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Abstract—Clustering Spatio-temporal data is challenging 

because of the complexity of processing the spatial and temporal 

aspects. Various enhanced clustering approaches, such as 

partition-based and hierarchical-based algorithms have been 

proposed. However, the ST-DBSCAN density-based algorithm is 

commonly used to process irregularly shaped clusters. Moreover, 

ST-DBSCAN considers neighborhood parameters as spatial and 

non-spatial. The preliminary results from our experiments 

indicate that the ST-DBSCAN algorithm addresses temporal 

elements less effectively. Therefore, an improvement to the ST-

DBSCAN algorithm was proposed by considering three 

neighborhood boundaries in neighborhood function. This 

experiment used the El Niño dataset from the UCI repository. 

The experimental results show that the proposed algorithm 

increased the performance indices by 27% compared to existing 

approaches. Further improvement using the hierarchical Ward’s 

method (with thresholds of 0.3 and 0.1) reduced the number of 

clusters from 240 to 6 and increased performance indices by up 

to 73%. It can be concluded that ST-HDBSCAN is a suitable 

clustering algorithm for Spatio-temporal data. 

Keywords—Data mining; hierarchical clustering; density-based 

clustering; spatio–temporal clustering 

I. INTRODUCTION 

Clustering is a process for grouping data based on 
similarity distance. It is an effective data mining technique for 
data segmentation, feature selection, pattern recognition, and 
anomaly detection. Clustering is an unsupervised method that 
does not require a prior definition of the input data classes. 
Clustering techniques help uncover hidden patterns in the 
examined data [1]. Unlike conventional clustering algorithms 
that process nonspatial or non-temporal data, clustering spatio–
temporal data is challenging. Spatio-temporal data is different 
from relational data, in which computational approaches are 
developed for both spatial and temporal attributes [2]. Because 
of spatio–temporal data structure features, which record the 
general variables and the corresponding location and time [3], 
it became challenging to cluster the spatial and temporal data 
together. 

Spatio–temporal clustering is an emerging research area. It 
gains actual location and time information from the enormous 
amount of geographical data provided by GPS, satellite, 
wireless technology, sensor networks, and other devices that 
could transmit location and time-stamped data. For instance, an 
organization has invested more resources in obtaining hidden 

knowledge and information from spatio–temporal data making 
research in this field more critical. The work by Bogorny and 
Shekar [4], Mazimpaka and Timpf [5], and Atluri et al. [6] 
have reviewed spatio–temporal data mining and its applications 
in surface ozone (O3) variations [7], forest fire [8], 
groundwater potential zone [9], citizens security [10], traffic 
congestion [11], healthcare, and social media. 

Kisilevich et al. [12] categorized spatio–temporal data 
based on temporal extension, spatial extension, and spatial 
location. Spatial extension expands the spatial shape from 
points into lines and then areas. The expansion starts from a 
single snapshot to an updated snapshot and the completed time 
series in temporal extension. The spatial location is divided 
into two categories depending on the data collection location 
(fixed or dynamic). Based on these extensions, Kisilevich et al. 
[12] defined the following five types of spatio–temporal data: 
ST-events, geo-referenced variable, geo-referenced time series, 
moving objects, and trajectories. 

M. Y. Ansari et al. [13] presents six categories of 
spatiotemporal clustering algorithms: event clustering, geo-
referenced data item clustering, geo-referenced time series 
clustering, moving clusters, trajectory clustering, and semantic 
based trajectory data mining. ST-events have a fixed location 
and only store one snapshot of variable values. The geo-
referenced variable also has a fixed location but stores only the 
current updated values. Similarly, geo-referenced time series 
also have a fixed location, but it stores the entire history of 
variable values as time-series data for each location. Moving 
objects and trajectories have dynamic locations. The object 
changes its location over time; however, only current values 
are recorded. In contrast, trajectories record each object‘s 
movement as a completed time series. Similar to Madraky et 
al. [14], this research focuses on clustering geo-referenced 
time-series data and utilizes a nature-inspired approach. 

Various clustering approaches have been proposed to 
enhance the traditional algorithm, such as density-based, 
partition-based, and hierarchical-based [15]. The density-based 
algorithm is widely used because it can process irregular-
shaped clusters, e.g. ST-DBSCAN [16], ST-OPTICS [17], ST-
Shared Nearest Neighbors (SNN) and ST-SEP-SNN [18], P-
DBSCAN [19], ST-DCONTOUR [20], RT-DBSCAN [21], 
CorClust [22], and MDST-DBSCAN [23]. One of the 
commonly used spatio–temporal density-based clustering 
approaches is Spatio–temporal (ST)-Density-based Spatial 
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Clustering of Applications with Noise (DBSCAN) [16]. 
However, the algorithm does not address the temporal elements 
of data. The neighborhood parameters are defined as spatial 
and non-spatial objects only. Therefore, the maximum 
temporal distance was later introduced to improve the ST-
DBSCAN algorithm. 

Other techniques extended to other traditional density-
based clustering algorithms. For example, Spatio–temporal 
Shared Nearest Neighbor (ST-SNN) and Spatio–temporal 
Separated Shared Nearest Neighbor (ST-SEP-SNN) extend 
SNN by Ertöz et al. [24] but introduce the polygon distance 
algorithm to search core polygon [18]. Their results have been 
compared with that of PDBSCAN [19]. 4D+SNN also added 
weighting for spatial and temporal attributes [25]. The ST-
DCONTOUR algorithm by Zhang and Eick [20] emphasizes 
the batching process of SNN density-based clustering 
algorithms. 

The ST-DBSCAN algorithm by Birant and Kut [16] is one 
of the standard benchmark algorithms for spatio–temporal 
clustering. In ST-DBSCAN, introducing a new distance limit 
for spatial data called Eps 2 enhanced the DBSCAN algorithm. 
The sea surface temperature, sea surface height, and wave 
height in the Black, Marmara, Aegean, and Mediterranean seas 
were clustered. The result was presented as a map with labels 
of the cluster numbers for each group. Besides, utilizing a 
cluster map emphasizes the spatial aspect of the data rather 
than the temporal aspect. Therefore, this research aims to 
improve ST-DBSCAN by considering spatial and non-spatial. 

The following Sections II discuss how the ST-DBSCAN 
algorithm is limited and how to improve it by proposing Three 
Neighborhood Boundary in neighborhood function and 
improving it again using the hierarchical ward‘s method. 
Section III discusses the dataset and parameter settings; 
Section IV discusses the results obtained from experiments, 
including comparison results with the benchmark algorithm, 
and the conclusion and future work. 

II. RELATED WORK 

Density-Based clustering is an unsupervised learning 
technique that locate distinct groups or clusters in the data. 
These techniques are based on the notion that a cluster in data 
space is a contiguous region of high point density, separated 
from other such clusters by contiguous regions of low point 
density. The fundamental density-based clustering algorithm is 
called Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN). Outliers and noise-filled massive amounts 
of data can be used to find clusters of various sizes and shapes. 

Three minor modifications to DBSCAN, known as ST-
DBSCAN , are proposed by D. Birant et al. [16]. ST-DBSCAN 
deal with the detection of (i) core items, (ii) noise objects, and 
(iii) neighboring clusters. The ability to identify clusters on 
spatial-temporal data is the primary motivation behind this 
modification. When clusters of various densities occur, the 
second adjustment is required to locate noisy objects. D. Birant 
et al. [16] introduce the idea of density factor. Each cluster is 
given a density factor, which indicates how dense the cluster is. 
The third adjustment compares the cluster's average value with 
a new value that will soon be available. 

In ST-DBSCAN, the DBSCAN algorithm was enhanced by 
introducing a new distance limit for spatial data called Eps 2. 
In terms of its research, sea surface temperature, sea surface 
height, and wave height in the Black Sea, the Marmara Sea, the 
Aegean Sea, and the Mediterranean Sea are clustered. The 
clustering result was presented on a map labeled with a cluster 
number for each area. Using a cluster map, the result focused 
more on the spatial part of data and lacked in showing the 
temporal part. 

The problem with ST-DBSCAN is the lack of an algorithm 
on the temporal aspect of spatio-temporal data. This is because 
the temporal data were separated manually by filtering the data 
that occurred on a consecutive day or the same day in a 
different year [16]. Thus, the algorithm did not identify the 
cluster with a pattern that exists continuously in two different 
years. The cluster generated took into account the spatial and 
non-spatio-temporal part of the data; however, it lacks the 
usage of the temporal aspect of the data. 

The clustering algorithm ―Spatio-Temporal-Ordering 
Points to Identify Clustering Structure (ST-OPTICS)‖ was 
proposed by K.P. Agrawal et al. [17] and is a modified version 
of the previous density based technique ―Ordering Points to 
Identify Clustering Structure (OPTICS).‖ The proposed 
algorithm can produce spatio-temporal clusters and address 
issues such as (i) handling spatio-temporal data, non-spatial 
values to take into account temporal dimensions, (ii) algorithm 
does not depend on dimensions of data, so it is ready to handle 
n-dimensions, and (iii) independence of ordering of 
observations in database can be observed by the working 
principle of the proposed technique like it first performs Orde, 
(iv) locating nested and nearby clusters, and (v) ultimately, it is 
also scalable. 

The ST-OPTICS algorithm employs ST-DBSCAN to 
extract the clusters and then performs hierarchical clustering to 
aggregate the clusters. The result generated has better 
performance indices compared to ST-DBSCAN. However, 
comparing to a similar version of ST-DBSCAN, ST-OPTICS 
still performs clustering using spatial and non-spatio-temporal 
aspects of the data but lacks the temporal aspect of the data. 
Similarly, the results are also shown in the form of maps which 
limit the description of the temporal part of data. Therefore, 
there is still a need for a clustering algorithm that could cluster 
spatio-temporal data that will account not only the spatial and 
non-spatio-temporal parts of data but also the temporal part of 
data. 

To cluster overlapping polygons that can change their 
positions, sizes, and shapes over time, Sujing Wang et al. [18] 
introduce two new spatiotemporal clustering algorithms, called 
Spatiotemporal Shared Nearest Neighbor clustering algorithm 
(ST-SNN) and Spatiotemporal Separated Shared Nearest 
Neighbor clustering algorithm (ST-SEP-SNN). The core 
polygon notion and the spatial closest neighborhood of a 
polygon are both redefined by Sujing Wang et al. [18]. Even 
with high-dimensional data with outliers, ST-SNN and ST-
SEP-SNN may locate clusters of various sizes, shapes, and 
densities. 

P-DBSCAN, a novel DBSCAN for analysis of locations 
and events utilizing a collection of geo-tagged photographs, 
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was proposed by Slava Kisilevich et al. [19]. Two new ideas 
were introduced by P-DBSCAN: (i) the density threshold, 
which is based on the population of the neighborhood, and (ii) 
adaptive density, which is utilized to quickly converge to high-
density areas. 

Yongli Zhang et al. [20] proposed the ST-DCONTOUR 
algorithm, a unique serial density-contour-based spatio-
temporal clustering technique that uses location streams as 
input and a model-based clustering approach to produce spatio-
temporal clusters. In our method, the incoming data is divided 
into batches, and we use a serial technique to construct spatial 
clusters for each batch individually first. The formation of 
spatio-temporal clusters is then accomplished by establishing 
ongoing connections between spatial clusters in successive 
batches. Our method makes use of contouring algorithms to 
recognize spatial clusters as closed contours of a region whose 
density exceeds a predetermined threshold and contour analysis 
methods to recognize persistent, transient, and freshly formed 
spatial clusters in batches. 

Yikai Gong et al. [21] proposed a technique called RT-
DBSCAN to enable continuous cluster checkpointing-based 
real-time data clustering. In order to provide scalability, the 
platform is developed using container-based technologies and 
Apache Spark running on massive Cloud resources. The real-
time data streams were the exclusive focus of the DBSCAN 
algorithm. With the use of density-based clustering, the 
DBSCAN algorithm handles rapidly expanding high velocity 
data streams.  

Based on empirical geographical correlations across time, 
M. Hüsch et al. [22] proposed a method called CorClustST. 
CorClustST compares and interprets clustering outcomes for 
various scenarios, such as those involving several underlying 
variables or various time scales. The clustering technique is 
extended in a way that enables massively parallel execution 
and works around memory constraints. 

C. Choi et al. [23] proposed a clustering method, called 
MDST-DBSCAN for large-scale, multidimensional 
spatiotemporal data in a reliable and efficient manner. The 
MDST-DBSCAN is applied to idealized patterns and a real 
data set, and the results from both examples demonstrate that it 

can identify clusters accurately within a reasonable amount of 
time. The MDST-DBSCAN has a limitation in that the method 
of defining the neighbors in the clustering process operates 
conservatively. 

III. PROPOSED METHOD 

The spatio-temporal dataset is different from the traditional 
dataset in many ways. Firstly, it contains implicit spatial or 
temporal data that initially need to be calculated. Secondly, 
spatio-temporal data has granularity, and making its selection 
differently will impact mining results. Thirdly, spatio-temporal 
data has an auto-correlation. 

The ST-DBSCAN algorithm was proposed by Birant and 
Kut [16] and has been widely utilized in various studies, 
achieving impressive results on spatio–temporal data. The 
distance between two objects o and p denoted as dist (o, p) is 
defined by measures such as the Manhattan, Euclidean and 
Haversine distance functions. The neighborhood of object o is 
defined as *        (   )     + , where p is another 
object in database D and Eps is the predefined minimum 
distance between object o and p. Eq. 1 formally defines the 
neighborhood utilized in ST-DBSCAN as follows: Eps 1 for 
spatial data and Eps 2 for non-spatiotemporal data, whereas 
Eq. 2 defines the core objects. As per Eq. 2, objects that satisfy 
the minimum number of neighborhoods within the radius of 
Eps and are greater than or equal to the MinPts are defined as 
core objects. The ST-DBSCAN is also defined by its density-
reachable, density-reachable, density-connected, density-based 
cluster and border objects [16]. 

The temporal data aspect was separated manually by 
filtering daily observations in different years. Thus, this 
method cannot identify clusters that contain patterns of two 
different years. The neighborhood in Eq. 1 only considers the 
spatial and non-spatial distances. It does not include the 
temporal features, as the algorithm uses two boundary 
neighborhood-clustering methods. Fig. 1 illustrates the 
limitation of ST-DBSCAN. Only the spatial dimension is 
considered in the clustering process; thus, only one cluster will 
be generated. However, the distance becomes apparent if the 
data is viewed from the right or topside. Hence, the blue and 
grey boxes will not be grouped into the same cluster. 

 
Fig. 1. Two-dimensional view of spatio–temporal data with views from the front, right and top. 
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The proposed Hierarchical ST-DBSCAN (ST-HDBSCAN) 
algorithm was developed in two parts. The first part improves 
the neighborhood of the ST-DBSCAN by introducing Three 
Neighborhood Boundary. The second part introduces the 
hierarchical ward‘s method to improve the performance of 
DBSCAN. 

            (   )      )  (        (   )      )   
        (   ) (1) 

           ( )                   ( ) 
  (2)

A. ST-DBSCAN with Three Neighborhood Boundary 

Fig. 2 illustrates the spatio–temporal data in three 
dimensions to incorporate the temporal aspect. The spatial 
dimension is represented along the z-axis and y-axis, whereas 
the temporal dimension is represented along the x-axis. In the 
three-dimensional view, it becomes clear that when the 
temporal aspect is taken into consideration, proper separation is 
achieved: the grey boxes are on the positive side of the x-axis, 
and the blue boxes are on the negative side of the x-axis. 
Therefore, ignoring the temporal aspect could lead to 
inconsistent clustering. 

 
Fig. 2. A three-dimensional view of spatio–temporal data (the spatial 

dimension is represented along the z-axis and y-axis while the temporal 

dimension is represented along the x-axis). 

Eq. 3 defines the spatio–temporal neighborhood utilized in 
the improved ST-DBSCAN algorithm. It is composed of Three 
Neighborhood Boundary: Eps 1 for spatial data, Eps 2 for non-
spatio-temporal data, and Eps 3 for temporal data. 

In the improved ST-DBSCAN algorithm, temporal 
neighbors are defined by Eps 3 to limit temporal distance. As a 
result, two objects are temporally close if the distance between 
them in terms of time is in the range of Eps 3. For example, the 
temporal distance could be defined over 1 year or 1 month. If 
values are collected daily, a temporal distance defined over 1 
year will limit the data to the range of a year, that is, 182 days 
before and after the date for each value. Therefore, to spatially 
and temporally cluster the data, there is a need to develop a 
new algorithm that could incorporate the spatial and temporal 
aspects of data. Based on this information, in this research, the 
density-based algorithm ST-DBSCAN is enhanced by 
incorporating a temporal distance limit called maximum 
temporal distance (Eps 3). The maximum temporal distance is 
defined in Eq. 4. 

The proposed approach can be illustrated as follows. Given 
objects O (s1, s2, n1, n2, t1) and P (s3, s4, n3, n4, t2), each 
comprising of five variables (latitude, longitude, wind speed, 
sea surface temperature, and date), Eq. 5 (haversine function) is 
utilized to compute the spatial distance (spatial_dist) between 
O and P and Eq. 6 (Euclidean distance) computes the non-
spatiotemporal distance (non_st_dist). Also, Eq. 7 computes 
the absolute date difference between the two objects measured 
in days. The Euclidean distance was an unsuitable measure for 
the earth‘s curved surface due to the utilized spatial data 
(latitude and longitude coordinates). Therefore, the haversine 
distance was the preferred option for spatial distance 
computation. 

(           (   )      )  (         (   )      )  

(        (   )      )          (    ) 

             

        (√    (
     

 
)     (  )   (  )   

 (
     

 
))

    

where: 

h: is the haversine distance 

r: is the radius of Earth with value 6371 km 

1: is the latitude of point 1 

2: is the latitude of point 2 

1: is the longitude of point 1 

2: is the longitude of point 2 

             

        (√    (
     

 
)     (  )   (  )   

 (
     

 
))

    

          √(     )
  (     )  

                    

Pseudocode 1 describes the pseudocode of ST-DBSCAN 
with maximum temporal distance (ST-DBSCAN Eps 3). The 
algorithm starts by initializing the cluster number as described 
in line 13. Afterward, it searches for the neighbors of 
unlabelled data utilizing the retrieve-neighbor function (lines 
15–16). The expectation is that if the retrieve-neighbor 
function meets all the conditions, the objects are considered 
neighbors. Conversely, if the number of neighbors does not 
satisfy the MinPts, these objects will be labeled as noise (lines 
19–20). Otherwise, its neighbors are labeled as the same cluster 
(lines 23–24). Therefore, the algorithm checks the neighbors of 
each discovered neighbor (lines 26–29). Similarly, the 
neighbor would be labeled the same cluster (lines 30–33). 
These processes are repeated until all objects have been 
observed. Lastly, the Clustered_Data set, which contains all 
data labeled with a Cluster ID, is returned as the result of the 
algorithm (line 42). 
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Line Pseudocode 1: Pseudocode of ST-DBSCAN with Eps3 Algorithm 

1.  Inputs: 

2.     D = (d1, d2, … , dn) Set of objects 

3.     N = (d1, d2, … , dn) Set of Retrieved Neighbors 

4.     R = (r1, r2, … , rn) Set of Retrieved Neighbors of N 

5.     Eps1: Maximum spatial distance value 

6.     Eps2: Maximum non-spatial distance value 

7.     Eps3: Maximum temporal distance value 

8.     Mint: Minimum number of points within Eps1, Eps2, and Eps3 

9.   

10.  Output 

11.     Clustered_Data : Data that has been labeled with ClusterID 

12.   

13.  Initialize cluster label as 0 

14.   

15.  For i in range of number of data rows in D 

16.     If label of the current data with index i set as ―unmarked‖ 

17.        Retrieve neighbors of data with index i based on Eps1, Eps2, and Eps3 values 

18.        Store the neighbors in N 

19.        If number of neighbors are less than MinPts 

20.           Set label of data with index i as ―noise‖ 

21.        Else 

22.           Create new cluster label 

23.           For all neighbors in N 

24.              Set cluster label for each neighbor as new cluster label 

25.           End For 

26.           For all neighbors in N 

27.              Get one neighbor data and store it as current object 

28.              Retrieve neighbors of current object based on Eps1, Eps2, and Eps3 

29.              Store the neighbors of current object in R 

30.              If number of neighbors in R less than or equal to MinPts 

31.                 For all neighbors in R 

32.                    If the neighbor label‘s is not ―noise‖ or ―unmarked‖ 

33.                       Set cluster label for the current object as new cluster label 

34.                    End If 

35.                 End For 

36.              End If 

37.           End For 

38.        End Else 

39.     End If 

40.  End For 

41.   

42.  Return data D with cluster label as Clustered_Data 
 

Pseudocode 2 shows the pseudocode of the retrieve-
neighbor function. This function returns the neighbors of an 
object by computing the spatial, temporal, and non-
spatiotemporal distance between the object and other objects in 
the dataset. The algorithm starts by excluding the current object 
from the data (lines 12–13). It then computes the spatial 
distance between the two objects using the Haversine function 
(Eq. 5) and stores the distance in the spatial_dist variable (lines 
15–16). Afterward, it computes the non-spatiotemporal 
distance utilizing the Euclidean distance function (Eq. 6) and 
stores the result in the non_st_dist variable (lines 17–18). 
Finally, it calculates the temporal distance by calculating the 

date differences between the current object and other objects in 
the dataset (Eq. 7) and stores it in temporal_dist (lines 19–21). 

The next step determines the neighbors of each object in 
the dataset in turn by comparing the spatial_dist, non_st_dist 
and temporal_dist with the values of Eps 1, Eps 2 and Eps 3. 
For each evaluation, if each distance value is less than the 
corresponding Eps value, the current object (p) is considered a 
neighbor of the examined object (o) and will be added to the 
set of the object's neighbors (Data_Neighbors) (lines 22–26). 
The Data_Neighbors is returned to the ST-DBSCAN Eps 3 
Algorithm (line 30). 
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Line Pseudocode 2: Pseudocode of the Retrieve Neighbors for ST-DBSCAN with maximum temporal distance (Eps 3) 

1.  Inputs: 

2.     D      : Data of all objects 

3.     n      : Index of current object 

4.     Eps1: Maximum spatial distance value 

5.     Eps2: Maximum non-spatial distance value 

6.     Eps3: Maximum temporal distance value 

7.   

8.  Output 

9.     Data_neighbors : Data of current object‘s Neighbors 

10.   

11.  For i in range of data row in D 

12.     If i is equal to n 

13.        Continue the program 

14.     Else 

15.        Calculate spatial distance of object index i with object index n using Harversine function 

16.        Store the spatial distance as spatial_dist 

17.        Calculate non-spatio-temporal distance of object i with object index n using Euclidean function 

18.        Store the non-spatio-temporal distance as non_st_dist 

19.        Calculate temporal distance of the object index i with object index n by 

20.        subtracting time of object index i with object index n 

21.        Store the temporal distance as temporal_dist 

22.        If spatial_dist is less than Eps1 and 

23.           non_st_dist is less than Eps2 and 

24.           temporal_dist less than Eps3 

25.              Set object index i as neighbor of object index n 

26.              Add object index i to Data_neighbors 

27.        End If 

28.     End If 

29.  End For 

30.  Return Data_neighbors 
 

B. An Improved ST-DBSCAN with Hierarchical Ward’s 

Method 

ST-HDBSCAN improves the ST-DBSCAN algorithm by 
utilizing the hierarchical ward‘s method. Pseudo code 3 shows 
the ST-HDBSCAN algorithm, which consists of the clustering 
and hierarchical phases. Lines 15–41 outline the clustering 
procedure with Eps 3. After clustering, the hierarchical ward‘s 
method is employed to aggregate the results (line 50). It 
combines close and similar clusters into new larger ones based 

on the temporal distance value (computed by fast dynamic time 
warping) (lines 43–48). For the hierarchical phase, the Fast 
Dynamic Time Warping (FastDTW) algorithm warps the 
timeline of data points into compressed values (line 47) to 
simplify hierarchical cluster grouping. After computing the 
similarity pair of each cluster, the distance is condensed to 
minimize duplication (line 49). The minimum distance is 
selected as the cut point of the hierarchy to obtain the proper 
clusters (line 51). 

Line Pseudocode 3: Pseudocode of the ST-HDBSCAN Algorithm 

1.  Inputs: 

2.     D = (d1, d2, … , dn) Set of objects 

3.     N = (d1, d2, … , dn) Set of Retrieved Neighbors 

4.     R = (r1, r2, … , rn) Set of Retrieved Neighbors of N 

5.     Eps1: Maximum spatial distance value 

6.     Eps2: Maximum non-spatial distance value 

7.     Eps3: Maximum temporal distance value 

8.     Mint: Minimum number of points within Eps1, Eps2, and Eps3 

9.   

10.  Output 

11.     Clustered_Data : Data that has been labeled with ClusterID 

12.   

13.  Initialise cluster label as 0 

14.   

15.  For i in range of number of data rows in D 

16.     If label of the current data with index i set as ―unmarked‖ 

17.        Retrieve neighors of data with index i based on Eps1, Eps2, and Eps3 values 

18.        Store the neighbors in N 

19.        If number of neighbors are less than MinPts 

20.           Set label of data with index i as ―noise‖ 

21.        Else 
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22.           Create new cluster label 

23.           For all neighbors in N 

24.              Set cluster label for each neighbor as new cluster label 

25.           End For 

26.           For all neighbors in N 

27.              Get one neighbor data and store it as current object 

28.              Retrieve neighbor of current object based on Eps, Eps2, and Eps3 

29.              Store the neighbor of current object in R 

30.              If number neighbor in R less than or equal to MinPts 

31.                 For all neighbor in R 

32.                    If the neighbor label‘s is not ―noise‖ or ―unmarked‖ 

33.                       Set cluster label for the current object as new cluster label 

34.                    End if 

35.                 End for 

36.              End if 

37.           End for 

38.        End Else 

39.     End If 

40.  End For 

41.  Return data D with cluster label as Clustered_Data 

42.   

43.  For i in range of number of cluster in Clustered_Data 

44.     For j in range of number of cluster in Clustered_Data 

45.        Get non spatial data with ClusterID i 

46.        Get non Spatial data with ClusterID j 

47.        Calculate FastDTW time series distance between cluster1 and cluster2 

48.        Store the calculated value in variable ‗dist‘ 

49.  Convert pair distance ‗dist‘ into condensed distance 

50.  Generate hierarchy with ward method 

51.  Get new cluster label from hierarchy with cutting level of threshold value 

52.  For i in range of Clustered_Data 

53.     Replace cluster label with the new cluster label from hierarchy 

54.  Return Cluster_Data with new label 
 

IV. EXPERIMENT RESULTS AND DISCUSSION 

A. Equations 

The El-Niño dataset from the UCI Repository was utilized 
for this research. This dataset was provided to study the El-
Niño/Southern Oscillation cycle phenomena, which is well-
known in climatology as the cause of the climate anomalies 
worldwide [26]. The data was collected from 1980 to 1998 and 
comprised different observations for each buoy. In total, there 
are 75 buoys and 178,080 observations in the dataset. The 
dataset was pre-processed using several techniques such as 
data cleaning, data transformation, and data reduction. The data 
cleaning technique employed the K-Nearest Neighbor 
Algorithm as the imputation technique. A new variable was 
added for data transformation, and Min-Max normalization 

was implemented. Since the wind speed value is vital in 
determining El-Niño cycles, a new variable, ‗Wind Speed,‘ is 
also estimated using the Zonal and Meridional wind values. On 
the other hand, air temperature and humidity were removed 
from the dataset because air temperature values are similar to 
sea surface temperature. It does not contribute much to 
determine El-Niño because 36% were missing the humidity 
values. 

B. Parameter Setting 

Table I shows the parameter settings used in the two 
experiments. The settings are as follows. Experiment 1 
improves the ST-DBSCAN algorithm with the maximum 
temporal distance, whereas Experiment 2 improves it with the 
hierarchical ward‘s method. 

TABLE I.  PARAMETERS SETTINGS OF EXPERIMENT 1 AND 2 

Parameters 
Experiment 1 Experiment 2 

ST-DBSCAN ST-DBSCAN Eps 3 ST-HDBSCAN 0.3 ST-HDBSCAN 0.1 

Eps 1 (spatial) 5000 5000 5000 5000 

Eps 2 (non-spatio–temporal) 0.3 0.3 0.3 0.3 

Minimum points Log(178080) = 12.0899 Log(178080) = 12.0899 Log(178080) = 12.0899 Log(178080) = 12.0899 

Eps 3 (temporal) N/A 182 182 182 

Threshold value - - 0.3 0.1 
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C. ST-DBSCAN with Three Neighbourhood Boundary Result 

Table II and Table III show the clustering results for ST-
DBSCAN compared with ST-DBSCAN Eps 3. The results 
indicate that the ST-DBSCAN algorithm does not consider the 
dataset‘s temporal aspect. Obs 87567–174633 was recognized 
as one cluster: Cluster 6. Its similarity term was based on the 
spatial distance (latitude, longitude) and non-spatio–temporal 
distance (wind speed and sea surface temperature) only. 
Similarly, in Table III, Obs 87799–151340 was grouped into 
Cluster 4 only. On the other hand, ST-DBSCAN Eps 3 grouped 

Obs 87567–174633 into two clusters; 233 (Obs 174633–
177614) and 166 (Obs 87230–87567), as shown in Table II. In 
Table III, Obs 87799–151340 was grouped into four clusters, 
which are 217, 220, 228, and 166. The results show that ST-
DBSCAN Eps 3 clusters the data according to the temporal 
distance. It separated observation 177614, collected on 
November 5, 1998, from observation 87230, collected on 
April 5, 1994, which have about a four-year difference 
(Table II). 

TABLE II.  SAMPLE DATA 1 CLUSTER RESULT FOR ST-DBSCAN COMPARED WITH OTHER ALGORITHMS 

Obs Date 
Lati-

tude 
Longi-tude Wind Speed 

Sea Surface 

Temp 
Buoy 

ST-DBSCAN Eps 

3 

STHDB SCAN 

(0.1) 

STHDB SCAN 

(0.3) 
ST-DBSCAN 

174633 21/05/1998 1 −95.02 0.8591 0.4721 28 233 9 2 6 

174692 22/05/1998 1 −139.96 0.7599 0.3475 20 233 9 2 6 

174750 23/05/1998 1 −109.96 0.8296 0.4640 38 233 9 2 6 

174930 26/05/1998 1 −139.88 0.8052 0.4815 41 233 9 2 6 

174932 26/05/1998 1 −94.95 0.8922 0.1858 48 233 9 2 6 

175050 28/05/1998 −1 −95.07 0.7038 0.3980 57 233 9 2 6 

175161 30/05/1998 1 −109.96 0.7656 0.4383 38 233 9 2 6 

175273 01/06/1998 1 −125.05 0.8303 0.5245 18 233 9 2 6 

175584 06/06/1998 −1 −110 0.6650 0.3932 49 233 9 2 6 

175736 15/06/1998 1 −95.04 0.7965 0.5333 28 233 9 2 6 

175890 20/06/1998 1 −94.95 0.8520 0.5123 67 233 9 2 6 

177012 01/10/1998 −1 −95.1 0.7074 0.5374 74 233 9 2 6 

177614 05/11/1998 −1 −95.1 0.7664 0.6282 74 233 9 2 6 

87230 29/04/1994 1 −179.9 0.7779 0.5883 47 166 17 3 6 

87232 29/04/1994 1 −124.98 0.8210 0.3705 39 166 17 3 6 

87234 29/04/1994 −1 −154.99 0.8699 0.4464 52 166 17 3 6 

87288 30/04/1994 1 −110.1 0.6636 0.3485 17 166 17 3 6 

87459 03/05/1994 1 −125.02 0.6858 0.3758 18 166 17 3 6 

87460 03/05/1994 1 −179.85 0.7786 0.3967 27 166 17 3 6 

87461 03/05/1994 1 −179.89 0.7994 0.3079 47 166 17 3 6 

87462 03/05/1994 0.04 −124.35 0.6190 0.2969 2 166 17 3 6 

87513 04/05/1994 0.04 −139.99 0.7297 0.4579 3 166 17 3 6 

87567 05/05/1994 1 −140.26 0.7311 0.5450 0 166 17 3 6 

TABLE III.  SAMPLE DATA 2 CLUSTER RESULT FOR ST-DBSCAN COMPARED WITH OTHER ALGORITHMS 

Obs Date 
Lati-

tude 
Longi-tude Wind Speed 

Sea Surface 

Temp 
Buoy 

ST-DBSCAN Eps 

3 

STHDB SCAN 

(0.1) 

STHDBS CAN 

(0.3) 
ST-DBSCAN 

151340 01/04/1997 1 −125.01 0.6679 0.3474 61 217 15 2 4 

153131 01/05/1997 1 156.01 0.9001 0.3355 23 220 11 2 4 

153133 01/05/1997 −1 164.86 0.8605 0.1847 71 220 11 2 4 

153134 01/05/1997 −1 164.33 0.8807 0.3707 34 220 11 2 4 

154959 01/06/1997 1 147.05 0.8648 0.2051 42 220 11 2 4 

156725 01/07/1997 1 147.05 0.8562 0.2225 42 220 11 2 4 

158575 01/08/1997 −1 156.01 0.8706 0.3821 53 220 11 2 4 

160492 01/09/1997 1 164.98 0.8850 0.1768 25 220 11 2 4 

162354 01/10/1997 1 −179.86 0.8713 0.2448 47 228 8 2 4 

164284 01/11/1997 −1 −170.03 0.7692 0.3121 35 228 8 2 4 

87679 07/05/1994 −0.5 166.92 0.8534 0.1437 16 166 17 3 4 

87681 07/05/1994 1 −154.93 0.8296 0.4567 43 166 17 3 4 

87682 07/05/1994 −1 −170.03 0.8454 0.3735 35 166 17 3 4 

87742 08/05/1994 1 −125.07 0.6147 0.5030 18 166 17 3 4 

87743 08/05/1994 −0.03 −170.02 0.8541 0.3364 12 166 17 3 4 

87744 08/05/1994 1 −170.04 0.8864 0.3627 26 166 17 3 4 

87745 08/05/1994 1 −154.92 0.8224 0.3427 43 166 17 3 4 

87746 08/05/1994 0.04 −139.97 0.6276 0.1990 3 166 17 3 4 

87799 09/05/1994 1 −179.89 0.8929 0.1243 47 166 17 3 4 
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A heatmap can be utilized to visualize the performance of 
the algorithms. Fig. 3 shows the heatmap of the 14 clusters by 
ST-DBSCAN. Each color represents a different cluster, and 
each line represents the timeline of a buoy. Each buoy changes 
its cluster membership accordingly in its timeline, represented 
by the changing color in the buoy timeline. The heatmap shows 
that the clusters generated by ST-DBSCAN do not separate the 
data based on time. The small clusters indicate this problem 
with various colors spread across the timeline. This problem 
shows that clusters contain data with similar values but could 
occur at any time. 

Fig. 4 shows the heatmap of the ST-DBSCAN Eps 3 
algorithm. The Fig. 4 clearly shows the separation of data 
based on time, although 240 clusters were generated in the 
process. Though the cluster areas are enormous, the members 
in each cluster are small. However, the clusters are well-
ordered based on time. However, since the number of clusters 
is enormous, it is difficult to interpret the data pattern, and each 
cluster has a tiny number of members. Therefore, to reduce the 
number of clusters and increase the understanding of the 
patterns generated, an improvement is conducted by 
aggregating the similar clusters based on the temporal 
similarity of the clusters. This technique was previously 

employed in ST-OPTICS, where the algorithm combined the 
density-based and hierarchical-based methods to cluster 
spatio–temporal data [17]. 

D. ST-HDBSCAN Result 

The ST-HDBSCAN algorithm was utilized to minimize the 
number of clusters generated by ST-DBSCAN with Eps 3. The 
clusters generated from the previous experiment were 
aggregated according to their similarity to form a hierarchy of 
clusters. FastDTW was employed as the cluster aggregation 
function. If the FastDTW value is small, the cluster is 
considered similar and is grouped into a larger cluster. 

The cut point of the dendrogram decides the number of 
clusters generated by ST-HDBSCAN. The higher the cut point 
affect to the fewer clusters generated. The number of vertical 
lines at the different cut-point levels indicates the number of 
clusters. Fig. 5 shows the hierarchical clustering dendrogram 
for the ST-HDBSCAN algorithm using the hierarchy threshold 
(0.1). The cut point of the dendrogram is calculated by 
multiplying the threshold with the maximum hierarchy distance 
or maximum FastDTW distance of all clusters. For the data 
utilized in our experiment, the maximum distance was 249.95. 

 
Fig. 3. The cluster heatmap of ST-DBSCAN. 

 
Fig. 4. The cluster heatmap of ST-DBSCAN with Eps 3. 
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Fig. 5. Hierarchical Clustering Dendrogram ST-HDBSCAN 0.1. 

 
Fig. 6. Hierarchical Clustering Dendrogram ST-HDBSCAN 0.3. 

On the other hand, Fig. 6 shows the cut point hierarchy for 
the threshold (0.3). It achieved a maximum distance of 749.98 
and generated six clusters. 

It is evident from Fig. 5 and 6 that the cluster colors are 
similar because the groups are the same; only the level of detail 
is different. Also, the result of the ST-HDSBCAN algorithm 
with the threshold (0.1) is more detailed. It is observed when 
the smaller cluster size and more significant cluster number in 
Fig. 5 compared with Fig. 6. However, the result of ST-
HDBSCAN with a threshold (0.3) has interesting cluster 
patterns. 

Furthermore, Fig. 7 shows the heatmap of ST-HDBSCAN 
with a threshold (0.3). It indicates how each cluster is 
distinguished. This pattern appears at a particular timeline, 
identified by ‗ClusterID 3‘ in cyan color. This distinctive 
cluster occurred between 1994 and 1995. According to the 
Earth System Research laboratory, one of the National Oceanic 
and Atmospheric Administration research centers, the El-Niño 
that occurred within the above specified years is considered 
one of the top 24 strongest between 1895 and 2015. It is also 
regarded as one of the new El-Niño events that warmed the 
central–equatorial area of the Pacific Ocean rather than the 
eastern part of the Pacific Ocean. 

It is evident from the heatmaps of ST-HDBSCAN with a 
threshold (0.3) that the clusters are spread across the timeline, 
except for Cluster 3. Cluster 1 (dark blue) mostly appears 
between 1990 to 1995 and starts to disappear after a few years. 
On the other hand, cluster 2 (light blue) appears close to 
Cluster 1 and spreads through the entire timeline. Cluster 4 
(yellow color) appears mostly early in the timeline but starts to 
disappear between 1990 to 1995. It is replaced by Cluster 6 
(brown color), although Cluster 4 reappears in the following 
years. Cluster 5 only appeared in 1990, and its effect on the 
environment was significant in later years. Cluster 6 appears in 
the early years of the timeline but mostly has a strong presence 
between 1990 to 1995. It gradually diminishes, and it 
completely vanishes in early 1997. 

Fig. 8 shows the heatmap of the ST-HDBSCAN of 
threshold (0.1). The heatmap indicates a similar pattern to that 
of Fig. 7. Furthermore, the clusters are not as clear compared 
with the ST-HDBSCAN threshold (0.3). A cluster 1 to 6 
mostly appears from 1990 to 1995, whereas Cluster 7 to 9 
appears after. Clusters 1 to 6 shows a resurgence in 1998. This 
pattern is similar to Cluster 1 and 2 in ST-HDBSCAN of 
threshold (0.3). 
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Fig. 7. Seven cluster 3 heatmaps of Cluster ST-HDBSCAN with Threshold (0.3). 

 
Fig. 8. Cluster heatmap of ST-HDBSCAN with Threshold (0.1). 

Similar to Clusters 4 and 6 in ST-HDBSCAN of threshold 
(0.3), Clusters 16 to 19 start appearing early (1981) and are 
dominant from 1994 to 1995. Likewise, Clusters 28 to 30 
appear early (1988), but they appear primarily between 1990 
and 1994. They are replaced by Clusters 24 to 26 but reappear 
in early 1997 and are replaced again by Clusters 24 to 26. 
However, other clusters generally spread across the timeline 
and are not noticeable in the heatmap. 

E. Performance Indices of the Proposed Method 

Table IV shows six performance indices for ST-
HDBSCAN, ST-DBSCAN, and ST-DBSCAN with Eps 3. The 
high and low values differ according to the type of 
performance indices method, as indicated in column Best If 
Value. For example, in the performance index Ball-Hall, the 
higher value indicates the best performance, whereas Det Ratio 
is in direct contrast to it. The result specifies that ST-
HDBSCAN with a threshold (0.3) has the best performance 
indices values for all performance indices except for KsqDetW. 
Table V specifies the comparison of the performance indices of 
ST-DBSCAN with ST-HDBSCAN 0.3. From Table V, it is 
evident that ST-HDBSCAN with 0.3 improves the 
performance indices of ST-DBSCAN by more than 40%. 

Similarly, the GDI51 and Trace W performance indices of ST-
HDBSCAN 0.3 improve ST-DBSCAN by more than 100%. 

The negative percentage of Det Ratio and Log Det Ratio 
were converted to positive values to calculate the average 
percentage improvement. This conversion is because a 
negative percentage indicates that the index is getting lower. 
Note that lower indices imply better performance indices. The 
average percentage improvement in the Dat Ratio index by ST-
HDBSCAN 0.3 is 75%. Thus, adding the maximum temporal 
distance (Eps 3) and hierarchical aggregation using the ward‘s 
method improves all performance indices. However, this is not 
the case for the KsqDetW index. 

The KsqDetW index value is lower because the number of 
clusters generated by ST-HDBSCAN (6 clusters) is smaller 
than that by ST-DBSCAN (14 clusters). Given that the 
function to evaluate the KsqDetW is highly dependent on the 
number of clusters, a smaller number of clusters results in 
lower KsqDetW values. Eq. 8 evaluates the value of KsqDetW, 
where K is the number of clusters and WG is the sum of the 
within-group scatter matrix. 

              (  ) 
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TABLE IV.  PERFORMANCE INDICES COMPARISON OF ST-DBSCAN, ST-DBSCAN WITH EPS 3, ST-HDBSCAN 0.1 AND ST-HDBSCAN 0.3 

Indices Best If Value ST-DBSCAN ST-DBSCAN Eps 3 ST-HDBSCAN 0.1 ST-HDBSCAN 0.3 

Ball-Hall high 0.01615323 0.0157 0.02011439 0.0230969 

Det Ratio low 14.4842 6.41 4.69 3.55 

GDI51 high 0.0331 0.0315 0.0779143 0.0944 

KsqDetW high 1.69E+08 1.11E+11 3.27E+09 1.27E+08 

Log Det Ratio low 476018.2 330972 275336.7 225691 

Trace W high 1904.39 2951 3386.383 3912 

TABLE V.  PERFORMANCE INDICES COMPARISON OF ST-DBSCAN AND ST-HDBSCAN 0.3 

Indices Best If Value ST-DBSCAN ST-HDBSCAN 0.3 Difference Percentage 

Ball-Hall high 0.01615323 0.0230969 0.00694367 43% 

GDI51 high 0.0331 0.0944 0.0613 185% 

KsqDetW high 1.69E+08 1.27E+08 -42000000 25% 

Trace W high 1904.39 3912 2007.61 105% 

Det Ratio low 14.4842 3.55 -10.9342 75% 

Log Det Ratio low 476018.2 225691 -250327.2 53% 
 

V. CONCLUSION AND FUTURE WORK 

The proposed ST-HDBSCAN effectively incorporates the 
spatial and non-temporal data aspects in clustering. Likewise, it 
utilizes the temporal aspect of data in the clustering process, 
thus significantly improving the clustering performance 
indices. The algorithm introduces an additional temporal 
distance boundary (Eps 3), known as the Three Neighborhood 
boundary. ST-HDBSCAN further improves the clustering 
performance by employing the hierarchical ward‘s method and 
fast dynamic time warping. We made comparisons with the 
ST-DBSCAN algorithm utilizing heatmaps and some 
performance indices. ST-HDBSCAN outperformed by 185% 
and indicated interesting patterns with spatio–temporal data. 
Several directions in future work are possible such as adapting 
the algorithm to process streaming data, indexing spatial and 
temporal aspects of data, and implementing parallel computing 
to improve the efficiency of the ST-HDBSCAN algorithm. 
Also, implementing the experiments for other spatio–temporal 
datasets in other fields such as criminology, medical and social 
media will also be beneficial to discovering hidden knowledge 
in the data. 

ACKNOWLEDGMENT 

This work was supported by the Universiti Kebangsaan 
Malaysia under Grant FRGS/1/2019/ICT02/UKM/02/7. 

REFERENCES 

[1] U. Khalil, O. Ahmed Malik, D. T. Ching Lai, and O. Sok King, ―Cluster 
Analysis for Identifying Obesity Subrouops in Health and Nutritional 
Status Survey Data,‖ Asia-Pacific J. Inf. Technol. Multimed., vol. 10, no. 
02, pp. 146–169, Dec. 2021, doi: https://doi.org/10.17576/apjitm-2021-
1002-11. 

[2] G. Atluri, A. Karpatne, and V. Kumar, ―Spatio-Temporal Data Mining,‖ 
ACM Comput. Surv., vol. 51, no. 4, pp. 1–41, Jul. 2019, doi: 
https://doi.org/10.1145/3161602. 

[3] A. Madraky, Z. A. Othman, and A. R. Hamdan, ―Hair-oriented data 
model for spatio-temporal data representation,‖ Expert Syst. Appl., vol. 
59, pp. 119–144, Oct. 2016, doi: https://doi.org/10.1016/j.eswa. 
2016.04.028. 

[4] V. Bogorny and S. Shekhar, ―Spatial and Spatio-temporal Data Mining,‖ 
in 2010 IEEE International Conference on Data Mining, Dec. 2010, pp. 
1217–1217. doi: https://doi.org/10.1109/ICDM.2010.166. 

[5] J. D. Mazimpaka and S. Timpf, ―Trajectory data mining: A review of 
methods and applications,‖ J. Spat. Inf. Sci., no. 13, Dec. 2016, doi: 
https://doi.org/10.5311/JOSIS.2016.13.263. 

[6] G. Atluri, A. Karpatne, and V. Kumar, ―Spatio-Temporal Data Mining: A 
Survey of Problems and Methods,‖ ACM Comput. Surv., vol. 51, no. 4, 
pp. 1–41, Jul. 2019, doi: https://doi.org/10.1145/3161602. 

[7] H. Mahidin et al., ―Spatio-temporal of surface ozone (O3) variations at 
urban and suburban sites in Sarawak region of Malaysia,‖ in IOP 
Conference Series: Earth and Environmental Science, Oct. 2021, vol. 
880, no. 1, p. 012004. doi: https://doi.org/10.1088/1755-
1315/880/1/012004. 

[8] M. Tonini, M. G. Pereira, J. Parente, and C. Vega Orozco, ―Evolution of 
forest fires in Portugal: from spatio-temporal point events to smoothed 
density maps,‖ Nat. Hazards, vol. 85, no. 3, pp. 1489–1510, Feb. 2017, 
doi: https://doi.org/10.1007/s11069-016-2637-x. 

[9] N. Ahmed, M. A.-A. Hoque, B. Pradhan, and A. Arabameri, ―Spatio-
Temporal Assessment of Groundwater Potential Zone in the Drought-
Prone Area of Bangladesh Using GIS-Based Bivariate Models,‖ Nat. 
Resour. Res., vol. 30, no. 5, pp. 3315–3337, Oct. 2021, doi: 
https://doi.org/10.1007/s11053-021-09870-0. 

[10] U. M. Butt et al., ―Spatio-Temporal Crime Predictions by Leveraging 
Artificial Intelligence for Citizens Security in Smart Cities,‖ IEEE 
Access, vol. 9, pp. 47516–47529, 2021, doi: 
https://doi.org/10.1109/ACCESS.2021.3068306. 

[11] B. Priambodo, A. Ahmad, and R. A. Kadir, ―Spatio-temporal K-NN 
prediction of traffic state based on statistical features in neighbouring 
roads,‖ J. Intell. Fuzzy Syst., vol. 40, no. 5, pp. 9059–9072, Apr. 2021, 
doi: https://doi.org/10.3233/JIFS-201493. 

[12] S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo, ―Spatio-
temporal clustering,‖ in Data Mining and Knowledge Discovery 
Handbook, Boston, MA: Springer US, 2009, pp. 855–874. doi: 
https://doi.org/10.1007/978-0-387-09823-4_44. 

[13] M. Y. Ansari, A. Ahmad, S. S. Khan, G. Bhushan, and Mainuddin, 
―Spatiotemporal clustering: a review,‖ Artif. Intell. Rev., vol. 53, no. 4, 
pp. 2381–2423, Apr. 2020, doi: https://doi.org/10.1007/s10462-019-
09736-1. 

[14] A. Madraky, Z. A. Othman, and A. R. Hamdan, ―Analytic Methods for 
Spatio-Temporal Data in a Nature-Inspired Data Mode,‖ Int. Rev. 
Comput. Softw., vol. 9, no. 3, pp. 547–556, 2014. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

626 | P a g e  

www.ijacsa.thesai.org 

[15] Z. A. Othman, A. A. Bakar, A. M. Adabashi, and Z. Muda, ―A Similarity 
Normal Clustering Labelling Algorithm for Clustering Network Intrusion 
Detection,‖ J. Appl. Sci., vol. 14, no. 10, pp. 969–980, 2014, doi: 
https://doi.org/10.3923/jas.2014.969.980. 

[16] D. Birant and A. Kut, ―ST-DBSCAN: An algorithm for clustering 
spatial–temporal data,‖ Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, 
Jan. 2007, doi: https://doi.org/10.1016/j.datak.2006.01.013. 

[17] K. P. Agrawal, S. Garg, S. Sharma, and P. Patel, ―Development and 
validation of OPTICS based spatio-temporal clustering technique,‖ Inf. 
Sci. (Ny)., vol. 369, pp. 388–401, Nov. 2016, doi: 
https://doi.org/10.1016/j.ins.2016.06.048. 

[18] S. Wang, T. Cai, and C. F. Eick, ―New Spatiotemporal Clustering 
Algorithms and their Applications to Ozone Pollution,‖ in 2013 IEEE 
13th International Conference on Data Mining Workshops, Dec. 2013, 
pp. 1061–1068. doi: https://doi.org/10.1109/ICDMW.2013.14. 

[19] S. Kisilevich, F. Mansmann, and D. Keim, ―P-DBSCAN: a density based 
clustering algorithm for exploration and analysis of attractive areas using 
collections of geo-tagged photos,‖ in Proceedings of the 1st International 
Conference and Exhibition on Computing for Geospatial Research & 
Application - COM.Geo ‘10, 2010, p. 1. doi: https://doi.org/ 
10.1145/1823854.1823897. 

[20] Y. Zhang and C. F. Eick, ―ST-DCONTOUR: a serial, density-contour 
based spatio-temporal clustering approach to cluster location streams,‖ in 
Proceedings of the 7th ACM SIGSPATIAL International Workshop on 
GeoStreaming, Oct. 2016, pp. 1–4. doi: https://doi.org/10.1145/ 
3003421.3003429. 

[21] Y. Gong, R. O. Sinnott, and P. Rimba, ―RT-DBSCAN: Real-Time 
Parallel Clustering of Spatio-Temporal Data Using Spark-Streaming,‖ in 
Computational Science -- ICCS 2018, Cham: Springer International 
Publishing, 2018, pp. 524–539. doi: https://doi.org/10.1007/978-3-319-
93698-7_40. 

[22] M. Hüsch, B. U. Schyska, and L. von Bremen, ―CorClustST—
Correlation-based clustering of big spatio-temporal datasets,‖ Futur. 
Gener. Comput. Syst., vol. 110, pp. 610–619, Sep. 2020, doi: 
https://doi.org/10.1016/j.future.2018.04.002. 

[23] C. Choi and S.-Y. Hong, ―MDST-DBSCAN: A Density-Based Clustering 
Method for Multidimensional Spatiotemporal Data,‖ ISPRS Int. J. Geo-
Information, vol. 10, no. 6, p. 391, Jun. 2021, doi: 
https://doi.org/10.3390/ijgi10060391. 

[24] L. Ertöz, M. Steinbach, and V. Kumar, ―Finding Clusters of Different 
Sizes, Shapes, and Densities in Noisy, High Dimensional Data,‖ in 
Proceedings of the 2003 SIAM International Conference on Data Mining, 
May 2003, pp. 47–58. doi: https://doi.org/10.1137/1.9781611972733.5. 

[25] R. Oliveira, M. Y. Santos, and J. M. Pires, ―4D+SNN: A Spatio-
Temporal Density-Based Clustering Approach with 4D Similarity,‖ in 
2013 IEEE 13th International Conference on Data Mining Workshops, 
Dec. 2013, pp. 1045–1052. doi: https://doi.org/10.1109/ICDMW 
.2013.119. 

[26] Earth System Research Laboratory, ―Top 24 Strongest El Nino and La 
Nina Event Years by Season,‖ 2015. https://www.esrl.noaa.gov/psd/ 
enso/climaterisks/years/top24enso.html (accessed Apr. 07, 2022). 

 


