
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

694 | P a g e  
www.ijacsa.thesai.org 

Research on High Voltage Cable Condition Detection 

Technology based on Wireless Sensor Network 

Yang Zhao*1, Qing Liu2, Tong Shang3, Yingqiang Shang4, Rong Xia5, Shuai Shao6 

State Grid Beijing Powercable Company, Beijing, 100022 China
1, 2, 3, 4

 

China Electric Power Research Institute Limited, Wuhan Branch, Wuhan, 430079 China
5
 

Center of Jinan Power Supply Company of State Grid Shandong Electric Power Company, Jinan, 250012, China
6
 

 

 

Abstract—The development and progress of modern society 

cannot be achieved without the support of electric power 

resources, and at present, electric power is the most important 

energy source to promote social development and maintain 

human life. As a key unit under the power distribution and 

transmission system, the high-voltage cable of the power grid will 

undertake the task of supplying power resources to the whole 

power grid. Therefore, based on the transmission line fault 

diagnosis framework of Wireless Sensor Networks (WSN), a 

high-voltage cable path condition monitoring scheme using LoRa 

technology is proposed. Three high-voltage cable condition 

monitoring periods are proposed according to the difference of 

high-voltage cable fault rate, and the delay and energy 

consumption of the high-voltage cable monitoring system are 

optimized by multi-objective particle swarm algorithm reality. 

The experimental results show that the proposed high-voltage 

cable detection technology can switch the working mode 

according to different environments, and the data 

communication packet loss rate is less than 5%, while the 

detection platform has excellent delay performance and energy 

saving effect. The high-voltage cable status detection solution can 

effectively solve the problem of blind high-voltage cable channels 

in high mountain areas of China. The research content has 

important reference value for the detection of China’s power grid 

circuit system. 
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I. INTRODUCTION 

Wireless sensor network is a kind of communication and 
acquisition network composed of nodes, which can realize the 
detection and acquisition of external physical energy. With the 
development of information and communication technology in 
recent years, wireless sensor networks have a wide range of 
applications in modern medical, industrial manufacturing, 
smart grid, etc. [1]. Wireless sensor network has the 
characteristics of bottom power consumption, simple 
application and easy expandability; therefore, wireless sensor 
network also has a very wide application in the field of smart 
grid power data acquisition, cable status monitoring, grid fault 
diagnosis, etc. [2-3]. With the advent of the information era, 
smart grid construction has become the new goal of China’s 
power grid development. The United States as the 
representative of the developed countries on the future 
development of smart grid development strategy, which will be 
the wireless sensor network ZigBee protocol as an important 
communication standard for the construction of smart grid [4]. 

This shows that wireless sensor networks play an important 
role in the construction of smart grid. However, the 
construction of smart grid needs to meet the requirements of 
delay, bandwidth, reliability, and coverage, etc. The 
high-voltage grid is in a complex working environment, subject 
to harsh environment, complex weather, and interference from 
various electrical equipment signals, which will affect the 
application of wireless sensor networks [5]. Therefore, in view 
of the high difficulty in maintenance and repair of transmission 
lines in remote mountainous areas, a detection scheme for 
high-voltage cables in mountainous areas is proposed based on 
WSN technology. Different detection schemes are adopted for 
cables in different periods, and multi-objective particle swarm 
optimization algorithm is used to solve the problem, so as to 
solve the problem of high-voltage cable line fault detection in 
remote areas. The research content has important research 
value for the construction and development of smart grid in 
China. 

Wireless sensor networks are widely used in modern 
medical, industrial manufacturing, smart grid, etc. A lot of 
work has been done by domestic and foreign researchers to 
study wireless sensor networks. Tabella et al. investigated the 
effect of wireless sensor networks (WSN) on oil spill detection 
and localization in subsea production systems. Four 
localization algorithms were studied and the detection and 
localization performance were compared with the (location) 
perspective chair Varshney’s rule (CVR) and Cramér-Rao 
lower limit (CRLB), respectively. The results show that the 
components that would lead to leakage in case of failure and 
their corresponding failure rates [6]. Xf et al. found that the 
routing survivability in harsh environments is questionable. To 
address this issue, an environmental fusion multipath routing 
protocol (EFMRP) was proposed. The results show that 
EFMRP can significantly improve packet delivery rate and 
network lifetime in harsh environments [7]. Hu et al. found that 
a fully distributed time synchronization method based on 
Gaussian belief propagation would lead to degradation of 
synchronization accuracy. Thus, a Sequential Belief 
Propagation-based Distributed Time Synchronization algorithm 
(SBP-DTS) was proposed to reduce the number of Gaussian 
mixture components in messages using a weighted expectation 
maximization (EM) algorithm. Finally, the performance of 
SBP-DTS was evaluated under asymmetric Gaussian and 
exponential delay models [8]. Houssein et al. found it a 
challenging task to determine the location of convergence 
nodes in LSWSNs, and Harris’ hawk’s optimization (HHO) 
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algorithm was used to solve this problem. The results show that 
the adopted approach has advantages in terms of energy 
consumption and localization errors [9]. Lin et al. proposed a 
priority-aware packet transmission scheduling (PPTS) 
framework in a cluster-based IWSN, in which the PPTS policy, 
optimization theory, and implementation design are 
systematically considered. The results show that the proposed 
PPTS policy not only minimizes the transmission delay of 
high-priority packets but also improves the transmission delay 
of low-priority packets [10]. Zhan et al. propose an 
optimization problem that minimizes the weighted sum of the 
above two costs by optimizing the UAV trajectory and 
wake-up time allocation as well as the transmit power of all 
SNs. In addition, a new approach to design the initial UAV 
trajectory using the multi-traveler problem (MTSP) technique 
is proposed. The results show that the proposed design 
achieves a flexible trade-off in cost balance between UAVs and 
SNs [11]. Wang et al. propose a LEACH-EA protocol based on 
the LEACH algorithm for the low-power requirements of 
wireless sensor networks. Experiments show that the 
LEACH-EA protocol provides significant improvements in 
network life cycle, total network data transmission and number 
of cluster heads [12]. Verma et al. found limitations when 
using the battery power of sensor nodes. A fuzzy logic based 
effective clustering (FLEC) for homogeneous wireless sensor 
networks for mobile receivers is proposed. The probability of 
average energy is used to select the appropriate cluster head 
and the results show that the proposed FLEC scheme 
outperforms LEACH, DEEC and LEACH fuzzy protocols [13]. 
Jaber et al. proposed an “adaptive fully distributed duty cycle 
for content-centric wireless sensor networks (ADDC-CCWSN) 
“mechanism. The ADDC-CCWSN aims to reduce the activity 
of nodes with a high percentage of unsatisfied interest in the 
PIT. The results show that the proposed approach achieves 
significant energy efficiency gains while ensuring a high 
interest satisfaction rate and maintaining almost the same 
latency [14]. 

Neural network algorithms have a wide range of 
applications in the field of smart grid, providing important data 
support for data collection and grid diagnosis, and researchers 
at home and abroad have done a lot of work to study them. Yu 
et al. proposed a deep reinforcement learning algorithm for safe 
shutdown strategy in order to deal with incomplete distribution 
grid models to solve the voltage reactive power control 
problem in a model-free manner. The results show that the 
proposed algorithm outperforms existing reinforcement 
learning algorithms [15]. Pan E et al. used hierarchical cluster 
analysis to analyze grid influencing factors, and the results 
show that the prediction model is important to achieve accurate 
calculation of provincial enterprise investment [16]. Ying et al. 
proposed a coordinated scheduling method for plug-in electric 
vehicle PV generation microgrid based on extended power 
prediction, using a clustering algorithm to build the power 
prediction model was established and the results showed the 
good performance of the proposed extended coordinated 
scheduling algorithm [17]. Bhamidipati et al. developed Wide 
Area Monitoring Systems (WAMSs) in order to monitor the 
grid in a wide area. And a new wide-area monitoring algorithm 
was developed to verify each substation 

in an artificial intelligence framework. The results show that 
the Kullback-Leibler scatter-based method has fast detection 
time and the timing error estimation accuracy exceeds the 
limits provided by the IEEE C37.118.1-2011 standard [18]. 
Iliadis et al. developed a new algorithm for managing the 
currents of an islanded power system that enables more stable 
conventional unit operation and peak demand reduction. The 
results demonstrate that the proposed algorithm can achieve 
smoother diesel generator operation [19]. Jyotheeswara et al. 
proposed a neural network-based maximum power point 
tracking (MPPT) controller for PEMFC grid-connected 
systems to extract maximum power from proton exchange 
membrane fuel cells. The results show that the proposed 
RBFN-MPPT controller has excellent performance [20]. 

It can be seen from related domestic research that neural 
network algorithms have a wide range of applications in the 
field of smart grid. Optimization of wireless sensor network 
parameters by neural network algorithm is important to 
improve the monitoring effect of power grid cables. 

II. CONSTRUCTION OF HIGH-VOLTAGE CABLE CONDITION 

DETECTION MODEL BASED ON WIRELESS SENSOR NETWORK 

A. Mountain High Voltage Cable Path Loss Model 

Construction 

Wireless sensor network is a wireless communication 
technology, and its low cost and maintenance-free 
characteristics make WSN technology gradually replace the 
backward wired monitoring scheme. Therefore, WSN 
technology will have a very broad application prospect in the 
field of smart grid. High-voltage cables in mountainous areas 
are susceptible to seasonal climate and harsh environment, and 
high-voltage cable faults are mainly concentrated in summer 
and winter time. To meet the requirements of monitoring high 
voltage cables in mountainous areas, transmission cable 
monitoring solutions need to meet the challenges of signal 
transmission, harsh environmental issues, and service life in 
mountainous areas. Therefore, based on wireless sensor 
network technology, an in-line monitoring system for high 
voltage cables in mountainous areas using LoRa is proposed. 
The high-voltage line transmission architecture is constructed 
by setting LoRa and cellular modules in the mountainous 
environment, and dynamic LoRa packet networking modules 
are set to guarantee the stable transmission of data signals as 
well as to improve the efficiency of system resources 
utilization and reduce system energy consumption. As shown 
in Fig. 1, the application principle of WSN in the field of smart 
grid. 

 
Fig. 1. Application principle of WSN in Smart Grid 
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According to the analysis of mountain high-voltage cable 
monitoring data, the probability of cable failure is different at 
different times, and mountain high-voltage cable monitoring is 
divided into three monitoring time periods. In the mountain 
storm season, snowstorm and frost season, when the relevant 
values are higher than the meteorological safety indicators, the 
occurrence of natural disasters around the mountain area of 
high-voltage cables is high, and the monitoring of mountain 
high-voltage cables is at the high-risk monitoring stage; natural 
disasters or abnormal communication signal transmission occur 
in the mountainous grid area, and the monitoring of mountain 
high-voltage cables is at the fault monitoring stage; cable 
monitoring data return to normal, and meteorological disasters 
gradually decrease, and mountain high-voltage cable 
monitoring is in the low-risk monitoring stage. According to 
the characteristics of the monitoring period, the fault stage 
gives priority to feedback data to the monitoring and issue fault 
maintenance orders; secondly, the high-risk stage feeds data to 
the monitoring and monitors the grid route fault problem; the 
low-risk stage only needs to meet the requirements of stable 
data transmission and cable detection. The signal strength of 
the transceiver module LoRa at a point in the mountainous area 
is expressed as the difference between the field strength of the 
system base station antenna and the field strength loss of the 
signal reaching that point, as seen in equation (1). 

R T PSE E L 
 (1) 

In equation (1), PSL
 represents the signal loss in the 

median path, and TE
 represents the field generated by the 

LoRa antenna position of the transceiver module. During the 
transmission of the signal in the non-direct path, the bypassing 
phenomenon will occur, as shown in Fig. 2, then the bypassing 
path expression is seen in equation (2). 

2 2 2 2

1 2d ( ) ( )D m T m Rd h h d h h     
 (2) 

In equation (2), 1d
 indicates the distance between the 

mountain and the transceiver module,
dD  indicates the signal 

bypass distance, 2d
 indicates the distance between the 

mountain and the antenna, Rh
 indicates the antenna altitude,

Th
 indicates the transceiver module altitude, and mh

 
indicates the mountain altitude. 

 
Fig. 2. Radio diffraction principle

The colored building areas in Fig. 2 represent signal 
blocking areas such as mountains and forests. The signal tower 
transmitting signal is blocked by the mountain and signal 
bypassing phenomenon occurs. The transceiver module LoRa 
signal band is 433-915Mhz, to meet the bypass signal loss 
requirements, the model applicable to the loss monitoring in 
this band is Egli model, which can be more accurate to 
evaluate the terrain field strength in mountainous and hilly 

areas, etc. The Egli signal loss expression is seen in equation 
(3). 
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In equation (3), rh
 indicates the antenna height, th
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hK
 environmental correction factor, and d  indicates the 

distance between the transceiver and signal antennas. 

B. Construction of Time Delay and Energy Consumption 

Model of High Voltage Cable in Mountainous Areas 

The high-voltage cable monitoring model uses LoRa to 
achieve optimization of dynamic grouping with multiple 
objectives, and algorithms are used to find the number of 
cellular wireless modules installed as well as the number, so as 

to achieve the type of network under different system delay 
and energy consumption conditions, and to meet the switching 
of multiple working states of the high-voltage cable monitoring 
system of smart grid. Network modeling is used in the study as 
a data directed graph, and transmission towers are located at 
substation locations, which can directly use LoRa modules to 
achieve end-to-end data transmission. Therefore, the directed 
graph then mainly considers the number of transmission towers 
required by the wireless transmission module. The directional 
diagram of network data transmission is shown in Fig. 3.

 
Fig. 3. Directed graph of network data transmission 

The cable detection model mainly needs to find the 
available communication path and the communication link 
delay is kept minimum and can save the network construction 
cost, then the communication link delay should be less than or 
equal to the maximum communication delay, as seen in 
equation (4). 

, , , , max

( , )

 i j k i j k

i j

D M D k N  
 (4) 

In equation (4),
, ,i j kM

 denotes the binary decision 

variable,
, ,i j kD

 denotes the node k  communication delay, and

maxD
 denotes the system maximum delay requirement. To 

ensure that the communication link is reused at a reduced cost, 

then
,i jO

 denotes the binary variable, if the data link ( , )i j  

is used, there is
, 1i jO 

 , otherwise
, 0i jO 

 , expressed as 
seen in equation (5). 

 , , , ,, ,  0,1    ( , ) ,  i j k i i i jM L G O i j p k N    
 (5) 

In equation (5),
,iL
 and iG

 are binary variables, where i  

towers use cellular network, then there is
1iG 

 , otherwise 0, 

and if i  towers use LoRa, then
, 1iL 

 , otherwise 0. The 

variables
, ,i j kM

 and
,i jO

 can be determined by equation (5). 
Also combine equation (4) with equation (5) to get all network 
delay functions as seen in equation (6). 

, , , ,( , ,  )    ( , ) ,  i j k i i jD M L G O i j p k N   
 (6) 

The expression of the network loss function can be found 
by equation (6) as seen in equation (7). 

, ,

1 ( , )

( , ) ( )
N

i i i i i j i j ps

i i j p

E G L dG bL C O L
 

    
 (7) 

In equation (7), d  denotes the energy consumption of the 

cellular radio module, b  denotes the energy consumption of 

the LoRa module, and
,i jC

 denotes the energy consumption 

at the data link ( , )i j  . The expression of the dynamic model 
of mountain cable LoRa obtained by Eq. (4) to Eq. (7) is seen 
in Eq. (8). 

 ( , , ), ( , )  ( , ) ,F D i j k E i j i j p k N   
 (8) 
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In the LoRa module, SF  is the spreading factor, BW  is 

the signal bandwidth, and CR  is the encoding rate. Using the 
sem tech formula, the transmission time of a LoRa individual 
node packet over the air can be calculated, and by using the 
user key control parameters, the LoRa symbol rate is expressed 
as seen in equation (9). 

2
s SF

BW
R 

 (9) 

With the user control parameters and the symbol rate 
definition information, the LoRa symbol period representation 
is obtained as seen in equation (10). 

1sT R
 (10) 

The number of propagation times of LoRa data in the air is 
the sum of the packet transmission time and the leading code 
time, while the leading code is calculated as seen in equation 
(11). 

s( 4.25)p pT n T 
 (11) 

In equation (11),
pn

 is the leading code setting length, 
which is stored in the register location, then the payload 
transmission time is equation (12). 

1 sT T 
 (12) 

In equation (12),  denotes the payload symbol, then the 
LoRa data transmission time can be obtained as the sum of the 
leading code transmission time and the payload time, as seen in 
equation (13). 

p lT T T 
 (13) 

In equation (13),
pT

 is the lead code transmission time
pT

 

, lT
 is the payload time. LoRa data transmission process energy 

generation as seen in Figure 4. 

 
Fig. 4. Lora energy generation in lora data transmission process 

Then, in LoRa data transmission, RXE
 denotes the data 

transmitting energy consumption, TXE
 denotes the data 

receiving energy consumption, d  denotes the distance of data 
transmission process, and n  denotes the data size. The total 
energy consumption of LoRa data transmission is shown in 
equation (14). 
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(14) 

In equation (14), TelecE
 is the energy consumption of the 

device sending data, RelecE
 is the energy consumption of the 

device receiving data,
amp

 is the energy consumption of the 

device power amplifier unit,
( )CCE n

 is the energy 

consumption of the cellular module sending data, and k  is the 
signal attenuation index with a value of 4 in the mountain area. 

C. Lora Transmission Model Construction based on MOPSO 

Algorithm 

The analysis of the LoRa transmission model reveals that 
the delay model is influenced by the LoRa transmission data 
and device transmission parameters, while the energy 
consumption model is influenced by the data transmission 
distance, data transmission volume, and transceiver module 
power. Meanwhile delay and energy consumption are two 
contradictory target data. To ensure both low latency and good 
energy consumption for high voltage cable monitoring system, 
a compromise approach is needed. A neural network algorithm 
is used to optimize the delay and energy consumption 
objectives so that the delay and energy consumption targets 
meet the requirements of the online high-voltage cable 
detection system. Therefore, the multi-objective particle 
optimization algorithm (MOPSO) is used to optimize the 

energy consumption E  and T  two important parameter 
objectives, then the mathematical expression of MOPSO for

M  objectives is seen in equation (15). 

1 2

1 2

1 2

min ( ) ( ), ( )..., ( )

. .   ( , ..., )

        ( , ..., )

m

D

M

y f x f X f X f X

S t x x x x X

y y y y

  


 
   

(15) 

In Eq. (15),
y

 denotes the target space, X  denotes the 

decision space,
y

 denotes the target vector, and x  denotes the 

decision vector. In the multi-objective particle swarm 

algorithm calculation, each particle has a unique solution in the 

solution space and adjusts its target flight according to the 
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spatial flight experience of its peers and its own experience. 

The particle trajectory in space has the best flight position, 

which is the optimal solution for the particle swarm. And the 

flight position that the whole particle swarm experiences is the 

optimal solution that the swarm finally searches for. 

Define
1, 2( ,..., )a a a aH h h h D

 as the D  dimensional 
position of the a  particle of the particle swarm and the particle

1,2,...a s  . The flight speed of particle a  is

1 2 3( , , ..., )a a a a aDaV v v v v
 . The optimal solution of the 

particle swarm a  is 1 2 3( , , ..., )a a a a aDp p p p p
 , and the 

global optimal solution of the whole particle population is

1 2 3( , , ... )o o o o oDp p p p p
 . The particle population counts 

the velocity expression of the particles in each iterative update 
as seen in equation (16). 

1 1

2 2

( 1) ( ) ( ( ))

                + ( ( ))

ab ab ab ab

b ab

v k v k c r p h k

c r pg h k

   


(16) 

In Eq. (16), denotes the number of particle swarm, a

1,2,...a s  and b  are the parameter values,

1,2,3,...,b D  and bL
 denote the lower limit of the search 

space, bU
 denotes the upper limit of the search space, abv

 

denotes the swarm flight speed, 1c
 and 2c

 denote the swarm 

learning factor,   denotes the inertia weight, and 1r  and 2r  
denote the random number. For each iteration, the position of 
the particles is expressed as shown in equation (17). 

( 1) ( ) ( 1)ab ab abh k h k v k   
 (17) 

In equation (17), abh
 is the particle swarm dimensional 

position,
 ,ab b bDh L U

 . The flow of multi-objective 
particle swarm to achieve the objective optimization is shown 
in Fig. 5. 

 
Fig. 5. Multi-objective particle swarm optimization process 

III. HIGH VOLTAGE CABLE CONDITION DETECTION MODEL 

SIMULATION TEST 

In order to verify the performance of the proposed online 
high-voltage cable detection model, the online high-voltage 
cable monitoring network will be simulated and tested using 
MATLAB with Pocket Tracer simulation platform. The LoRa 
module used in the experimental test transmits from 1km to 
5km range, and the transmission rate ranges from 5kb to 30kb 
range, and the distance is inversely proportional to the data 
transmission rate; while the cellular wireless module is used 
without considering the distance, and the rate is 125m/s. The 
cellular network has been affected by data access delay, routing 
conversion, and the delay is taken as the average value of 
55ms. 100 transmission poles with a spacing of 1 km, and each 
inductive pole tower are placed a group of sensors, each group 
of sensors each time to collect data capacity of a total of 
2.78kb. 
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In the test of the relationship between path loss and the 
influence of LoRa signal receiving and transmitting segment 
distance, the experiments are based on the Egli path loss 
model, and the relationship between path loss and LoRa signal 
segment is obtained through simulation tests, as shown in Fig. 
6. 

Fig. 6 shows the results of the relationship between the 
actual field strength of the path and the theoretical field 
strength. The real field strength test shows that the LoRa signal 
becomes weaker with the increasing distance of the field 
strength, which corresponds to the decreasing trend of field 
strength with increasing distance of Egli model. However, the 
actual comparison shows that the decreasing trend of field 
strength in the experimental test is significantly smaller than 
the trend of Egli’s theoretical calculation. In the case of 
mountain peaks, the difference between the actual field 
strength and the theoretical field strength will be monotonically 
reduced by the increasing distance, but the error value will 
increase in the case of mountain peaks. Although the Egli 
model can describe the relationship between field strength and 
distance for transmission signals in mountainous areas, the 
model has a large error and needs to be optimized to effectively 
predict the path loss in mountainous areas. Meanwhile, in 
online high-voltage cable detection system, delay model and 

energy consumption model are the key to system optimization. 
To discuss the performance of LoRa wireless networking, it is 
necessary to analyze the LoRa bottleneck energy in cellular 
wireless modules as well as the number of groups in LoRa 
modules and multi-hop transmission distance between 
modules. Therefore, the relationship between different wireless 
transmissions and the maximum system delay during 
networking is tested in the Pocket Tracer simulation platform, 
as shown in Fig. 7. 

 
Fig. 6. It is the result of the relationship between the actual field strength 

and the theoretical field strength of the path 

 
Fig. 7. Results of the relationship between system delay and bottleneck energy consumption

Fig. 7 shows the results of the relationship between the 
system delay and the bottleneck energy consumption. In Fig. 
7(a) the results of the relationship between the number of LoRa 
wireless groups and the bottleneck energy are shown. When 
the cable monitoring network belongs to LoRa step-by-step 
hopping network, the system bottleneck energy is the same as 
LoRa bottleneck energy, and the terminal node closest to the 
gateway node transmission network will forward all node data 
at this moment, and the system bottleneck energy is consumed 
as the energy of this node; meanwhile, LoRa transmission 
group expands with the number, this network system takes 
cellular module for data transmission, and the cellular module 
energy consumption is much higher than the LoRa module, and 
the system bottleneck energy at this moment also increases 
with it. However, along with the expansion of the number of 
cellular modules, the transmission of data information of 
individual modules decreases, so the system bottleneck energy 
under the network will decrease as the number of module 

groups increases. Also, when the system uses a heterogeneous 
network, LoRa modules will also consume less bottleneck 
energy as the number of LoRa groups increases. The 
bottleneck energy consumed by the LoRa and cellular 
networks is relatively fixed at this moment, with the LoRa 
bottleneck energy consumption being 2mJ and the cellular 
27mJ. The results of the relationship between the number of 
wireless groups and the maximum delay are shown in Fig. 
7(b). 

Due to the increasing number of LoRa wireless packets, the 
data transmission between individual LoRa modules is 
reduced, and not only the energy consumption is reduced, but 
also the maximum delay of data transmission is gradually 
reduced. 

The MATLAB platform is used to implement the 
simulation test for the multi-objective optimization of the 
system, and the multi-objective particle swarm algorithm is 
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used to optimize the two objectives of the delay module and 
the energy consumption module. The simulation test continues 
to reflect the results of the relationship between energy 
consumption and delay by bottleneck energy and maximum 
delay, as seen in Fig. 8. 

 
Fig. 8. Results of the relationship between time delay and energy 

consumption under particle swarm optimization algorithm 

The results of the relationship between time delay and 
energy consumption under the particle swarm algorithm are 
shown in Fig. 8. The time delay and energy consumption are 
two conflicting objectives that show an inverse proportional 
relationship. Optimization of the two models of time delay and 
energy consumption by the multi-objective particle swarm 
algorithm does not search for the optimal solution set that 
matches the objective function. However, in the simulation 
test, the blue area of the image ellipse is the optimal solution 
range of the objective. In order to find the best working 
conditions parameters that meet the system work, it is 
necessary to further analyze the optimal solution set obtained 
by the particle swarm algorithm, and through the weighting 
process, the weights achieve the switching effect of working 
mode, and the normalization process is carried out to get the 
results corresponding to the parameters of time delay and 
energy consumption under different weights  , as shown in 
Table I. 

TABLE I.  SHOWS THE RESULTS OF TIME DELAY, ENERGY 

CONSUMPTION AND THE RELATIONSHIP BETWEEN PARAMETERS 

Wei

ght 

Transmission 

distance/km 

Signal 

bandwidth/K

Hz 

System energy 

consumption/mJ 

System 

delay/s 

0.1 1 125 12 9.13 

0.2 1.5 125 14 5.01 

0.3 2 125 25 2.72 

0.4 2.6 125 32 0.91 

0.5 3 125 48 0.53 

0.6 3.5 250 53 0.47 

0.7 4 125 59 0.36 

0.8 4.5 250 71 0.26 

0.9 5 250 74 0.16 

Table I shows the results of time delay, energy 
consumption and the relationship between each parameter. At 

the weight of 0.2   , the system has the best balance of 
energy consumption and time delay, which can be used as the 
monitoring mode of cable detection system at this moment, and 

at 0.5   , the system has low delay and good signal 
transmission distance, which can be used as the warning mode 

of the system. At 0.9   , the system has the best delay 
performance and transmission distance, 0.16s and 5km, 
respectively, as maintenance mode. The proposed wireless 
inspection system can effectively meet the work content 
requirements of cable repair and maintenance, and the energy 
consumption is reduced by 81% compared with the traditional 
wired inspection system. 

Packet loss rate is an important parameter to evaluate the 
quality of communication transmission, mainly refers to the 
ratio of the amount of data lost during the transmission and 
exchange process of communication data to the actual sent 
communication data. A higher packet loss rate means a worse 
quality of communication data transmission. Therefore, in 
order to ensure that the system communication has a high 
quality, it is necessary to consider the communication packet 
loss rate. The packet loss rate is related to the communication 
distance, packet length and the transmitting frequency of the 
signal base station. Therefore, the packet loss rate was tested 
under three detection models, and 2000 16-bit byte packets 
were sent simultaneously in the three operating modes of the 
system, as shown in Table II. 

TABLE II.  SHOWS THE RESULTS OF PACKET LOSS RATE OF THE SYSTEM 

UNDER VARIOUS WORKING MODES 

System 

working 

mode 

Total 

transmitted 

packets 

Communication 

distance /kg 

Packet 

loss rate 

Time 

delay/s 

Early 

warning 

mode 

1950 3 <3% 0.51 

1956 3 <3% 0.52 

1972 3 <3% 0.53 

Monitoring 

mode 

1901 1.5 <5% 5.12 

1908 1.5 <5% 5.16 

1910 1.5 <5% 5.19 

Maintenanc

e mode 

1980 5 <1% 0.16 

1982 5 <1% 1.17 

1986 5 <1% 1.17 

Table II shows the results of the packet loss rate situation of 
the system under each operating mode. The packet loss rate of 
the system under all three modes tested is controlled within 
5%, which meets the relevant requirements of packet loss rate 
for China’s power grid communication construction. In the 
early warning mode and maintenance mode, the packet loss 
rate is significantly lower than that in the monitoring mode, 
mainly because the communication system needs to maintain 
high frequency signal bandwidth to meet the requirements of 
low delay in communication in both working environments, 
and therefore the energy consumption in both working modes 
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is relatively high. It can be concluded that the three working 
modes will be freely switched according to the environmental 
conditions where the high-voltage cable is located, maintaining 
the basic communication and low energy consumption 
detection requirements in the detection mode, and switching to 
the warning or maintenance mode under the harsh 
environmental conditions to guarantee the detection of the 
system and the exchange of communication data. Finally, 
compare the wireless cable detection technology studied with 
the traditional wired cable detection technology, as shown in 
Table III. 

TABLE III.  COMPARISON BETWEEN THE PROPOSED CABLE DETECTION 

TECHNOLOGY AND TRADITIONAL CABLE DETECTION TECHNOLOGY 

Compari

son type 

Traditional cable detection 

technology 

The proposed wireless 

cable detection technology 

Scope of 

applicati

on 

Only applicable to places where 

wired equipment can be built 

It can adapt to most places, 

including high mountains, 

cold and hot areas 

Unit 

energy 

consumpt

ion 

higher moderate 

Self 

energy 

level 

system 

Manual automatic control Intelligent/manual control 

Construc

tion 

requirem

ents 

High construction difficulty, not 

suitable for all places 

It can be built in most places 

and mobile communication 

coverage areas 

Maintain 
High maintenance difficulty 

and cost 

Lower overall maintenance 

and cost 

Check 

the 

accuracy 

No time interval monitoring, 

and manual monitoring is 

required for special 

environment 

Adapt to full time and assist 

manual monitoring, with 

higher detection accuracy 

Table III is a comparison table between the proposed 
scheme and the traditional cable detection technology. It can be 
seen from the information in the table that compared with the 
traditional cable detection technology, the proposed wireless 
cable detection technology has obvious advantages in the scope 
of application, construction cost and detectability. At the same 
time, the cable detection technology based on wireless 
technology has more advantages than the traditional cable 
detection technology in terms of system updating and 
technology upgrading, and is more in line with the construction 
requirements of the existing smart grid. 

IV. CONCLUSION 

High-voltage transmission circuit is an important part of the 
grid system, and the reliability of high-voltage cables directly 
affects the safe operation of the grid system. Along with the 
development of interest communication technology, advanced 
wireless communication technology will provide important 
technical support for the development of smart grid. To address 
the problem of insufficient maintenance of traditional wired 
high-voltage cable detection system in remote mountainous 
areas, a high-voltage cable path state monitoring scheme using 
LoRa technology is proposed based on wireless sensor 
network. And three monitoring modes are proposed according 
to the fault types of high-voltage cables; the balance of energy 
consumption and delay of cable communication is achieved by 

multi-objective particle swarm algorithm. The experimental 
results show that the system delay, energy consumption and 
signal bandwidth are different under different weight 
parameters, and the overall effect of the cable detection system 
can be improved by selecting the appropriate cable detection 
model according to the different weight of the cable detection 

area. When the weight is 0.5  , the system has low delay 
and good signal transmission distance. At this moment, the 

system adopts warning mode. At the weight 0.9  , the 
system signal and transmission distance are in the best state. At 
this moment, the system uses maintenance fuzziness for routine 
cable maintenance. Compared with the traditional cable 
detection system, the overall energy consumption of the 
proposed system is reduced by 81%. Finally, in the 
communication data transmission test, the packet loss rate of 
data transmission under the three working modes is less than 
5%. The system reasonably selects the working model 
according to the environment and ensures that the system has 
excellent data signal transmission performance, and meets the 
cable fault detection requirements. Compared with the 
traditional wired cable detection technology, the wireless cable 
detection technology consumes less energy and can adapt to a 
more demanding detection environment. At the same time, the 
system uses neural algorithms to balance the system 
parameters, which makes the overall detection performance 
more stable and better. Therefore, the high voltage cable 
detection technology based on wireless sensor network meets 
the requirements of smart grid construction and ensures the 
timely and effective detection of high voltage cables. However, 
there are also shortcomings in this research. The wireless cable 
detection technology only considers the impact of mountain 
environment on technology. In the actual technology 
construction, more demanding environment needs to be 
considered. At the same time, the wireless technology needs to 
consider the regional communication coverage during the 
construction process, and the combination of wired and 
wireless technology is the most effective method at present. 
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