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Abstract—Cross-lingual summarization (CLS) is a process of 

generating a summary in the target language from a source 

document in another language. CLS is a challenging task because 

it involves two different languages. Traditionally, CLS is carried 

out in a pipeline scheme that involves two steps: summarization 

and translation. This approach has a problem, it introduces error 

propagation. To address this problem, we present a novel end-to-

end abstractive CLS without the explicit use of machine 

translation. The CLS architecture is based on Transformer 

which is proven to be able to perform text generation well. The 

CLS model is a jointly trained CLS task and monolingual 

summarization (MS) task. This is accomplished by adding a 

second decoder to handle the MS task, while the first decoder 

handles the CLS task. We also incorporated multilingual word 

embeddings (MWE) components into the architecture to further 

improve the performance of the CLS models. Both English and 

Bahasa Indonesia are represented by MWE whose embeddings 

have already been mapped into the same vector space. MWE 

helps to better map the relation between input and output that 

use different languages. Experiments show that the proposed 

model achieves improvement up to +0.2981 ROUGE-1, +0.2084 

ROUGE-2, and +0.2771 ROUGE-L when compared to the 

pipeline baselines and up to +0.1288 ROUGE-1, +0.1185 

ROUGE-2, and +0.1413 ROUGE-L when compared to the end-

to-end baselines. 

Keywords—Cross-lingual summarization; multilingual word 

embeddings; transformer; automatic summarization 

I. INTRODUCTION 

Automatic summarization is a process of automatically 
producing a shorter version of an original while retaining 
contents and meanings that are considered essential. This 
shorter version is called a summary. The purpose of 
summarizing is to produce a summary that contains the main 
content of a document in less space [1]. Automatic 
summarization helps users get the main idea of a document 
without having to read the whole document thus saving time 
and effort compared to doing it manually [2]. In general, 
automatic summarization can be categorized into two based on 
the approach in summarizing: extractive summarization and 
abstractive summarization. The extractive approach produces a 
summary by copying words or sentences from source 
documents that are considered important. The abstractive 
approach produces a summary using its own words or 
sentences. In addition to text, summaries of images and videos 
can also be produced [3] [4] [5]. In the context of this work, 

automatic summarization is an activity that uses a machine 
(computer) to automatically summarize a document using a 
certain algorithm or method. 

The study on automatic summarization was first reported 
by Luhn [6]. The system is based on bag-of-words. The 
frequency and relative position of a word in a sentence are the 
main features in determining how important the sentence is. 
Gradually, linguistic information such as word type and 
structure are utilized using natural language processing (NLP). 
The extractive approach is then widely used because of its 
simple approach without the need for extensive NLP [7] [8]. 
The success of the sequence-to-sequence (Seq2Seq) recurrent 
neural network (RNN) model has made the rapid development 
of abstractive approaches [9] [10]. Inspired by the attention-
based neural machine translation (MT) model [11] [12], the 
RNN is used by adding the attention mechanism so that the 
model can focus on some parts of text while diminishing other 
parts at a certain time/context. 

Cross-lingual summarization (CLS) is a task to produce a 
summary in the target language, from source documents in 
another language [13] [14]. Traditionally, CLS can be done by 
involving two processes: translation and monolingual 
summarization (MS). However, there is a problem when doing 
it with two processes in a pipeline scheme. The pipeline 
process introduces error propagation which adversely affects 
the final quality of the summary. This problem can be solved 
by conducting end-to-end model training [15] [16]. Another 
challenge in CLS research is the limited data or corpus that can 
be used to train the model. Research on end-to-end CLS is still 
relatively new, so resources related to it are still quite scarce. 
There is no dataset that is considered a standard that can be 
used as a benchmark. The researchers still tend to create their 
own dataset for the language pair domain that is of interest to 
them. 

In this paper, we present a novel end-to-end abstractive 
CLS that solves the error propagation problem found in the 
pipeline scheme. We adapt transformer-based architecture and 
extended it by including multilingual word embeddings 
(MWE) [17] components. These components allow the model 
to be able to represent words in two different languages. This 
paper is an extended study of our previous work on the end-to-
end abstractive CLS model [18]. The model is trained in the 
English domain for source documents and the Bahasa 
Indonesia domain for its summary using the dataset that we 
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have constructed. Inspired by [19] and [20], we use a round-
trip translation technique to generate CLS dataset from MS 
dataset. This technique is similar to that used by [15], but we 
apply it to the document and its summary, not just the 
summary. The resulting dataset is then evaluated using 
bilingual evaluation understudy (BLEU) [21]. BLEU is a 
method for evaluating the quality of text that has been machine 
translated from one language to another automatically. The 
CLS model can produce a Bahasa Indonesia summary from an 
English source document end-to-end without explicitly using a 
machine translator. 

The main contributions of this work are: 

 A novel framework for generating end-to-end 
abstractive cross-lingual summary by incorporating 
MWE components in the architecture. These 
components are used to represent words in both 
languages used in the source document and its 
summary. 

 This works produces a new cross-lingual dataset. This 
dataset can be used for CLS research with the English 
domain as the source document and the Bahasa 
Indonesia domain as the summary. 

The rest of this paper is organized as follows. In Section II, 
we review the related work in CLS. In Section III, we explain 
the proposed method. In Section IV, the details of the 
experimental setup and the evaluation metrics are presented. 
The experimental results are given in Section V. Finally, the 
conclusions of this research are found in Section VI. 

II. RELATED WORKS 

CLS is the process of generating a summary in the target 
language from source documents in another language. Unlike 
MS, CLS involves at least two different languages. Traditional 
approaches treat CLS as a pipeline scheme. The newer 
approach does it end-to-end to avoid error propagation that 
occurs in the pipeline process. 

A. Traditional Cross-Lingual Summarization 

CLS research has been conducted [22] [23] [24]. The 
approaches are generally divided into extraction-based and 
compression-based. Summarization is done in a pipeline 
manner which is divided into two steps: summarizing and 
translating. There are two patterns of utilization or use of 
machine translation. The first pattern is to first translate the 
source document using a machine translator and then the 
results of the translation are used to summarize. The second 
pattern summarizes the source document first and then 
translates the results using a machine translator into the target 
language. Another approach utilizes existing source documents 
in two languages to generate summaries in the target language 
[25] [26]. This target language is one of the two languages. In 
addition to the extraction process, a compression process is 
also carried out in the compression-based approach. 
Summarization begins with a selection process to obtain 
relevant content in the form of sentences or phrases (bilingual). 
The compression is carried out by removing parts of sentences 
or phrases that do not meet some criteria, such as information 
content, legibility, and grammar/structure [27] [28] [29]. 

In contrast to the CLS previously described which uses an 
extractive approach, Zhang, Zhou, and Zong [30] developed an 
abstractive CLS system. The system works by first translating 
the source document from English to Chinese using Google 
Translate. The next step is to extract bilingual concepts and 
fact pairs. Then the score of translation and salience is 
calculated from this set of pairs. Based on the scores, a set of 
pairs is selected to be used in the summary. This selection 
considers several criteria, including compatibility between 
concepts and facts, number of sentences, summary length, etc. 
Post-processing begins with determining which pairs of 
concepts and facts are included in a particular sentence. Then 
the last step is to put them in order. Abstractive summarization 
has the ability to paraphrase. In the system developed by [30], 
the abstractive process is carried out by combining pairs of 
concepts and facts into one sentence. This process is indeed a 
form of paraphrasing, but these pairs of concepts and facts are 
taken extractively and used as they are. 

Similar to [30], our work also falls under the abstractive 
CLS category. The difference is that our approach is based on 
neural networks and summarization is done directly, rather 
than in two steps in a pipeline scheme. This straightforward 
CLS can avoid error propagation that occurs in the pipeline 
process. 

B. Neural Network-based Cross-Lingual Summarization 

In 2019, neural network-based CLS began to emerge. 
Ouyang, Song, and McKeown [31] use neural networks for 
CLS in pipeline schemes, on the translation side using Marian 
[32] and on the summarization side using pointer-generators 
[33]. The system summarizes Somali, Swahili, or Tagalog 
source documents into an English summary. Zhu et al. [15] are 
the first to report on end-to-end CLS. A CLS from English to 
Chinese was built using transformer architecture that has been 
proven to have good performance in text generation. The 
network is trained using a multi-task learning approach. 
Specifically, they combine CLS loss with MS loss. The CLS 
dataset used was built by modifying the CNN/Dailymail 
dataset. The dataset is translated into Chinese using a machine 
translation service. Duan et al. [16] see CLS as a zero-shot 
problem. They do not have a CLS dataset to train the model 
directly. The network is trained by adapting a paradigm on 
neural machine translation (NMT) called triangular NMT 
systems. A network called a student network is a CLS network 
that is trained to imitate the behavior of a teacher network 
which is an MS network. Ladhak et al. [34] proposed a 
benchmark dataset for abstractive CLS named WikiLingua. 
The data is taken from WikiHow in the form of document and 
summary pairs in 18 languages. Not all data is available in 18 
languages, availability in each language varies. The dataset is 
tested for CLS with pipeline and end-to-end approach. The 
end-to-end approach uses mBART [35] which is fine-tuned 
using the source language document and the target language 
summary. 

Our approach is inspired by [15]. However, we propose to 
add MWE components which we believe will improve the 
performance of the model. MWE represents the two languages 
in the CLS task in the same vector space. This facilitates the 
mapping of the relation between inputs and outputs during 
model training. 
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C. Multilingual Word Embeddings 

Multilingual word embeddings (MWE) are word 
embeddings that represent words in various languages in one 
vector space [17]. Conneau et al. [36] developed MWE using 
an unsupervised approach. Supervised approaches generally 
require bilingual resources such as dictionaries or parallel 
corpus. They proposed an unsupervised way to map 
monolingual word embeddings without the need for bilingual 
data. Word embeddings for each language are initially trained 
independently. Then, each word in the two languages is 
mapped into the same vector space using deep adversarial 
networks [37]. Heinzerling & Strube [38] developed MWE for 
word segmentation (subword embeddings). Word segmentation 
is done by using the byte pair encoding (BPE) approach. BPE 
performs segmentation to words that rarely appear into several 
tokens. Embeddings are trained in a simple way. All articles 
from Wikipedia in various languages are combined, then used 
to train subword embeddings. Artetxe & Schwenk [39] also 
developed multilingual embeddings but specifically developed 
embeddings for sentences. These sentence embeddings were 
trained using a single bidirectional LSTM (BiLSTM) encoder. 

In this work, we use MUSE from Conneau et al. [36]. 
MUSE is used because the embedding is word-based so it is 
expected to be able to cover most of the vocab. MWE based on 
word segmentation such as BPEmb from Heinzerling & Strube 
[38] may be better than MUSE because it can recognize tokens 
that rarely or never appear in the training data. However, it is 
not suitable for the case in this work because the embedding is 
trained using various language versions of the articles available 
on Wikipedia. The amount of data which is an aggregate of all 
articles in various language versions can also result in many 
words being segmented due to their small frequency, thus 
causing the size of vocab to be very large. In general, a vocab 
size that is too large can adversely affect the performance of 
NLP system. 

III. METHODS 

CLS can be expressed as an input sentence in the source 
language                   and      , where   is the 
input sentence length and    is the source vocab in the source 
language, with an output summary in the target language 

                  and      , where   is the output 
summary length,    , and    is the target vocab in the target 
language. 

A. Transformer-based Cross-Lingual Summarization 

NLP systems that are built specifically for a particular 
language are generally trained using datasets in that language. 
This approach has a problem when applied to other languages. 
The system needs to be retrained with separate datasets in the 
other specific language. This is equivalent to building the 
system from scratch. Another way is to use machine 
translation. The system is combined with machine translation 
in a pipeline so that it can produce output in the desired 
language. MWE can be used to tackle this problem. Both 
languages are represented by embeddings that are mapped into 
the same vector space. This mapping makes the two languages 
seem to be the same language, at least at the word level. The 
CLS architecture proposed in this work is based on transformer 
architecture [40] by adding MWE components to handle cross-
lingual problem. Transformer was chosen because it is state-of-
the-art in many NLP topics including CLS and has proven to 
be able to perform text generation well [41] [42]. 

Inspired by Zhu et al. [15], the architecture also added a 
second decoder with a single shared encoder. During training, 
the input of CLS decoder (decoder1) is a summary in Bahasa 
Indonesia, while the input of MS decoder (decoder2) is a 
summary in English. MS decoder is only used during training. 
So, in the training process, encoder-decoder1 is trained for 
CLS problems, while encoder-decoder2 is trained for MS 
problems. The losses from the two are combined and can be 
calculated as follows: 

      
 

 
∑ [  

      ̂ 
        

         ̂ 
  ] 

      

          
 

 
∑ [  

    ( ̂ 
 )  (    

 )    (   ̂ 
 )] 

         (1) 

where   are parameters in the model,   
  and   

  are the 

correct labels for both tasks, and  ̂ 
  and  ̂ 

  are predictive 
labels for both tasks. The combined loss was used to update the 
weight. During test, the MS decoder was ignored. The 
architectural diagram can be seen in Fig. 1. 
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Fig. 1. CLS architecture 

B. Cross-Lingual Summarization Architecture Components 

1) Input and output: The input of the encoder is an 

English document                  . This document is 

tokenized using a subword tokenizer. Words that occur 

infrequently will be segmented into several tokens, while 

words that occur frequently (high frequency) are left as is. 

This sequence of tokens is then converted into a sequence of 

indexes according to the vocab. The output of CLS decoder is 

a Bahasa Indonesia summary and the output of MS decoder is 

an English summary. At the time of training, the tokens here 

are also an input that will be converted into a sequence of 

indexes according to the vocab. Vocab for Bahasa Indonesia is 

different from vocab for English. At the time of test, the CLS 

decoder generates a Bahasa Indonesia summary          
         while the MS decoder is ignored. 

2) Multilingual word embeddings: The proposed CLS 

architecture incorporated pre-trained MWE from MUSE [36]. 

We use MUSE because it can cover most of the words in 

vocab while maintaining vocab cohesiveness. MWE 

Component maps the input English document          
         into a sequence of embeddings          
         whose size varies with respect to the source 

sequence length. 

3) Positional Encoding: This component provides 

position information to the tokens in the sequence by adding 

the "positional encodings" to the embeddings. The positional 

encodings are obtained using the following formula: 

                               

                                                                (2) 

where     is the position (      
 

 
, where   is the 

length of the sequence),   is the embedding dimension, and   is 
used for mapping to indices of elements in positional encoding 

vector (    
 

 
). Positional encoding is necessary because 

the proposed transformer-based architecture does not consider 
positional information or word order. Without positional 
encoding, this architecture is essentially a bag-of-words model. 

4) Multi-head self-attention: Multi-head self-attention 

consists of several heads which correspond to scaled dot-

product attention (self-attention). Called self-attention because 

it can generate its own value of query ( ), key ( ), and value 

( ). These three values are abstractions that represent the 

input needed to calculate the attention weight. It is obtained 

using the following formula: 

      

      

               (3) 

where Z is the input embeddings and   ,   , and    are 

learnable matrices. The scaled dot-product attention is then 

calculated using the scaling factor of 
 

√  
. 

                         
   

√  
   (4) 

where   is dimension of  . The output of each head is then 
concatenated to get the final values. 
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where   is the number of heads and   ,   
 

,   
 , and   

  

are learnable matrices. Multi-head self-attention on the decoder 
is also called encoder-decoder attention because it receives 
input from the encoder and decoder. There is a mapping of the 
relation between input and output here. This component can be 
calculated in parallel because the attention weight here is 
independent of one another. 

5) Masked multi-head self-attention: This component has 

a similar function to the multi-head self-attention component. 

However, unlike multi-head self-attention, masked multi-head 

self-attention has a function to mask output that has not been 

seen/predicted. The model must predict the output based on 

the results of the previous output and must not look at the 

output that appears later. When the matrix operation is 

performed, the output that has not been seen/predicted will be 

masked/changed to zero so that it cannot be seen by the 

model. 

6) Positionwise FNN: Positionwise FNN is a simple 

feedforward neural network that runs for all attention weights. 

Its main task is to convert the attention weight into an 

acceptable form for the next step, such as encoder layer, 

decoder layer, or linear layer. This component consists of two 

linear layers. The first layer uses ReLU activation. 

                           (6) 

7) Linear Layer and Softmax: Linear layer is a component 

in the form of a feedforward layer that acts as a classifier. This 

component is used to adjust the dimensions as needed. For 

example, to accommodate the number of words (classes) in 

the vocab. Finally, there is the softmax layer which converts 

the vector into a probability distribution. 

IV. EXPERIMENTS 

This section describes the experiments. First, we describe 
the dataset which includes English documents and their 
summary, Bahasa Indonesia documents and their summary, 
and English-Bahasa Indonesia parallel corpus. Then, we 
explain the implementation and model variations including the 
baseline model. Finally, we discuss the evaluation metrics used 
to measure the performance of CLS models. 

A. Dataset 

Developing a CLS system is a challenging task because it 
involves two different languages, especially if the language is a 
low-resource language. The experiments conducted in this 
work require a cross-lingual dataset from English documents to 
Bahasa Indonesia summaries which is not readily available. 
Therefore, the dataset needs to be created first. Creating a 
dataset from scratch for deep learning-based models can take a 
lot of time and effort. The alternative is to create a new dataset 
by utilizing existing data. The closest problem to CLS is the 
MS problem. The best dataset as a basis to work with is a 
dataset of MS for Bahasa Indonesia because the output target 
of our CLS model is a summary in Bahasa Indonesia. We use 

IndoSum [43] as the basis for creating a new CLS dataset. 
IndoSum is an attempt to create a benchmark dataset for 
Bahasa Indonesia summarization. This dataset contains nearly 
20000 news articles taken from online websites. This number 
is still relatively small when compared to the available English 
summarization dataset. Each article has an abstract summary 
that was created manually by 2 native Bahasa Indonesia 
speakers. The dataset has 6 categories: entertainment, 
inspiration, sports, show world, headlines, and technology. The 
dataset has been divided into 5-fold cross-validation and has 
been divided into training sets, development sets, and test sets. 
In this work, only the first fold was used. This dataset is written 
in JSON format. 

Based on the need to train the CLS models, IndoSum's 
articles and summaries need to be translated into English. 
English articles are used as input for the CLS model. In 
addition, these English articles and their English summary are 
used to train the English MS model used in the pipeline 
approach. The strategy for creating the CLS dataset can be seen 
in Fig. 2. At first the original dataset of Bahasa Indonesia 
documents and summaries are translated into English using 
Google Translate (forward translation). The result of this 
English translation is then translated back into Bahasa 
Indonesia (back translation). This is done to ensure the quality 
of the CLS dataset. The back translation results were evaluated 
against the original dataset using BLEU [21]. The evaluation of 
the back translation can be seen in Table I. The evaluation is 
the cumulative BLEU score calculated using the NLTK. The 
results show that the quality of the cross-lingual dataset is quite 
good. As a comparison to get the intuition of the BLEU score, 
specific machine translators from English to Bahasa Indonesia 
have been reported to have BLEU scores of 25.3 [44] and 24.5 
[45]. In the end, we obtained the Sum (Ina) dataset to train 
Bahasa Indonesia summarization, the Sum (Eng) dataset to 
train English summarization, and the CLS (Eng-Ina) dataset to 
train CLS as can be seen in Fig. 3. The total of data is 18774 
document-summary pairs. The statistics of the CLS dataset are 
presented in Table II. To train machine translators from 
English to Bahasa Indonesia, the Pan Asia Networking 
Localization (PANL) parallel corpus dataset was used [45]. 
This data is divided into 15373 train data, 3845 validation data, 
and 4806 test data. 

 
Fig. 2. CLS dataset creation strategy 
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Fig. 3. CLS dataset diagram 

TABLE I.  CLS DATASET EVALUATION 

Back 

Translation 
BLEU-1 BLEU-2 BLEU-3 BLEU-4 

Document 0.8056 0.7046 0.6251 0.5527 

Summary 0.7991 0.7076 0.6327 0.5626 

TABLE II.  DATASET STATISTICS 

CLS Dataset Train Val Test 

# Documents/Summaries 14262 750 3762 

# Average Sentence in Document 20.08 19.89 19.92 

# Average Sentence in Summary 4.69 4.65 4.69 

# Average English Words in Document 377.50 377.86 374.41 

# Average Bahasa Indonesia Words in Document 326.58 327.38 323.84 

# Average English Words in Summary 75.35 75.18 75.40 

# Average Bahasa Indonesia Words in Summary 64.39 64.22 64.37 

# Average English Words in Sentence (Document) 16.80 16.96 16.79 

# Average Bahasa Indonesia Words in Sentence (Document) 14.72 14.99 14.71 

# Average English Words in Sentence (Summary) 14.54 14.63 14.55 

# Average Bahasa Indonesia Words in Sentence (Summary) 12.45 12.57 12.44 

B. Implementation 

In this work, we train 10 CLS models. Two models are 
pipeline and eight models are end-to-end. All models use 
transformer as their basis. The model is implemented using 
Python programming language and TensorFlow library. 
TensorFlow is an open-source library for machine learning and 
artificial intelligence. TensorFlow is developed by Google 
Brain Team. TensorFlow can run on CPUs and GPUs and is 
available for Linux, macOS, Windows, Android, and iOS 
operating systems. TensorFlow is widely used for NLP and 
computer vision applications. Each model is accompanied by a 
subword tokenizer which is used to prepare the input to be 
submitted to the model. The vocab size for English is 26331 
and the vocab size for Bahasa Indonesia is 27373. All models 
have the same hyperparameters as can be seen in Table III. 
Each model uses Adam's optimization [46] with a custom 
learning rate scheduler. Regarding randomness, all models are 
trained on the same seed value of 777, whether it is a seed for 
Python, NumPy, or TensorFlow. The same seed is applied to 
global conditions as well as to any operations involving 

randomness. The pre-processing carried out are: 1) converting 
all text to lowercase; 2) removing symbols, special characters, 
HTML tags, and emoticons; 3) performing Unicode 
normalization; and 4) brackets: (), [], {} and all characters in 
between are discarded. The 26 characters of the alphabet are 
preserved, digits/numbers are preserved, and some punctuation 
marks are preserved, such as period, comma, exclamation 
mark, and question mark. 

TABLE III.  CLS MODEL HYPERPARAMETERS 

BUFFER_SIZE 15000 

BATCH_SIZE 64 

NUMBER_LAYERS 4 

DIMENSION_MODEL 300 

DIMENSION_FNN 512 

NUMBER_HEADS 5 

DROPOUT_RATE 0.1 

POSITIONAL_INPUT 202 

POSITIONAL_OUTPUT 122 

C. Model Variations 

In this work we build ten variations of the model which are 
grouped into three main groups: 1) pipeline CLS; 2) end-to-end 
CLS; and 3) end-to-end CLS with MWE components. We also 
conducted experiments by implementing two strategies of 
truncating the input, namely using only the head of the 
document and using the head and tail of the document. This 
input truncation strategy is inspired by Sun et al. [47] and 
Mutasodirin & Prasojo [48] who use this strategy for text 
classification problems. Both use the BERT model [42] but get 
different conclusions about this input truncation strategy, so 
this strategy cannot be generalized yet. In this work, the head 
strategy means using the first 200 tokens from the document, 
while the head-tail strategy means using the first 100 tokens 
from the document and concatenating them with the last 100 
tokens from the document. So, the models in groups 2 and 3 
are further divided into two groups: models that use the head of 
the document as input and models that use the head and tail of 
the document as input. Four out of 10 are baseline models: two 
pipeline models, PipeTS and PipeST, an end-to-end model that 
uses a vanilla transformer, VCLS, and an end-to-end model 
based on Zhu et al. [15], MCLS. The following is an 
explanation of each model variation: 

1) PipeTS: Translation  Summarization. The model is 

built in a pipeline scheme, starting with the English translation 

process first and then continuing with the Bahasa Indonesia 

summarization process. The machine translation model is 

trained using the PANL dataset. The Bahasa Indonesia 

summarization model is trained using the Sum (Ina) dataset. 

Both the translation and the summarization models use a 

vanilla transformer. 
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2) PipeST: Summarization  Translation. The model is 

built in a pipeline scheme, starting with the English 

summarization process first and then continuing with the 

English translation process. The English summarization model 

is trained using the Sum (Eng) dataset. The machine 

translation model is the same as that used in PipeTS. Both the 

summarization and the translation models use a vanilla 

transformer. 

3) VCLS: Head + CLS. The model is built end-to-end 

with head truncation strategy for the input. The model uses a 

vanilla transformer architecture but is trained using the CLS 

(Eng-Ina) dataset. 

4) MCLS: Head + CLS-MS. The model is built end-to-end 

with head truncation strategy for the input. The model is based 

on Zhu et al. [15] CLS architecture. The model is trained with 

2-task learning, which is jointly training CLS and MS using 

CLS (Eng-Ina) dataset and Sum (Eng) dataset. 

5) VCLS_T: Head-Tail + CLS. The model is built end-to-

end with head-tail truncation strategy for the input. The model 

uses a vanilla transformer architecture but is trained using the 

CLS (Eng-Ina) dataset. 

6) MCLS_T: Head-Tail + CLS-MS. The model is built 

end-to-end with head-tail truncation strategy for the input. The 

model is based on Zhu et al. [15] CLS architecture. The model 

is trained with 2-task learning, which is jointly training CLS 

and MS using CLS (Eng-Ina) dataset and Sum (Eng) dataset. 

7) MWE_VCLS: Head + CLS + MWE. The model is built 

end-to-end with head truncation strategy for the input. The 

model uses a vanilla transformer architecture but is trained 

using the CLS (Eng-Ina) dataset. This model is equipped with 

MWE components. 

8) MWE_MCLS: Head + CLS-MS + MWE. The model is 

built end-to-end with head truncation strategy for the input. 

The model uses the proposed CLS architecture explained in 

section 3. The model is trained with 2-task learning, which is 

jointly training CLS and MS using CLS (Eng-Ina) dataset and 

Sum (Eng) dataset. 

9) MWE_VCLS_T: Head-Tail + CLS + MWE. The model 

is built end-to-end with head-tail truncation strategy for the 

input. The model uses a vanilla transformer architecture but is 

trained using the CLS (Eng-Ina) dataset. This model is 

equipped with MWE components. 

10) MWE_MCLS_T: Head-Tail + CLS-MS + MWE. The 

model is built end-to-end with head-tail truncation strategy for 

the input. The model uses the proposed CLS architecture 

explained in Section III. The model is trained with 2-task 

learning, which is jointly training CLS and MS using CLS 

(Eng-Ina) dataset and Sum (Eng) dataset. 

D. Evaluation Metrics 

This work uses a quantitative research method with the 
independent variable being the transformer-based CLS model 
and the dependent variable being the evaluation of the model's 
performance measured quantitatively. Recall-oriented 
understudy for gisting evaluation (ROUGE) is a suite of 
measurement metrics and a software package used to evaluate 

automatic summarization and machine translation [49] [50] 
[51]. ROUGE is a popular metric widely used to evaluate 
automatic summarization. The advantages of using ROUGE: 

 ROUGE is easy and fast compared to evaluation by 
humans, 

 ROUGE is used by “everyone” so it is easy to compare 
one research result with another. 

ROUGE compares the summary generated by the system 
with a reference summary or a set of reference summaries. 
Here are some of the available comparison methods: 

 ROUGE-N: Compares n-grams between system 
summary and reference summary. 

 ROUGE-L: Compares the longest matching sequence 
(LCS) between system summary and reference 
summary. 

 ROUGE-S: Compare skip-bigrams, whether there are 
any word pairs in a consecutive sentence, gaps are 
possible. For example, skip-bigram measures the 
overlap of word pairs that can have a maximum of two 
gaps between words. The sentence “I eat fried rice” 
then the skip-bigram is “I eat, I fried, I rice, eat fried, 
eat rice, fried rice.” 

There are still other measurement metrics, for more 
information refer to Lin [49]. 

Bilingual evaluation understudy (BLEU) is a method for 
automatic evaluation of machine translation. The BLEU score 
is a measurement metric that assesses the degree of similarity 
between sentences produced by machine translation and 
reference sentences made by human translators. The more 
similar, the higher is the value. This method works by counting 
the number of n-grams in the produced sentence that matches 
the n-grams in the reference sentence. BLEU was proposed by 
papineni et al. [21]. 

V. RESULTS AND DISCUSSION 

We evaluated the models trained using the ROUGE metric 
described in the previous section. Specifically, we used 
ROUGE-1, ROUGE-2, and ROUGE-L. The discussion 
regarding the experimental results is divided into three parts. 
First, we discuss the comparison of the pipeline model and the 
end-to-end model. Second, we discuss the comparison of the 
end-to-end model with the MWE components and the end-to-
end model without the MWE components. In the end, we 
discuss the strategy of input truncation. 

A. Comparison between Pipeline CLS Model and End-to-End 

CLS Model 

Traditionally, CLS is done in a pipeline which involves two 
steps: summarization and translation. There are two patterns of 
using a machine translator in a pipeline scheme. The first 
pattern does the translation on the source document first and 
then the results of the translation are used to generate the 
summary. The second pattern performs summarization on the 
source document first and then the summary is translated into 
the target language. To construct CLS for these two patterns, 
three constituent models are needed: English summarization 
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model, Bahasa Indonesia summarization model, and English 
translation model. We trained a transformer-based English 
summarization model on Sum (Eng) dataset and a transformer-
based Bahasa Indonesia summarization model on Sum (Ina) 
dataset. Then, we trained a transformer-based English 
translation model on PANL parallel corpus. The performance 
of these three models individually can be seen in Table IV and 
Table V. 

We use the two patterns of the pipeline scheme as baseline 
models (PipeTS and PipeST). These two pipeline models were 
constructed using MS model and MT model which had 
previously been trained independently. Both are then tested 
using the CLS (Eng-Ina) dataset. The results are shown in 
Table VI. The pipeline approach introduces error propagation. 
To solve this, we trained several end-to-end CLS models (4 
variations of VCLS models and 4 variations of MCLS models) 
on CLS (Eng-Ina) dataset. The performance of these end-to-
end models can also be seen in Table VI. All the end-to-end 
models outperform the model that uses the pipeline scheme. 

The end-to-end model can achieve improvement from +0.1298 
ROUGE-1, +0.0763 ROUGE-2, +0.1083 ROUGE-L up to 
+0.2981 ROUGE-1, +0.2084 ROUGE-2, +0.2771 ROUGE-L 
compared to the pipeline baselines. This verifies the purpose of 
performing end-to-end summarization. Unlike the pipeline 
method, the end-to-end model performs CLS in one direct step. 
This approach avoids the error propagation that occurs when 
doing it in two steps, namely in the pipeline scheme. 

TABLE IV.  PERFORMANCE OF OUR MONOLINGUAL SUMMARIZATION 

Model ROUGE-1 ROUGE-2 ROUGE-L 

SumINA 0.6456 0.5580 0.6355 

SumENG 0.6434 0.5123 0.6088 

TABLE V.  PERFORMANCE OF OUR MACHINE TRANSLATION 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 

Tran 0.3683 0.2078 0.1191 0.0628 

TABLE VI.  ROUGE F1 SCORE 

Type Model Variations ROUGE-1 ROUGE-2 ROUGE-L 

P
ip

el
i

n
e 

PipeTS Translation  Summarization 0.1266 0.0142 0.1038 

PipeST Summarization  Translation 0.1661 0.0278 0.1313 

E
n
d

-t
o

-E
n
d

 VCLS Head + CLS 0.2959 0.1041 0.2396 

MCLS Head + CLS-MS 0.4087 0.2112 0.3652 

VCLS_T Head-Tail + CLS 0.2981 0.1093 0.2448 

MCLS_T Head-Tail + CLS-MS 0.3809 0.1893 0.3385 

E
n
d

-t
o

-E
n
d

 

M
W

E
 

MWE_VCLS Head + CLS + MWE 0.3617 0.1519 0.3038 

MWE_MCLS Head + CLS-MS + MWE 0.4247 0.2226 0.3809 

MWE_VCLS_T Head-Tail + CLS + MWE 0.3347 0.1311 0.2767 

MWE_MCLS_T Head-Tail + CLS-MS + MWE 0.3886 0.1919 0.3438 

B. Comparison between End-to-End CLS Model with MWE 

and End-to-End CLS Model without MWE 

We also use two end-to-end models as baseline besides the 
two pipeline baselines which were discussed in the previous 
section. The first end-to-end baseline is an end-to-end CLS 
model built using a vanilla transformer (VCLS). The second 
end-to-end baseline is an end-to-end CLS model based on Zhu 
et al. [15] (MCLS). The model is trained with 2-task learning, 
which is jointly training CLS and MS using CLS (Eng-Ina) 
dataset and Sum (Eng) dataset. 

CLS is a Seq2Seq problem, when given a text sequence in 
the source language it produces a shorter version of an original 
text sequence in the target language. In Seq2Seq problem, it is 
important to learn the relation (alignment) between the input 
sequence and the output sequence. The CLS model that cannot 
do a proper alignment mapping is unable to produce a correct 
and meaningful summary. We propose using MWE to help 
with this alignment. MWE can represent words in various 
languages in one vector space. Words that have similar 
meanings are in proximity. This pre-mapping of words is 
expected to facilitate the model in aligning word sequences 

between input and output. The VCLS and MCLS are then 
modified by adding MWE components (MWE_VCLS and 
MWE_MCLS). 

The experimental results can be seen in Table VI. We can 
find that the model that utilized MWE components beats the 
underlying baseline model that does not use it. This shows that 
the MWE helps to better map the relation (alignment) between 
source document input in English and its summary output in 
Bahasa Indonesia. This can happen because every word in both 
languages is already in the same vector space. The 
MWE_MCLS model can achieve maximum improvement up 
to +0.1288 ROUGE-1, +0.1185 ROUGE-2, and +0.1413 
ROUGE-L when compared to the end-to-end baselines. This is 
the best-performing model in our experiments. 

C. Input Truncation Strategy 

Sun et al. [47] and Mutasodirin & Prasojo [48] use an input 
truncation strategy on text classification problems. The strategy 
is not only to take the head of the data as input but also to 
combine it with the tail of the data. Generally, only the head of 
the data is used because it is assumed that the core information 
is here. However, their experimental results did not reach the 
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same conclusion, so this strategy cannot be generalized yet. We 
adapt this strategy to our CLS models which previously only 
took the head part of the document into a combination of the 
head and the tail. This adaptation produces models VCLS_T, 
MCLS_T, MWE_VCLS_T, and MWE_MCLS_T. The 
experimental results of these four models can be seen in 
Table VI. However, in general, the results have not been able 
to exceed the score obtained by the model that only uses the 
head of the document. The best score is obtained by 
MWE_MCLS_T. A decrease in performance of -0.0361 
ROUGE-1, -0.0307 ROUGE-2, and -0.0371 ROUGE-L when 
compared to the best model uses the head truncation strategy 
(MWE_MCLS). 

The IndoSum dataset that we use is constructed from online 
news articles. Upon further examination of this dataset, we 
found that most of the important information is at the 
beginning of the document. This information appears in the 
summary, while the end of the news article generally contains 
additional information or explanatory information that does not 
appear in the summary. Strategies that use a combination of 
head and tail from the document are proven to be unable to 
improve the performance of the models that originally uses 
head truncation strategy, it even can decrease the model 
performance due to including insignificant information in the 
summary. 

VI. CONCLUSION 

In this work, we present the end-to-end abstractive CLS for 
English documents to Bahasa Indonesia summary. The CLS 
architecture is based on transformers, modified by adding 
MWE components to address cross-lingual problems. The 
architecture also has a second decoder with a shared encoder. 
This second decoder is used only during training to carry out 
joint learning between CLS and MS. During the test, the 
second decoder is ignored. The model is also trained using two 
input truncation strategies: head and head-tail. The head 
truncation strategy cuts off and takes the head part of the 
document as input while the head-tail truncation strategy 
combines the head and the tail of the document as input. To 
train the model, we create a new CLS dataset from MS dataset 
by adapting the round-trip translation technique. The resulting 
CLS dataset is evaluated using BLEU to ensure its quality. 

Based on the experimental results, it can be concluded that 
the use of MWE improves the performance of the CLS model, 
specifically for summarizing an English source document into 
a Bahasa Indonesia summary. The proposed model 
successfully outperformed the baseline model and improved its 
performance. The strategy of utilizing information at the end of 
the data failed in improving the performance of the model. 
Using only the head part of the data is still better. Furthermore, 
it can be concluded that the end-to-end model is better than the 
pipeline model. The use of machine translation is a weak point 
of the pipeline model because it introduces error propagation. 
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