
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

636 | P a g e

www.ijacsa.thesai.org

Transformer-based Cross-Lingual Summarization

using Multilingual Word Embeddings for

English - Bahasa Indonesia

Achmad F. Abka1, Kurniawati Azizah2, Wisnu Jatmiko3

National Research and Innovation Agency, Jakarta, Indonesia1

Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia1, 2, 3

Abstract—Cross-lingual summarization (CLS) is a process of

generating a summary in the target language from a source

document in another language. CLS is a challenging task because

it involves two different languages. Traditionally, CLS is carried

out in a pipeline scheme that involves two steps: summarization

and translation. This approach has a problem, it introduces error

propagation. To address this problem, we present a novel end-to-

end abstractive CLS without the explicit use of machine

translation. The CLS architecture is based on Transformer

which is proven to be able to perform text generation well. The

CLS model is a jointly trained CLS task and monolingual

summarization (MS) task. This is accomplished by adding a

second decoder to handle the MS task, while the first decoder

handles the CLS task. We also incorporated multilingual word

embeddings (MWE) components into the architecture to further

improve the performance of the CLS models. Both English and

Bahasa Indonesia are represented by MWE whose embeddings

have already been mapped into the same vector space. MWE

helps to better map the relation between input and output that

use different languages. Experiments show that the proposed

model achieves improvement up to +0.2981 ROUGE-1, +0.2084

ROUGE-2, and +0.2771 ROUGE-L when compared to the

pipeline baselines and up to +0.1288 ROUGE-1, +0.1185

ROUGE-2, and +0.1413 ROUGE-L when compared to the end-

to-end baselines.

Keywords—Cross-lingual summarization; multilingual word

embeddings; transformer; automatic summarization

I. INTRODUCTION

Automatic summarization is a process of automatically
producing a shorter version of an original while retaining
contents and meanings that are considered essential. This
shorter version is called a summary. The purpose of
summarizing is to produce a summary that contains the main
content of a document in less space [1]. Automatic
summarization helps users get the main idea of a document
without having to read the whole document thus saving time
and effort compared to doing it manually [2]. In general,
automatic summarization can be categorized into two based on
the approach in summarizing: extractive summarization and
abstractive summarization. The extractive approach produces a
summary by copying words or sentences from source
documents that are considered important. The abstractive
approach produces a summary using its own words or
sentences. In addition to text, summaries of images and videos
can also be produced [3] [4] [5]. In the context of this work,

automatic summarization is an activity that uses a machine
(computer) to automatically summarize a document using a
certain algorithm or method.

The study on automatic summarization was first reported
by Luhn [6]. The system is based on bag-of-words. The
frequency and relative position of a word in a sentence are the
main features in determining how important the sentence is.
Gradually, linguistic information such as word type and
structure are utilized using natural language processing (NLP).
The extractive approach is then widely used because of its
simple approach without the need for extensive NLP [7] [8].
The success of the sequence-to-sequence (Seq2Seq) recurrent
neural network (RNN) model has made the rapid development
of abstractive approaches [9] [10]. Inspired by the attention-
based neural machine translation (MT) model [11] [12], the
RNN is used by adding the attention mechanism so that the
model can focus on some parts of text while diminishing other
parts at a certain time/context.

Cross-lingual summarization (CLS) is a task to produce a
summary in the target language, from source documents in
another language [13] [14]. Traditionally, CLS can be done by
involving two processes: translation and monolingual
summarization (MS). However, there is a problem when doing
it with two processes in a pipeline scheme. The pipeline
process introduces error propagation which adversely affects
the final quality of the summary. This problem can be solved
by conducting end-to-end model training [15] [16]. Another
challenge in CLS research is the limited data or corpus that can
be used to train the model. Research on end-to-end CLS is still
relatively new, so resources related to it are still quite scarce.
There is no dataset that is considered a standard that can be
used as a benchmark. The researchers still tend to create their
own dataset for the language pair domain that is of interest to
them.

In this paper, we present a novel end-to-end abstractive
CLS that solves the error propagation problem found in the
pipeline scheme. We adapt transformer-based architecture and
extended it by including multilingual word embeddings
(MWE) [17] components. These components allow the model
to be able to represent words in two different languages. This
paper is an extended study of our previous work on the end-to-
end abstractive CLS model [18]. The model is trained in the
English domain for source documents and the Bahasa
Indonesia domain for its summary using the dataset that we

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

637 | P a g e

www.ijacsa.thesai.org

have constructed. Inspired by [19] and [20], we use a round-
trip translation technique to generate CLS dataset from MS
dataset. This technique is similar to that used by [15], but we
apply it to the document and its summary, not just the
summary. The resulting dataset is then evaluated using
bilingual evaluation understudy (BLEU) [21]. BLEU is a
method for evaluating the quality of text that has been machine
translated from one language to another automatically. The
CLS model can produce a Bahasa Indonesia summary from an
English source document end-to-end without explicitly using a
machine translator.

The main contributions of this work are:

 A novel framework for generating end-to-end
abstractive cross-lingual summary by incorporating
MWE components in the architecture. These
components are used to represent words in both
languages used in the source document and its
summary.

 This works produces a new cross-lingual dataset. This
dataset can be used for CLS research with the English
domain as the source document and the Bahasa
Indonesia domain as the summary.

The rest of this paper is organized as follows. In Section II,
we review the related work in CLS. In Section III, we explain
the proposed method. In Section IV, the details of the
experimental setup and the evaluation metrics are presented.
The experimental results are given in Section V. Finally, the
conclusions of this research are found in Section VI.

II. RELATED WORKS

CLS is the process of generating a summary in the target
language from source documents in another language. Unlike
MS, CLS involves at least two different languages. Traditional
approaches treat CLS as a pipeline scheme. The newer
approach does it end-to-end to avoid error propagation that
occurs in the pipeline process.

A. Traditional Cross-Lingual Summarization

CLS research has been conducted [22] [23] [24]. The
approaches are generally divided into extraction-based and
compression-based. Summarization is done in a pipeline
manner which is divided into two steps: summarizing and
translating. There are two patterns of utilization or use of
machine translation. The first pattern is to first translate the
source document using a machine translator and then the
results of the translation are used to summarize. The second
pattern summarizes the source document first and then
translates the results using a machine translator into the target
language. Another approach utilizes existing source documents
in two languages to generate summaries in the target language
[25] [26]. This target language is one of the two languages. In
addition to the extraction process, a compression process is
also carried out in the compression-based approach.
Summarization begins with a selection process to obtain
relevant content in the form of sentences or phrases (bilingual).
The compression is carried out by removing parts of sentences
or phrases that do not meet some criteria, such as information
content, legibility, and grammar/structure [27] [28] [29].

In contrast to the CLS previously described which uses an
extractive approach, Zhang, Zhou, and Zong [30] developed an
abstractive CLS system. The system works by first translating
the source document from English to Chinese using Google
Translate. The next step is to extract bilingual concepts and
fact pairs. Then the score of translation and salience is
calculated from this set of pairs. Based on the scores, a set of
pairs is selected to be used in the summary. This selection
considers several criteria, including compatibility between
concepts and facts, number of sentences, summary length, etc.
Post-processing begins with determining which pairs of
concepts and facts are included in a particular sentence. Then
the last step is to put them in order. Abstractive summarization
has the ability to paraphrase. In the system developed by [30],
the abstractive process is carried out by combining pairs of
concepts and facts into one sentence. This process is indeed a
form of paraphrasing, but these pairs of concepts and facts are
taken extractively and used as they are.

Similar to [30], our work also falls under the abstractive
CLS category. The difference is that our approach is based on
neural networks and summarization is done directly, rather
than in two steps in a pipeline scheme. This straightforward
CLS can avoid error propagation that occurs in the pipeline
process.

B. Neural Network-based Cross-Lingual Summarization

In 2019, neural network-based CLS began to emerge.
Ouyang, Song, and McKeown [31] use neural networks for
CLS in pipeline schemes, on the translation side using Marian
[32] and on the summarization side using pointer-generators
[33]. The system summarizes Somali, Swahili, or Tagalog
source documents into an English summary. Zhu et al. [15] are
the first to report on end-to-end CLS. A CLS from English to
Chinese was built using transformer architecture that has been
proven to have good performance in text generation. The
network is trained using a multi-task learning approach.
Specifically, they combine CLS loss with MS loss. The CLS
dataset used was built by modifying the CNN/Dailymail
dataset. The dataset is translated into Chinese using a machine
translation service. Duan et al. [16] see CLS as a zero-shot
problem. They do not have a CLS dataset to train the model
directly. The network is trained by adapting a paradigm on
neural machine translation (NMT) called triangular NMT
systems. A network called a student network is a CLS network
that is trained to imitate the behavior of a teacher network
which is an MS network. Ladhak et al. [34] proposed a
benchmark dataset for abstractive CLS named WikiLingua.
The data is taken from WikiHow in the form of document and
summary pairs in 18 languages. Not all data is available in 18
languages, availability in each language varies. The dataset is
tested for CLS with pipeline and end-to-end approach. The
end-to-end approach uses mBART [35] which is fine-tuned
using the source language document and the target language
summary.

Our approach is inspired by [15]. However, we propose to
add MWE components which we believe will improve the
performance of the model. MWE represents the two languages
in the CLS task in the same vector space. This facilitates the
mapping of the relation between inputs and outputs during
model training.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

638 | P a g e

www.ijacsa.thesai.org

C. Multilingual Word Embeddings

Multilingual word embeddings (MWE) are word
embeddings that represent words in various languages in one
vector space [17]. Conneau et al. [36] developed MWE using
an unsupervised approach. Supervised approaches generally
require bilingual resources such as dictionaries or parallel
corpus. They proposed an unsupervised way to map
monolingual word embeddings without the need for bilingual
data. Word embeddings for each language are initially trained
independently. Then, each word in the two languages is
mapped into the same vector space using deep adversarial
networks [37]. Heinzerling & Strube [38] developed MWE for
word segmentation (subword embeddings). Word segmentation
is done by using the byte pair encoding (BPE) approach. BPE
performs segmentation to words that rarely appear into several
tokens. Embeddings are trained in a simple way. All articles
from Wikipedia in various languages are combined, then used
to train subword embeddings. Artetxe & Schwenk [39] also
developed multilingual embeddings but specifically developed
embeddings for sentences. These sentence embeddings were
trained using a single bidirectional LSTM (BiLSTM) encoder.

In this work, we use MUSE from Conneau et al. [36].
MUSE is used because the embedding is word-based so it is
expected to be able to cover most of the vocab. MWE based on
word segmentation such as BPEmb from Heinzerling & Strube
[38] may be better than MUSE because it can recognize tokens
that rarely or never appear in the training data. However, it is
not suitable for the case in this work because the embedding is
trained using various language versions of the articles available
on Wikipedia. The amount of data which is an aggregate of all
articles in various language versions can also result in many
words being segmented due to their small frequency, thus
causing the size of vocab to be very large. In general, a vocab
size that is too large can adversely affect the performance of
NLP system.

III. METHODS

CLS can be expressed as an input sentence in the source
language and , where is the
input sentence length and is the source vocab in the source
language, with an output summary in the target language

 and , where is the output
summary length, , and is the target vocab in the target
language.

A. Transformer-based Cross-Lingual Summarization

NLP systems that are built specifically for a particular
language are generally trained using datasets in that language.
This approach has a problem when applied to other languages.
The system needs to be retrained with separate datasets in the
other specific language. This is equivalent to building the
system from scratch. Another way is to use machine
translation. The system is combined with machine translation
in a pipeline so that it can produce output in the desired
language. MWE can be used to tackle this problem. Both
languages are represented by embeddings that are mapped into
the same vector space. This mapping makes the two languages
seem to be the same language, at least at the word level. The
CLS architecture proposed in this work is based on transformer
architecture [40] by adding MWE components to handle cross-
lingual problem. Transformer was chosen because it is state-of-
the-art in many NLP topics including CLS and has proven to
be able to perform text generation well [41] [42].

Inspired by Zhu et al. [15], the architecture also added a
second decoder with a single shared encoder. During training,
the input of CLS decoder (decoder1) is a summary in Bahasa
Indonesia, while the input of MS decoder (decoder2) is a
summary in English. MS decoder is only used during training.
So, in the training process, encoder-decoder1 is trained for
CLS problems, while encoder-decoder2 is trained for MS
problems. The losses from the two are combined and can be
calculated as follows:

∑ [

 ̂

 ̂
]

∑ [

 (̂
) (

) (̂
)]

 (1)

where are parameters in the model,
 and

 are the

correct labels for both tasks, and ̂
 and ̂

 are predictive
labels for both tasks. The combined loss was used to update the
weight. During test, the MS decoder was ignored. The
architectural diagram can be seen in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

639 | P a g e

www.ijacsa.thesai.org

Fig. 1. CLS architecture

B. Cross-Lingual Summarization Architecture Components

1) Input and output: The input of the encoder is an

English document . This document is

tokenized using a subword tokenizer. Words that occur

infrequently will be segmented into several tokens, while

words that occur frequently (high frequency) are left as is.

This sequence of tokens is then converted into a sequence of

indexes according to the vocab. The output of CLS decoder is

a Bahasa Indonesia summary and the output of MS decoder is

an English summary. At the time of training, the tokens here

are also an input that will be converted into a sequence of

indexes according to the vocab. Vocab for Bahasa Indonesia is

different from vocab for English. At the time of test, the CLS

decoder generates a Bahasa Indonesia summary
 while the MS decoder is ignored.

2) Multilingual word embeddings: The proposed CLS

architecture incorporated pre-trained MWE from MUSE [36].

We use MUSE because it can cover most of the words in

vocab while maintaining vocab cohesiveness. MWE

Component maps the input English document
 into a sequence of embeddings
 whose size varies with respect to the source

sequence length.

3) Positional Encoding: This component provides

position information to the tokens in the sequence by adding

the "positional encodings" to the embeddings. The positional

encodings are obtained using the following formula:

 (2)

where is the position (

, where is the

length of the sequence), is the embedding dimension, and is
used for mapping to indices of elements in positional encoding

vector (

). Positional encoding is necessary because

the proposed transformer-based architecture does not consider
positional information or word order. Without positional
encoding, this architecture is essentially a bag-of-words model.

4) Multi-head self-attention: Multi-head self-attention

consists of several heads which correspond to scaled dot-

product attention (self-attention). Called self-attention because

it can generate its own value of query (), key (), and value

(). These three values are abstractions that represent the

input needed to calculate the attention weight. It is obtained

using the following formula:

 (3)

where Z is the input embeddings and , , and are

learnable matrices. The scaled dot-product attention is then

calculated using the scaling factor of

√
.

√
 (4)

where is dimension of . The output of each head is then
concatenated to get the final values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

640 | P a g e

www.ijacsa.thesai.org

 (

) (5)

where is the number of heads and ,

,
 , and

are learnable matrices. Multi-head self-attention on the decoder
is also called encoder-decoder attention because it receives
input from the encoder and decoder. There is a mapping of the
relation between input and output here. This component can be
calculated in parallel because the attention weight here is
independent of one another.

5) Masked multi-head self-attention: This component has

a similar function to the multi-head self-attention component.

However, unlike multi-head self-attention, masked multi-head

self-attention has a function to mask output that has not been

seen/predicted. The model must predict the output based on

the results of the previous output and must not look at the

output that appears later. When the matrix operation is

performed, the output that has not been seen/predicted will be

masked/changed to zero so that it cannot be seen by the

model.

6) Positionwise FNN: Positionwise FNN is a simple

feedforward neural network that runs for all attention weights.

Its main task is to convert the attention weight into an

acceptable form for the next step, such as encoder layer,

decoder layer, or linear layer. This component consists of two

linear layers. The first layer uses ReLU activation.

 (6)

7) Linear Layer and Softmax: Linear layer is a component

in the form of a feedforward layer that acts as a classifier. This

component is used to adjust the dimensions as needed. For

example, to accommodate the number of words (classes) in

the vocab. Finally, there is the softmax layer which converts

the vector into a probability distribution.

IV. EXPERIMENTS

This section describes the experiments. First, we describe
the dataset which includes English documents and their
summary, Bahasa Indonesia documents and their summary,
and English-Bahasa Indonesia parallel corpus. Then, we
explain the implementation and model variations including the
baseline model. Finally, we discuss the evaluation metrics used
to measure the performance of CLS models.

A. Dataset

Developing a CLS system is a challenging task because it
involves two different languages, especially if the language is a
low-resource language. The experiments conducted in this
work require a cross-lingual dataset from English documents to
Bahasa Indonesia summaries which is not readily available.
Therefore, the dataset needs to be created first. Creating a
dataset from scratch for deep learning-based models can take a
lot of time and effort. The alternative is to create a new dataset
by utilizing existing data. The closest problem to CLS is the
MS problem. The best dataset as a basis to work with is a
dataset of MS for Bahasa Indonesia because the output target
of our CLS model is a summary in Bahasa Indonesia. We use

IndoSum [43] as the basis for creating a new CLS dataset.
IndoSum is an attempt to create a benchmark dataset for
Bahasa Indonesia summarization. This dataset contains nearly
20000 news articles taken from online websites. This number
is still relatively small when compared to the available English
summarization dataset. Each article has an abstract summary
that was created manually by 2 native Bahasa Indonesia
speakers. The dataset has 6 categories: entertainment,
inspiration, sports, show world, headlines, and technology. The
dataset has been divided into 5-fold cross-validation and has
been divided into training sets, development sets, and test sets.
In this work, only the first fold was used. This dataset is written
in JSON format.

Based on the need to train the CLS models, IndoSum's
articles and summaries need to be translated into English.
English articles are used as input for the CLS model. In
addition, these English articles and their English summary are
used to train the English MS model used in the pipeline
approach. The strategy for creating the CLS dataset can be seen
in Fig. 2. At first the original dataset of Bahasa Indonesia
documents and summaries are translated into English using
Google Translate (forward translation). The result of this
English translation is then translated back into Bahasa
Indonesia (back translation). This is done to ensure the quality
of the CLS dataset. The back translation results were evaluated
against the original dataset using BLEU [21]. The evaluation of
the back translation can be seen in Table I. The evaluation is
the cumulative BLEU score calculated using the NLTK. The
results show that the quality of the cross-lingual dataset is quite
good. As a comparison to get the intuition of the BLEU score,
specific machine translators from English to Bahasa Indonesia
have been reported to have BLEU scores of 25.3 [44] and 24.5
[45]. In the end, we obtained the Sum (Ina) dataset to train
Bahasa Indonesia summarization, the Sum (Eng) dataset to
train English summarization, and the CLS (Eng-Ina) dataset to
train CLS as can be seen in Fig. 3. The total of data is 18774
document-summary pairs. The statistics of the CLS dataset are
presented in Table II. To train machine translators from
English to Bahasa Indonesia, the Pan Asia Networking
Localization (PANL) parallel corpus dataset was used [45].
This data is divided into 15373 train data, 3845 validation data,
and 4806 test data.

Fig. 2. CLS dataset creation strategy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

641 | P a g e

www.ijacsa.thesai.org

Fig. 3. CLS dataset diagram

TABLE I. CLS DATASET EVALUATION

Back

Translation
BLEU-1 BLEU-2 BLEU-3 BLEU-4

Document 0.8056 0.7046 0.6251 0.5527

Summary 0.7991 0.7076 0.6327 0.5626

TABLE II. DATASET STATISTICS

CLS Dataset Train Val Test

Documents/Summaries 14262 750 3762

Average Sentence in Document 20.08 19.89 19.92

Average Sentence in Summary 4.69 4.65 4.69

Average English Words in Document 377.50 377.86 374.41

Average Bahasa Indonesia Words in Document 326.58 327.38 323.84

Average English Words in Summary 75.35 75.18 75.40

Average Bahasa Indonesia Words in Summary 64.39 64.22 64.37

Average English Words in Sentence (Document) 16.80 16.96 16.79

Average Bahasa Indonesia Words in Sentence (Document) 14.72 14.99 14.71

Average English Words in Sentence (Summary) 14.54 14.63 14.55

Average Bahasa Indonesia Words in Sentence (Summary) 12.45 12.57 12.44

B. Implementation

In this work, we train 10 CLS models. Two models are
pipeline and eight models are end-to-end. All models use
transformer as their basis. The model is implemented using
Python programming language and TensorFlow library.
TensorFlow is an open-source library for machine learning and
artificial intelligence. TensorFlow is developed by Google
Brain Team. TensorFlow can run on CPUs and GPUs and is
available for Linux, macOS, Windows, Android, and iOS
operating systems. TensorFlow is widely used for NLP and
computer vision applications. Each model is accompanied by a
subword tokenizer which is used to prepare the input to be
submitted to the model. The vocab size for English is 26331
and the vocab size for Bahasa Indonesia is 27373. All models
have the same hyperparameters as can be seen in Table III.
Each model uses Adam's optimization [46] with a custom
learning rate scheduler. Regarding randomness, all models are
trained on the same seed value of 777, whether it is a seed for
Python, NumPy, or TensorFlow. The same seed is applied to
global conditions as well as to any operations involving

randomness. The pre-processing carried out are: 1) converting
all text to lowercase; 2) removing symbols, special characters,
HTML tags, and emoticons; 3) performing Unicode
normalization; and 4) brackets: (), [], {} and all characters in
between are discarded. The 26 characters of the alphabet are
preserved, digits/numbers are preserved, and some punctuation
marks are preserved, such as period, comma, exclamation
mark, and question mark.

TABLE III. CLS MODEL HYPERPARAMETERS

BUFFER_SIZE 15000

BATCH_SIZE 64

NUMBER_LAYERS 4

DIMENSION_MODEL 300

DIMENSION_FNN 512

NUMBER_HEADS 5

DROPOUT_RATE 0.1

POSITIONAL_INPUT 202

POSITIONAL_OUTPUT 122

C. Model Variations

In this work we build ten variations of the model which are
grouped into three main groups: 1) pipeline CLS; 2) end-to-end
CLS; and 3) end-to-end CLS with MWE components. We also
conducted experiments by implementing two strategies of
truncating the input, namely using only the head of the
document and using the head and tail of the document. This
input truncation strategy is inspired by Sun et al. [47] and
Mutasodirin & Prasojo [48] who use this strategy for text
classification problems. Both use the BERT model [42] but get
different conclusions about this input truncation strategy, so
this strategy cannot be generalized yet. In this work, the head
strategy means using the first 200 tokens from the document,
while the head-tail strategy means using the first 100 tokens
from the document and concatenating them with the last 100
tokens from the document. So, the models in groups 2 and 3
are further divided into two groups: models that use the head of
the document as input and models that use the head and tail of
the document as input. Four out of 10 are baseline models: two
pipeline models, PipeTS and PipeST, an end-to-end model that
uses a vanilla transformer, VCLS, and an end-to-end model
based on Zhu et al. [15], MCLS. The following is an
explanation of each model variation:

1) PipeTS: Translation Summarization. The model is

built in a pipeline scheme, starting with the English translation

process first and then continuing with the Bahasa Indonesia

summarization process. The machine translation model is

trained using the PANL dataset. The Bahasa Indonesia

summarization model is trained using the Sum (Ina) dataset.

Both the translation and the summarization models use a

vanilla transformer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

642 | P a g e

www.ijacsa.thesai.org

2) PipeST: Summarization Translation. The model is

built in a pipeline scheme, starting with the English

summarization process first and then continuing with the

English translation process. The English summarization model

is trained using the Sum (Eng) dataset. The machine

translation model is the same as that used in PipeTS. Both the

summarization and the translation models use a vanilla

transformer.

3) VCLS: Head + CLS. The model is built end-to-end

with head truncation strategy for the input. The model uses a

vanilla transformer architecture but is trained using the CLS

(Eng-Ina) dataset.

4) MCLS: Head + CLS-MS. The model is built end-to-end

with head truncation strategy for the input. The model is based

on Zhu et al. [15] CLS architecture. The model is trained with

2-task learning, which is jointly training CLS and MS using

CLS (Eng-Ina) dataset and Sum (Eng) dataset.

5) VCLS_T: Head-Tail + CLS. The model is built end-to-

end with head-tail truncation strategy for the input. The model

uses a vanilla transformer architecture but is trained using the

CLS (Eng-Ina) dataset.

6) MCLS_T: Head-Tail + CLS-MS. The model is built

end-to-end with head-tail truncation strategy for the input. The

model is based on Zhu et al. [15] CLS architecture. The model

is trained with 2-task learning, which is jointly training CLS

and MS using CLS (Eng-Ina) dataset and Sum (Eng) dataset.

7) MWE_VCLS: Head + CLS + MWE. The model is built

end-to-end with head truncation strategy for the input. The

model uses a vanilla transformer architecture but is trained

using the CLS (Eng-Ina) dataset. This model is equipped with

MWE components.

8) MWE_MCLS: Head + CLS-MS + MWE. The model is

built end-to-end with head truncation strategy for the input.

The model uses the proposed CLS architecture explained in

section 3. The model is trained with 2-task learning, which is

jointly training CLS and MS using CLS (Eng-Ina) dataset and

Sum (Eng) dataset.

9) MWE_VCLS_T: Head-Tail + CLS + MWE. The model

is built end-to-end with head-tail truncation strategy for the

input. The model uses a vanilla transformer architecture but is

trained using the CLS (Eng-Ina) dataset. This model is

equipped with MWE components.

10) MWE_MCLS_T: Head-Tail + CLS-MS + MWE. The

model is built end-to-end with head-tail truncation strategy for

the input. The model uses the proposed CLS architecture

explained in Section III. The model is trained with 2-task

learning, which is jointly training CLS and MS using CLS

(Eng-Ina) dataset and Sum (Eng) dataset.

D. Evaluation Metrics

This work uses a quantitative research method with the
independent variable being the transformer-based CLS model
and the dependent variable being the evaluation of the model's
performance measured quantitatively. Recall-oriented
understudy for gisting evaluation (ROUGE) is a suite of
measurement metrics and a software package used to evaluate

automatic summarization and machine translation [49] [50]
[51]. ROUGE is a popular metric widely used to evaluate
automatic summarization. The advantages of using ROUGE:

 ROUGE is easy and fast compared to evaluation by
humans,

 ROUGE is used by “everyone” so it is easy to compare
one research result with another.

ROUGE compares the summary generated by the system
with a reference summary or a set of reference summaries.
Here are some of the available comparison methods:

 ROUGE-N: Compares n-grams between system
summary and reference summary.

 ROUGE-L: Compares the longest matching sequence
(LCS) between system summary and reference
summary.

 ROUGE-S: Compare skip-bigrams, whether there are
any word pairs in a consecutive sentence, gaps are
possible. For example, skip-bigram measures the
overlap of word pairs that can have a maximum of two
gaps between words. The sentence “I eat fried rice”
then the skip-bigram is “I eat, I fried, I rice, eat fried,
eat rice, fried rice.”

There are still other measurement metrics, for more
information refer to Lin [49].

Bilingual evaluation understudy (BLEU) is a method for
automatic evaluation of machine translation. The BLEU score
is a measurement metric that assesses the degree of similarity
between sentences produced by machine translation and
reference sentences made by human translators. The more
similar, the higher is the value. This method works by counting
the number of n-grams in the produced sentence that matches
the n-grams in the reference sentence. BLEU was proposed by
papineni et al. [21].

V. RESULTS AND DISCUSSION

We evaluated the models trained using the ROUGE metric
described in the previous section. Specifically, we used
ROUGE-1, ROUGE-2, and ROUGE-L. The discussion
regarding the experimental results is divided into three parts.
First, we discuss the comparison of the pipeline model and the
end-to-end model. Second, we discuss the comparison of the
end-to-end model with the MWE components and the end-to-
end model without the MWE components. In the end, we
discuss the strategy of input truncation.

A. Comparison between Pipeline CLS Model and End-to-End

CLS Model

Traditionally, CLS is done in a pipeline which involves two
steps: summarization and translation. There are two patterns of
using a machine translator in a pipeline scheme. The first
pattern does the translation on the source document first and
then the results of the translation are used to generate the
summary. The second pattern performs summarization on the
source document first and then the summary is translated into
the target language. To construct CLS for these two patterns,
three constituent models are needed: English summarization

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

643 | P a g e

www.ijacsa.thesai.org

model, Bahasa Indonesia summarization model, and English
translation model. We trained a transformer-based English
summarization model on Sum (Eng) dataset and a transformer-
based Bahasa Indonesia summarization model on Sum (Ina)
dataset. Then, we trained a transformer-based English
translation model on PANL parallel corpus. The performance
of these three models individually can be seen in Table IV and
Table V.

We use the two patterns of the pipeline scheme as baseline
models (PipeTS and PipeST). These two pipeline models were
constructed using MS model and MT model which had
previously been trained independently. Both are then tested
using the CLS (Eng-Ina) dataset. The results are shown in
Table VI. The pipeline approach introduces error propagation.
To solve this, we trained several end-to-end CLS models (4
variations of VCLS models and 4 variations of MCLS models)
on CLS (Eng-Ina) dataset. The performance of these end-to-
end models can also be seen in Table VI. All the end-to-end
models outperform the model that uses the pipeline scheme.

The end-to-end model can achieve improvement from +0.1298
ROUGE-1, +0.0763 ROUGE-2, +0.1083 ROUGE-L up to
+0.2981 ROUGE-1, +0.2084 ROUGE-2, +0.2771 ROUGE-L
compared to the pipeline baselines. This verifies the purpose of
performing end-to-end summarization. Unlike the pipeline
method, the end-to-end model performs CLS in one direct step.
This approach avoids the error propagation that occurs when
doing it in two steps, namely in the pipeline scheme.

TABLE IV. PERFORMANCE OF OUR MONOLINGUAL SUMMARIZATION

Model ROUGE-1 ROUGE-2 ROUGE-L

SumINA 0.6456 0.5580 0.6355

SumENG 0.6434 0.5123 0.6088

TABLE V. PERFORMANCE OF OUR MACHINE TRANSLATION

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Tran 0.3683 0.2078 0.1191 0.0628

TABLE VI. ROUGE F1 SCORE

Type Model Variations ROUGE-1 ROUGE-2 ROUGE-L

P
ip

el
i

n
e

PipeTS Translation Summarization 0.1266 0.0142 0.1038

PipeST Summarization Translation 0.1661 0.0278 0.1313

E
n
d

-t
o

-E
n
d

 VCLS Head + CLS 0.2959 0.1041 0.2396

MCLS Head + CLS-MS 0.4087 0.2112 0.3652

VCLS_T Head-Tail + CLS 0.2981 0.1093 0.2448

MCLS_T Head-Tail + CLS-MS 0.3809 0.1893 0.3385

E
n
d

-t
o

-E
n
d

M
W

E

MWE_VCLS Head + CLS + MWE 0.3617 0.1519 0.3038

MWE_MCLS Head + CLS-MS + MWE 0.4247 0.2226 0.3809

MWE_VCLS_T Head-Tail + CLS + MWE 0.3347 0.1311 0.2767

MWE_MCLS_T Head-Tail + CLS-MS + MWE 0.3886 0.1919 0.3438

B. Comparison between End-to-End CLS Model with MWE

and End-to-End CLS Model without MWE

We also use two end-to-end models as baseline besides the
two pipeline baselines which were discussed in the previous
section. The first end-to-end baseline is an end-to-end CLS
model built using a vanilla transformer (VCLS). The second
end-to-end baseline is an end-to-end CLS model based on Zhu
et al. [15] (MCLS). The model is trained with 2-task learning,
which is jointly training CLS and MS using CLS (Eng-Ina)
dataset and Sum (Eng) dataset.

CLS is a Seq2Seq problem, when given a text sequence in
the source language it produces a shorter version of an original
text sequence in the target language. In Seq2Seq problem, it is
important to learn the relation (alignment) between the input
sequence and the output sequence. The CLS model that cannot
do a proper alignment mapping is unable to produce a correct
and meaningful summary. We propose using MWE to help
with this alignment. MWE can represent words in various
languages in one vector space. Words that have similar
meanings are in proximity. This pre-mapping of words is
expected to facilitate the model in aligning word sequences

between input and output. The VCLS and MCLS are then
modified by adding MWE components (MWE_VCLS and
MWE_MCLS).

The experimental results can be seen in Table VI. We can
find that the model that utilized MWE components beats the
underlying baseline model that does not use it. This shows that
the MWE helps to better map the relation (alignment) between
source document input in English and its summary output in
Bahasa Indonesia. This can happen because every word in both
languages is already in the same vector space. The
MWE_MCLS model can achieve maximum improvement up
to +0.1288 ROUGE-1, +0.1185 ROUGE-2, and +0.1413
ROUGE-L when compared to the end-to-end baselines. This is
the best-performing model in our experiments.

C. Input Truncation Strategy

Sun et al. [47] and Mutasodirin & Prasojo [48] use an input
truncation strategy on text classification problems. The strategy
is not only to take the head of the data as input but also to
combine it with the tail of the data. Generally, only the head of
the data is used because it is assumed that the core information
is here. However, their experimental results did not reach the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

644 | P a g e

www.ijacsa.thesai.org

same conclusion, so this strategy cannot be generalized yet. We
adapt this strategy to our CLS models which previously only
took the head part of the document into a combination of the
head and the tail. This adaptation produces models VCLS_T,
MCLS_T, MWE_VCLS_T, and MWE_MCLS_T. The
experimental results of these four models can be seen in
Table VI. However, in general, the results have not been able
to exceed the score obtained by the model that only uses the
head of the document. The best score is obtained by
MWE_MCLS_T. A decrease in performance of -0.0361
ROUGE-1, -0.0307 ROUGE-2, and -0.0371 ROUGE-L when
compared to the best model uses the head truncation strategy
(MWE_MCLS).

The IndoSum dataset that we use is constructed from online
news articles. Upon further examination of this dataset, we
found that most of the important information is at the
beginning of the document. This information appears in the
summary, while the end of the news article generally contains
additional information or explanatory information that does not
appear in the summary. Strategies that use a combination of
head and tail from the document are proven to be unable to
improve the performance of the models that originally uses
head truncation strategy, it even can decrease the model
performance due to including insignificant information in the
summary.

VI. CONCLUSION

In this work, we present the end-to-end abstractive CLS for
English documents to Bahasa Indonesia summary. The CLS
architecture is based on transformers, modified by adding
MWE components to address cross-lingual problems. The
architecture also has a second decoder with a shared encoder.
This second decoder is used only during training to carry out
joint learning between CLS and MS. During the test, the
second decoder is ignored. The model is also trained using two
input truncation strategies: head and head-tail. The head
truncation strategy cuts off and takes the head part of the
document as input while the head-tail truncation strategy
combines the head and the tail of the document as input. To
train the model, we create a new CLS dataset from MS dataset
by adapting the round-trip translation technique. The resulting
CLS dataset is evaluated using BLEU to ensure its quality.

Based on the experimental results, it can be concluded that
the use of MWE improves the performance of the CLS model,
specifically for summarizing an English source document into
a Bahasa Indonesia summary. The proposed model
successfully outperformed the baseline model and improved its
performance. The strategy of utilizing information at the end of
the data failed in improving the performance of the model.
Using only the head part of the data is still better. Furthermore,
it can be concluded that the end-to-end model is better than the
pipeline model. The use of machine translation is a weak point
of the pipeline model because it introduces error propagation.

ACKNOWLEDGMENT

This work was funded by PUTI Q3 Universitas Indonesia
2020-2021 with number: NKB-
4375/UN2.RST/HKP.05.00/2020 and supported as part of
Visiting Professorship Project on Gaining International

Accreditation and Enhancing Academic Reputation Program
Universitas Indonesia 2020-2021.

REFERENCES

[1] D. Radev, E. Hovy and K. McKeown, "Introduction to the special issue
on summarization," Computational linguistics, vol. 28, p. 399–408,
2002.

[2] M. F. Mridha, A. A. Lima, K. Nur, S. C. Das, M. Hasan and M. M.
Kabir, "A survey of automatic text summarization: Progress, process and
challenges," IEEE Access, vol. 9, p. 156043–156070, 2021.

[3] Y.-F. Ma, L. Lu, H.-J. Zhang and M. Li, "A user attention model for
video summarization," in Proceedings of the tenth ACM international
conference on Multimedia, 2002.

[4] J. Xu and T.-C. Lu, "Seeing the big picture from microblogs: Harnessing
social signals for visual event summarization," in Proceedings of the
20th International Conference on Intelligent User Interfaces, 2015.

[5] K. Zhang, W.-L. Chao, F. Sha and K. Grauman, "Video summarization
with long short-term memory," in European conference on computer
vision, 2016.

[6] H. P. Luhn, "The automatic creation of literature abstracts," IBM Journal
of research and development, vol. 2, p. 159–165, 1958.

[7] C. D. Paice, "Constructing literature abstracts by computer: Techniques
and prospects.," Inf. Process. Manage., vol. 26, p. 171–186, 1990.

[8] J. Kupiec, J. Pedersen and F. Chen, "A trainable document summarizer,"
in Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval, 1995.

[9] S. Chopra, M. Auli and A. M. Rush, "Abstractive sentence
summarization with attentive recurrent neural networks," in Proceedings
of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 2016.

[10] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang and others, "Abstractive
text summarization using sequence-to-sequence rnns and beyond," arXiv
preprint arXiv:1602.06023, 2016.

[11] D. Bahdanau, K. Cho and Y. Bengio, "Neural machine translation by
jointly learning to align and translate," arXiv preprint arXiv:1409.0473,
2014.

[12] B. Sankaran, H. Mi, Y. Al-Onaizan and A. Ittycheriah, "Temporal
attention model for neural machine translation," arXiv preprint
arXiv:1608.02927, 2016.

[13] X. Wan, H. Li and J. Xiao, "Cross-language document summarization
based on machine translation quality prediction," in Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics,
2010.

[14] F. Boudin, S. Huet and J.-M. Torres-Moreno, "A graph-based approach
to cross-language multi-document summarization," Polibits, p. 113–118,
2011.

[15] J. Zhu, Q. Wang, Y. Wang, Y. Zhou, J. Zhang, S. Wang and C. Zong,
"NCLS: Neural cross-lingual summarization," arXiv preprint
arXiv:1909.00156, 2019.

[16] X. Duan, M. Yin, M. Zhang, B. Chen and W. Luo, "Zero-shot cross-
lingual abstractive sentence summarization through teaching generation
and attention," in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[17] X. Chen and C. Cardie, "Unsupervised Multilingual Word Embeddings,"
in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, 2018.

[18] A. F. Abka, M. Pratama and W. Jatmiko, "Cross-Lingual
Summarization: English - Bahasa Indonesia," in 2021 6th International
Workshop on Big Data and Information Security (IWBIS), 2021.

[19] R. Sennrich, B. Haddow and A. Birch, "Improving Neural Machine
Translation Models with Monolingual Data," in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016.

[20] G. Lample, A. Conneau, L. Denoyer and M. Ranzato, "Unsupervised
Machine Translation Using Monolingual Corpora Only," in International
Conference on Learning Representations, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

645 | P a g e

www.ijacsa.thesai.org

[21] K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, "Bleu: a method for
automatic evaluation of machine translation," in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002.

[22] W. Ogden, J. Cowie, M. Davis, E. Ludovik, H. Molina-Salgado and H.
Shin, "Getting information from documents you cannot read: An
interactive cross-language text retrieval and summarization system," in
Joint ACM DL/SIGIR workshop on multilingual information discovery
and access, 1999.

[23] H. Saggion, D. R. Radev, S. Teufel, W. Lam and S. M. Strassel,
"Developing Infrastructure for the Evaluation of Single and Multi-
document Summarization Systems in a Cross-lingual Environment.," in
LREC, 2002.

[24] L. Yu and F. Ren, "A study on cross-language text summarization using
supervised methods," in 2009 international conference on natural
language processing and knowledge engineering, 2009.

[25] X. Wan, "Using bilingual information for cross-language document
summarization," in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language
Technologies-Volume 1, 2011.

[26] X. Wan, F. Luo, X. Sun, S. Huang and J.-g. Yao, "Cross-language
document summarization via extraction and ranking of multiple
summaries," Knowledge and Information Systems, vol. 58, p. 481–499,
2019.

[27] J.-g. Yao, X. Wan and J. Xiao, "Phrase-based compressive cross-
language summarization," in Proceedings of the 2015 conference on
empirical methods in natural language processing, 2015.

[28] E. L. Pontes, S. Huet and J.-M. Torres-Moreno, "A Multilingual Study
of Compressive Cross-Language Text Summarization," in Mexican
International Conference on Artificial Intelligence, 2018.

[29] E. L. Pontes, S. Huet, J.-M. Torres-Moreno and A. C. Linhares, "Cross-
language text summarization using sentence and multi-sentence
compression," in International Conference on Applications of Natural
Language to Information Systems, 2018.

[30] J. Zhang, Y. Zhou and C. Zong, "Abstractive cross-language
summarization via translation model enhanced predicate argument
structure fusing," IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, p. 1842–1853, 2016.

[31] J. Ouyang, B. Song and K. McKeown, "A robust abstractive system for
cross-lingual summarization," in Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019.

[32] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K.
Heafield, T. Neckermann, F. Seide, U. Germann, A. Fikri Aji, N.
Bogoychev, A. F. T. Martins and A. Birch, "Marian: Fast Neural
Machine Translation in C++," in Proceedings of ACL 2018, System
Demonstrations, Melbourne, 2018.

[33] A. See, P. J. Liu and C. D. Manning, "Get to the point: Summarization
with pointer-generator networks," arXiv preprint arXiv:1704.04368,
2017.

[34] F. Ladhak, E. Durmus, C. Cardie and K. McKeown, "WikiLingua: A
new benchmark dataset for cross-lingual abstractive summarization,"
arXiv preprint arXiv:2010.03093, 2020.

[35] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis
and L. Zettlemoyer, "Multilingual denoising pre-training for neural

machine translation," Transactions of the Association for Computational
Linguistics, vol. 8, p. 726–742, 2020.

[36] A. Conneau, G. Lample, M. Ranzato, L. Denoyer and H. Jégou, "Word
Translation Without Parallel Data," arXiv preprint arXiv:1710.04087,
2017.

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville and Y. Bengio, "Generative adversarial nets,"
Advances in neural information processing systems, vol. 27, 2014.

[38] B. Heinzerling and M. Strube, "BPEmb: Tokenization-free Pre-trained
Subword Embeddings in 275 Languages," in Proceedings of the
Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, 2018.

[39] M. Artetxe and H. Schwenk, "Massively multilingual sentence
embeddings for zero-shot cross-lingual transfer and beyond,"
Transactions of the Association for Computational Linguistics, vol. 7, p.
597–610, 2019.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser and I. Polosukhin, "Attention is all you need," in
Advances in neural information processing systems, 2017.

[41] S. Edunov, M. Ott, M. Auli and D. Grangier, "Understanding back-
translation at scale," arXiv preprint arXiv:1808.09381, 2018.

[42] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding," in
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Minneapolis, 2019.

[43] K. Kurniawan and S. Louvan, "Indosum: A new benchmark dataset for
indonesian text summarization," in 2018 International Conference on
Asian Language Processing (IALP), 2018.

[44] T. W. Guntara, A. F. Aji and R. E. Prasojo, "Benchmarking multidomain
english-indonesian machine translation," in Proceedings of the 13th
Workshop on Building and Using Comparable Corpora, 2020.

[45] A. Hermanto, T. B. Adji and N. A. Setiawan, "Recurrent neural network
language model for English-Indonesian Machine Translation:
Experimental study," in 2015 International conference on science in
information technology (ICSITech), 2015.

[46] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic
Optimization," in Proceedingsof the International Conference on
Learning Representations (ICLR), 2015.

[47] C. Sun, X. Qiu, Y. Xu and X. Huang, "How to fine-tune bert for text
classification?," in China national conference on Chinese computational
linguistics, 2019.

[48] M. A. Mutasodirin and R. E. Prasojo, "Investigating Text Shortening
Strategy in BERT: Truncation vs Summarization," in 2021 International
Conference on Advanced Computer Science and Information Systems
(ICACSIS), 2021.

[49] C.-Y. Lin, "ROUGE: A Package for Automatic Evaluation of
Summaries," in Text Summarization Branches Out, Barcelona, 2004.

[50] C.-Y. Lin, G. Cao, J. Gao and J.-Y. Nie, "An information-theoretic
approach to automatic evaluation of summaries," in Proceedings of the
main conference on Human Language Technology Conference of the
North American Chapter of the Association of Computational
Linguistics, 2006.

[51] K. Ganesan, ROUGE 2.0: Updated and Improved Measures for
Evaluation of Summarization Tasks, 2018.

