers,” Applied Sciences, vol. 11, no. 6, p. 2581, 2021.

[14] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-
supervised translation of programming languages,” arXiv preprint
arXiv:2006.03511, 2020.

[15] A. M. Karpiński, “Automatic translation of programs source codes
from python to c# programming language,” Ph.D. dissertation, Zakład
Sztucznej Inteligencji i Metod Obliczeniowych, 2022.

[16] M. Szafraniec, B. Roziere, H. Leather, F. Charton, P. Labatut, and
G. Synnaeve, “Code translation with compiler representations,” 2022.
[Online]. Available: https://arxiv.org/abs/2207.03578

[17] F. A. Bastidas and M. Pérez, “A systematic review on transpiler usage
for transaction-oriented applications,” in 2018 IEEE Third Ecuador
Technical Chapters Meeting (ETCM), 2018, pp. 1–6.

[18] M. Ling, Y. Yu, H. Wu, Y. Wang, J. R. Cordy, and A. E. Hassan, “In rust
we trust – a transpiler from unsafe c to safer rust,” in 2022 IEEE/ACM
44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), 2022, pp. 354–355.

[19] H. Lunnikivi, K. Jylkkä, and T. Hämäläinen, “Transpiling python to
rust for optimized performance,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation, A. Orailoglu, M. Jung, and
M. Reichenbach, Eds. Cham: Springer International Publishing, 2020,
pp. 127–138.

[20] M. Marcelino and A. M. Leitão, “Extending PyJL - Transpiling Python
Libraries to Julia,” in 11th Symposium on Languages, Applications and
Technologies (SLATE 2022), ser. Open Access Series in Informatics
(OASIcs), J. a. Cordeiro, M. J. a. Pereira, N. F. Rodrigues, and
S. a. Pais, Eds., vol. 104. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022, pp. 6:1–6:14. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2022/16752

[21] B. F. Andrés and M. Pérez, “Transpiler-based architecture for multi-
platform web applications,” in 2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM), 2017, pp. 1–6.

[22] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, and M. Grimmer, “Practical partial evaluation
for high-performance dynamic language runtimes,” in Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 662–676. [Online].
Available: https://doi.org/10.1145/3062341.3062381

[23] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Ranking programming languages by energy efficiency,”
Science of Computer Programming, vol. 205, p. 102609, 2021.

[24] K. Takano, T. Oda, and M. Kohata, “Approach of a coding conventions
for warning and suggestion in transpiler for rust convert to rtl,” in 2020
IEEE 9th Global Conference on Consumer Electronics (GCCE), 2020,
pp. 789–790.

[25] W. Bugden and A. Alahmar, “Rust: The programming language for
safety and performance,” arXiv preprint arXiv:2206.05503, 2022.

www.ijacsa.thesai.org 38 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

[26] T. Uzlu and E. Şaykol, “On utilizing rust programming language for
internet of things,” in 2017 9th International Conference on Compu-
tational Intelligence and Communication Networks (CICN), 2017, pp.
93–96.

[27] K. I. Vishnunaryan and G. Banda, “Harsark multi rs: A hard real-
time kernel for multi-core microcontrollers in rust language,” in Smart
Intelligent Computing and Applications, Volume 2, S. C. Satapathy,
V. Bhateja, M. N. Favorskaya, and T. Adilakshmi, Eds. Singapore:
Springer Nature Singapore, 2022, pp. 21–32.

[28] J. Aparicio Rivera, “Real time rust on multi-core microcontrollers,”

Master’s thesis, Luleå University of Technology, Computer Science,
2020.

[29] N. P. Kumar Rao, Getting Started with
V Programming. Packt Publishing, 2021. [Online].
Available: https://www.packtpub.com/product/getting-started-with-v-
programming/9781839213434

[30] F. Martı́nez Santa, S. Orjuela Rivera, and F. H. Martı́nez Sarmiento,
“Rust-like programming language for low-resource microcontrollers,”
Advances in Dynamical Systems and Applications, 2022.

www.ijacsa.thesai.org 39 | P a g e

