
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

715 | P a g e

www.ijacsa.thesai.org

A Semantic NoSQL Application Program Interface

for Big Data

K. ElDahshan1, E. K. Elsayed2, H. Mancy3, A.AbuBakr4

Department of Mathematics-Faculty of Science, Al-Azhar University, Cairo, Egypt1

Department of Mathematics-Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt2,3,4

Computer Science Institute, Canadian International College, Cairo, Egypt2

Abstract—Complexity, heterogeneity, schemaless-ness, data

visualization, and extraction of consistent knowledge from Big

Data are the biggest challenges in NoSQL databases. This paper

presents a general semantic NoSQL Application Program

Interface that integrates and converts NoSQL databases to

semantic representation. The generated knowledge base is

suitable for visualization and knowledge extraction from

different Big Data sources. The authors use a case study of the

COVID-19 pandemic prediction and other weather occurrences

in various parts of the world to illustrate the suggested API. The

Authors find a correlation between COVID-19 spread and

deteriorating weather. According to the experimental findings,

the API's performance is enough for heterogeneous Big Data.

Keywords—NoSQL database; formatting; semantic technology;

data integration; pandemic prediction

I. INTRODUCTION

Large data sets have their roots in the 1960s and 1970s
when the world of data was just getting started with the
creation of the first data centers and the development of the
relational database. Nowadays, the data grows at sky-high
rates. The world has multiple Big Data sources with different
structures like sensors, scientific experiments, and social
networks. We produce and collect more data every minute, and
we need to be able to process them as soon as possible.
Everything depends on timing, including stock trading,
tracking the growth of epidemics, and traffic monitoring. A
minor misunderstanding could lead to both financial loss and
fatalities. The high level of adoption of Big Data technology is
influenced by the quick and continual growth in data volumes.

A. Research Problem

Researchers face many problems when dealing with data
from multiple sources. Because the structure of the data is
different it makes it difficult to process the data and extract
knowledge. Most researchers are now trying to store the data in
a semantic form to make it easier to process. To do this they
need to collect data from different data stores and preprocess
these data to present them in semantic form. The preprocessing
phase takes much time and effort which we need to solve the
real problems we face and take better decisions based on the
knowledge extracted from the data.

B. Research Objectives

This article studies many semantic Big Data frameworks
and their limitations. Then it proposes a semantic NoSQL
application program interface (API). The proposed API can
read data from multiple NoSQL databases and convert them to
Ontology. By using the proposed API, it will be possible to
apply semantic queries on different data stores. The proposed
API can also be used to integrate different data stores into a
defined format.

C. Organization

This paper is organized in the following way to fulfill the
research goals: Section 2 reviews a background about Big
Data, Ontology, and NoSQL databases. Section 3 examines the
history of earlier similar works. Section 4 Shows the proposed
API architecture. The implementation of our proposed API is
described in Section 5. Section 6 provides a case study of the
API to analyze COVID-19 spread and weather behavior. The
impact of utilizing the suggested API is described in Section 7.
The paper's conclusion is covered in Section 8, which also
analyses the research's significant contribution and limitations.

II. BACKGROUND

A. Big Data

The term Big Data refers to a concept mostly used to
classify large amounts of data. Despite the wide agreement on
the promises and prospects of Big Data, there is no standard
definition for it at this time.

The Institute of McKinsey Global defined the term Big
Data as a “very Big Data set that can‟t be stored or managed
with database software tools” [1].

Gartner [2] defined Big Data as "a high-volume, high-
variety, and/or high-velocity information asset that necessitates
cost-effective, novel types of data processing that provide
better insight, decision-making, and process automation."

The term "Big Data" was defined by Deepak Gupta and
Rinkle Rani [3] as „Big data refers to large datasets which
require non-traditional scalable solutions for data gathering,
storage, management, analysis, and visualization, to extract
actionable insights that could have an impact on every area of
human life‟. Big data characteristics are portrayed as
extensions of ‟V‟s [3][4]. Fig. 1 presents the Big Data
characteristics.

 This research is funded by the Academy of Scientific Research and

Technology (ASRT), Cairo, Egypt, project titled “Coronavirus Prevalence

Prediction Model” (Project ID: 6641).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

716 | P a g e

www.ijacsa.thesai.org

Fig. 1. Big Data characteristics

B. Ontology

An Ontology consists of O = A, C, I, P, R, T. Where A is
the set of axioms; C is the set of concepts or classes; I is the set
of instances; P is the set of properties of the concepts
describing various features; R is the set of relationships
between concepts and T is the set of hierarchical relationships
among concepts that are called taxonomies [5].

The components of Ontology are as follows:[6]

 Individuals: “The ontology population is represented by
individuals, which are objects. They are instances of
classes.”

 Classes: “Classes are particular categories of objects or
things that represent a collection of instances or specify
a particular category of entities. They are frequently
referred to as concepts or entity types. Classes can be
used to classify individuals, other classes, or a
combination of both.”

 Attributes: “Properties associated with objects or classes
are called attributes. They include statements about
Datatypes and their DataValues, characteristics,
features, or parameters of individuals and classes.”

 Relations:” The numerous links that indicate how two
individuals or classes are related. Additionally called
associations, roles, relationship types, and object
properties”.

 Axioms:” Logical rules and assertions that together
create the general theory that describes the relationship
between the ontology elements. They represent formal
definitions of the ontology knowledge.”

C. NoSQL Databases

NoSQL (Not Only SQL) is a database that is a non-
relational distributed database system. It facilitates the rapid
structuring of data analysis with large volumes of data and a
variety of data types. NoSQL is also referred to as a cloud
database, a non-relational database. NoSQL databases are not
based on tables and do not often employ structured query
language to manipulate data. Receive and append operations
are frequently highly optimized in NoSQL database systems.

When working with large amounts of data and this data
structure does not require a relational model, NoSQL databases
come in handy [4].

When compared to relational databases, NoSQL databases
are more scalable, diverse, simple to use, flexible, and give
better performance. MongoDB is now the most popular
NoSQL database, with Apache Cassandra, Redis, and HBase
following closely behind. Neo4j is the most popular NoSQL
graph database and the most common cloud database is
Amazon DynamoDB [7]. NoSQL data models allow related
data to be stored in a nested data structure [8].

Based on their data model, NoSQL databases are classified
into a variety of types[5]. The main types of NoSQL databases
are wide-column databases, document databases, key-value
databases, and graph databases. They provide flexible schemas
and they are very scalable to large amounts of data and high
user loads. Table I provides a comparative study of the four
types of NoSQL databases.

TABLE I. A COMPARATIVE STUDY OF THE FOUR TYPES OF NOSQL

DATABASES

NoSQL

database

types

Document

database

Key-value

store

Wide-

column

store

Graph store

Data

Storage

It stores

data in

JSON,

BSON, or

XML

documents

It stores

data as an

attribute

name (or

"key")

combined

with its

value

It stores

data in

tables,

rows, and

dynamic

columns

It stores data in

nodes and edges

Use Cases

It is great

for a wide

variety of

use cases

and can be

used as a

general-

purpose

database

It is the

best to use

when you

need to

store large

amounts of

data but

you don‟t

need to

perform

complex

queries to

retrieve it

such as

storing user

preferences

or caching

Common

use cases

for wide-

column

stores

include

storing

Internet of

Things

data and

user

profile

data

It is the best to

use when you

need to traverse

relationships to

look for patterns

such as fraud

detection,

social networks,

and

recommendation

engines

Performance

and

scalability

High High High Very high

Flexibility High High Moderate High

Complexity Low Very Low Low High

Examples
MongoDB,

CouchDB

Redis ,

DynamoDB

, Voldemort

Hbase,

Big Table,

Cassandra

Neo4j,

HyperGraph,

InfiniteGraph

Big Data
characteristics

Volume

Variety

Velocity

Veracity

Variability

Venue

Value

Validity

Vocabulary

Vagueness

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

717 | P a g e

www.ijacsa.thesai.org

III. RELATED WORK

Many researchers studied the relationship between
semantic technology and Big Data technology. They tried to
connect knowledge management systems with NoSQL
database management systems to apply semantic queries on
Big Data.

Bansal S and Kagemann S proposed Semantic Extract-
Transform-Load (ETL) framework that uses semantic
technologies to integrate and publish data from multiple
sources. The Extract-Transform-Load (ETL) process refers to a
process in data warehousing that extracts data from outside
sources, transforms it to fit operational needs, which can
include quality checks, and loads it into the end target database.
The authors extracted data from different sources in flat file
formats such as CSV. The proposed semantic ETL framework
first creates a semantic model of the datasets being integrated,
and then it creates semantically linked data that adheres to the
data model. A semantic data model and semantically linked
data (RDF triples) are produced using semantic technologies
and stored in a data warehouse during the transform phase of
an ETL process. The transformation phase will involve a
manual process of analyzing the datasets, the schema, and their
purpose. Based on the findings, the schema will have to be
mapped to an existing domain-specific Ontology or Ontology
will have to be created from scratch [9].

Hanen Abbes and Faiez Gargouri implemented a tool to
generate Ontology from MongoDB databases. It proposed
transformation rules from MongoDB to OWL Ontology. This
work is done in five main steps. First is the creation of the
Ontology skeleton by defining Ontology classes and detecting
the relationships between them. Second, learn object properties
and datatype properties. Third, identify Individuals. Forth,
deduce class axioms, property axioms, and constraints. Finally,
enrich the Ontology with class definition operators [10].

Mahmudul Hassan and Srividya K. Bansal proposed a
solution to execute SPARQL query as SQL query using
Apache Spark on large-scale RDF data stored in NoSQL
databases such as HBase and Cassandra. It translated the
SPARQL query to SPARK SQL for both HBase and Cassandra
storage schemas. It first converted RDF data to store it in
HBase and Cassandra and then proposed an algorithm to
convert SPARQL query to SPARK SQL using the in-memory
data processing engine Spark. The main purpose of this paper
is to execute a query on RDF data (semantic data) with a large
volume. To achieve that, it stored the RDF data in a NoSQL
database. However, the algorithm can be used to perform
SPARQL queries on data already stored in HBase or Cassandra
[11].

K. ElDahshan, E. K. Elsayed, and H. Mancy developed a
semantic dashboard using java JDK to connect to HBase and
built a universal knowledge base using Protégé. It converted
the SPARQL query to spark SQL using Sempala. The
conversion is done using the algebra tree [12].

S. Mhammedi, H. El Massari, and N. Gherabi proposed an
approach to automatically learn OWL Ontology from data in
the Couchbase database by applying six mapping rules. The
mapping rules are learning classes, learning object properties

from the embedded document, learning datatype properties,
transforming all data values of fields in each document to
individuals, learning property restrictions, and learning class
hierarchies [13].

All of them except [11,12] do not handle Big Data. All of
them allow the conversion of only one NoSQL database type.
The proposed API handles Big Data, accepts any type of
NoSQL database, allows schema conversion, and the proposed
API is platform-independent. Table II shows the comparison
among related works through data sources, NoSQL type, tools
used, and limitations.

TABLE II. A COMPARATIVE STUDY OF THE RELATED WORKS

Research
Data

Source

NoSQL

Type
Tools Limitations

[9]

Data from

multiple

sources in

flat file

formats

such as

CSV

--

Semantic Extract-

Transform-Load

(ETL) framework

which generates a

semantic model of

the datasets under

integration and

then generates

semantically

linked data

The

framework

can not deal

with

NoSQL

database

stores

[10] MongoDB
Document

database

A tool to generate

Ontology from

MongoDB

implemented by

the JAVA

programming

language

The tool can

deal with

only one

type of

NoSQL

database

store

[11]
HBase and

Cassandra

Wide-

column

A query compiler

that is written in

Flex and Bison

that translates

SPARQL to Spark

SQL to execute a

query on RDF

data stored in

HBase and

Cassandra

The tool can

deal with

semantic

data in RDF

format

stored in a

wide-

column

database

[12] HBase
Wide-

column

A semantic

dashboard using

java JDK to

connect to HBase

and built a

universal

knowledge base

using Protégé

The tool can

deal with

only one

type of

NoSQL

database

stores

[13] Couchbase
Document

database

An approach to

learning Ontology

from the

Couchbase

database using

mapping rules.

This work is done

by the JAVA

programming

language and

OWL API

The tool can

deal with

only one

type of

NoSQL

database

stores

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

718 | P a g e

www.ijacsa.thesai.org

IV. THE PROPOSED SEMANTIC INTEGRATION APPLICATION

PROGRAM INTERFACE ARCHITECTURE

Researchers and academics regard data access to be
unattainable in many situations for a variety of reasons. These
include the following: a profusion of data, non-computerization
of processes, heterogeneity, data duplication, and the presence
of a lot of isolated data in databases that can only be accessed
in a specific context. These traits typically lead to low-quality
information, which makes it challenging for researchers to
organize and evaluate them during the decision-making process
[14]. Data integration is the process of making it possible for
people to access, deliver, and utilize data from several sources
and huge businesses while preserving its integrity and quality.
Real-time updates to data saved in one source can also be
mirrored in other sources thanks to this [15].

Although Ontology development is not a new field of
study, Big Data faces new difficulties due to its features
(velocity, variety, and volume). Therefore, our API takes into
account the properties of Big Data for Big Data Ontology
creation. The main idea is to create Ontology from a large
number of diverse sources. The authors' goal is to make the
process of automatically generating Ontology and importing
Big Data as simple as possible for the user by providing an

independent application program interface. The research's
additional significant contributions include (1) the ability to
integrate different sources of NoSQL, (2) the ability to support
the Ontology creation-based Big Data access layer, (3) the
ability to re-engineer and combine different Ontologies, and (4)
the capability to easily build a semantic query over Big Data.
Fig. 2 shows the proposed API overview.

The structure of the proposed API is as follows:

 Connection Phase: In this phase, the authors build a Big
Data access layer that allows users to connect to any
NoSQL database.

 Integration and Extraction Phase: In this phase, the API
reads and extracts every record in the database and puts
them in a Python dictionary.

 Conversion phase: In this phase, the API converts the
dictionary to an XML file.

 OWL Creation phase: In this phase, the API creates
OWL from the XML file.

 Semantic and visualization phase: In this phase, the API
builds semantic rules and visualizes the data in a graph.

Fig. 2. The proposed API Overview

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

719 | P a g e

www.ijacsa.thesai.org

VI. PROPOSED SEMANTIC INTEGRATION APPLICATION

PROGRAM INTERFACE IMPLEMENTATION

The API is created with Python 3.8.5 on Windows 10

operating system with Intel(R) Core(TM) i7-6500U CPU and
8GB RAM. The proposed API asks the user to enter the
databases‟ names to be converted. The API scans the databases
and retrieves every record in them with the same structure as it
was in the database. After getting every record, it will be
converted to XML. The API can handle data with any
structure. Every record will be retrieved as a dictionary data
type in Python. Then it will be converted to a JSON array. The
JSON array will be converted to XML using the „dicttoxml‟
package. The API can handle documents with complex
structures and large sizes. For every collection in MongoDB
and every table in HBase, a root class will be created. A
subclass will be created to represent each attribute in the
records. If the document in the MongoDB collection has
embedded objects, other subclasses will be created to represent
the attributes of the embedded object. After the conversion is
completed, the XML is converted to OWL Ontology using
DTD2OWL. Fig. 3 explains the proposed API workflow.
Algorithm 1 demonstrates the Semantic NoSQL API execution
steps.

Algorithm 1: Semantic NoSQL API

Initialize

Connect to the database

Scan every record in the database

For (every record) do

 Put the record in Python dictionary

 Convert the dictionary to XML

 Save the output to a file

 End

Convert XML to OWL

Build semantic Query

Visualize the result

The phases of the proposed Onto-NoSQL API are
implemented as follows:

A. Connection Phase

To access a NoSQL database, the author used the pymongo
package to connect to MongoDB as a document database type,
the happybase package to connect to HBase as a Wide-Column
database type, the Redis-py package to connect to Redis as a
Key-value database, and the Neo4j Python Driver to connect to
Neo4j as a Graph database type. Algorithm 2 represents the
connection code to MongoDB. Algorithm 3 represents the
connection code to Hbase.

This paper focuses on both document database stores and
column-oriented database stores as they are the most used
NoSQL database stores. The most popular document store is
MongoDB [6]. MongoDB is very popular because it allows
multiple data types to be used. The database consists of
collections. The collection stores the data as JSON documents.
Schema is not needed to store the data in MongoDB. The data
stored can be a string, number, date, array, or object.
MongoDB can store data from multiple sources in different
formats.

Algorithm 2: Connect to MongoDB

from pymongo import MongoClient

client = MongoClient()

#enter database name

database= input('Enter DB name:')

db = client[database]

One of the most popular column-oriented database stores is
HBase. HBase is an open-source management system that is a
versioned and distributed database based on Google's
BigTable.

Fig. 3. The proposed API workflow

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

720 | P a g e

www.ijacsa.thesai.org

This system is column-oriented and built on top of HDFS,
which speeds up read and write operations across Big Data
sets. Application programming interfaces (APIs) such as Thrift
and Java provide access to HBase. There are no query or
scripting languages specific to these APIs. HBase is reliant on
a ZooKeeper instance by default [16].

Algorithm 3: Connect to HBase

import happybase as hb

conn= hb.Connection(HostName,PortNumber)

conn.open()

B. Integration and Extraction Phase

The proposed API integrates MongoDB and HBase
databases. It extracts every record in the database and puts
them in a Python dictionary. Algorithm 4 reads records from
MongoDB. Algorithm 5 reads records from HBase.

Algorithm 4: Read records from MongoDB

collection_names = db.collection_names()

For (every collection) do

 #retrieve documents in each collection

docs = db[collection_name].find()

 End

Algorithm 5: Read records from HBase

table = conn.table('table_name')

For (every key, row) do

 # retrieve records

row = str(row)

 row =json.loads(row)

 End

C. Conversion Phase

The proposed API converts the dictionary to an XML file.
Algorithm 6 converts the dictionary generated from MongoDB
records to an XML file. Algorithm 7 converts the dictionary
generated from HBase records to an XML file.

Algorithm 6: Convert dictionary generated from MongoDB to
XML file

#create XML file
f = open(database+'/'+collection_name+'.xml', 'wb')

For (every doc) do

 #convert object id to string

doc_sanitized = json.loads(json_util.dumps(doc))

 #convert to XML

xml = dicttoxml.dicttoxml(doc_sanitized)

 f.write(xml)

 End

f.close()

Algorithm 7: Convert dictionary generated from HBase to
XML file

#create XML file
f = open('table_name.xml', 'wb')

For (every key, row) do

 xml = dicttoxml(row)

 f.write(xml)

 End

f.close()

The interface of the API was created using PHP (Laravel
Framework). First, we need to install the Process component
that executes commands in sub-processes. This can be done
using the composer to install the package. Second, use the
Process class that enables Laravel to run a script. Third, create
a new instance of the Process class, which takes three
parameters the name of the script, the script itself, and the
arguments passed to the script. An HTML form was created to
read the data from the user. The user chooses the NoSQL
database engine (MongoDB or HBase) and writes the name of
the database (in the case of choosing MongoDB) or the table
(in the case of choosing HBase) to be converted to XML. After
the script is executed, the user gets a message that the database
(in the case of using MongoDB) or the table (in the case of
using HBase) is converted successfully. The XML files are
located in the public folder in the Laravel project. Fig. 4, 5, and
6 represent the screens of the proposed API. Fig. 7 is a
snapshot from the generated XML file.

Fig. 4. The API screens- the input form

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

721 | P a g e

www.ijacsa.thesai.org

Fig. 5. The API screens- choose NoSQL data store

Fig. 6. The API screens- the success message after the database is converted

Fig. 7. A snapshot of the generated XML file

D. OWL Creation Phase

The proposed API converts XML format to OWL. The
Authors implement the DTD2OWL2 Method in python [17].

E. Semantic and Visualization Phase

The proposed API builds a semantic query using rdflib [18]
and visualization using the Plotly package in Python.

VII. CASE STUDY

The authors apply API to COVID-19 and weather data.
Data was collected from various sources regarding the spread
of Covid19. The number of cases was collected from the
WHO. The weather data was collected from National Centers
for Environmental Information website [19]. The authors used
the number of confirmed cases, population, and weather data to
predict a new pattern of confirmed cases and to find a relation
between it and the other factors. The data was preprocessed
and converted to JSON format. MongoDB was used to store
the confirmed case data. HBase was used to store the weather
data. By converting the database to OWL, it is possible to
apply semantic queries and extract more knowledge from the
data. It was possible to visualize the data and find a relation
between them despite being stored in different databases with
different structures. Fig. 8, 9, and 10 visualize the data on the
world map.

Fig. 8. The population of world countries

<?xml version="1.0" encoding="UTF-8"

?><root><doc><_id type="dict"><key name="$oid"

type="str">61c481b0593caffbcd8229d9</key></_id><Co

nfirmed type="int">0</Confirmed><Country

type="str">Afghanistan</Country><Date

type="str">2020-01-22</Date><Deaths

type="int">0</Deaths><Recovered

type="int">0</Recovered></doc>

<doc><_id type="dict"><key name="$oid"

type="str">61c481b0593caffbcd8229da</key></_id><Co

nfirmed type="int">0</Confirmed><Country

type="str">Afghanistan</Country><Date

type="str">2020-01-25</Date><Deaths

type="int">0</Deaths><Recovered

type="int">0</Recovered></doc>

<doc><_id type="dict"><key name="$oid"

type="str">61c481b0593caffbcd822c93</key></_id><Co

nfirmed type="int">157795</Confirmed><Country

type="str">Afghanistan</Country><Date

type="str">2021-12-20</Date><Deaths

type="int">7335</Deaths><Recovered

type="int">0</Recovered></doc></root>

Population

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

722 | P a g e

www.ijacsa.thesai.org

Fig. 9. The yearly average temperature of the world

The Covid-19 data was used to implement the proposed
API. These data are various, change rapidly, and have large
sizes. The data type can be text describing the case or
symptoms, numbers describing the number of infected cases,
images of the X-ray performed on the patients, or geographical
data describing the spread of the virus. All these data can be
stored in NoSQL databases. The user can work with one type
of stored data to predict the behavior of the virus or even
diagnose a patient based on the X-ray performed on his chest.
The user needs to integrate these data from multiple sources to
achieve his goal. The data can be integrated to extract more
knowledge from them and help countries to prepare and deal
with the spread of the virus. NoSQL databases can help to
improve dealing with such important and various data to make
better decisions. By converting the NoSQL database to
Ontology, the user can discover new rules and relationships.

VIII. ANALYSIS OF RESULTS

The used data were in the form of text and integers that
represent the number of confirmed cases of Covid19 around
the world. They also represent other factors like each country's
temperature and population. The interval of the collected data
was over 500 days from 22nd Jan 2020 to 31st Aug 2021. The
confirmed case data and the population of every country in the
world were stored in MongoDB, whereas the weather data
were stored in HBase. By studying Fig. 10, it may be possible
to see the spread of the virus around the world. By studying
other factors, it could be possible to find a pattern or even a
factor that deeply affects the infection rate, which will help us
find a way to decrease the infection rate.

In Fig. 11 you could see the relation between the
temperature represented by the blue curve and the number of
confirmed cases represented by the red curve. The data were
scaled in the range of 0 to 1 using the min-max scaler

As stated before, these data were stored in different NoSQL
databases with different types. By using the proposed API, it
was possible to connect to these databases and retrieve data
from them. Four countries from around the globe were chosen
to study the effect of temperature on the spread rate of the
virus. The X-axis represents the number of days while the Y-
axis represents the number of confirmed cases and temperature
degrees every day.

By choosing a small interval of time such as in Fig. 12, it
could be concluded that the infection rate is inversely
proportional to the temperature degree. Of course, other factors
affect the infection rate such as the population of the country
under study (Fig. 8 demonstrates the population of world
countries), the educational level of most of the population that
affects their behavior, or the economy of the country that
affects the medical care system.

Yearly Average

Temperature

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

723 | P a g e

www.ijacsa.thesai.org

Fig. 10. The spread of confirmed cases over the world

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

724 | P a g e

www.ijacsa.thesai.org

Fig. 11. The relation between temperature (blue) and number of confirmed cases (red) (The X-axis represents the number of days)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

725 | P a g e

www.ijacsa.thesai.org

Fig. 12. The confirmed cases in Egypt during June, July, and August 2020 are in red, and the temperature is in blue (The X-axis represents the number of days)

IX. CONCLUSION

This paper presented Big Data concepts, technologies, and
challenges. It studied NoSQL databases, their types, and the
relationship between NoSQL Databases and Ontology. A
proposed API was developed to integrate multiple NoSQL
databases and generate OWL Ontology from them. By using
the proposed API, it is possible to apply semantic queries, find
new rules, and extract more knowledge. Also, it can be used to
integrate data from different data stores into a unified defined
format. Semantic data visualization has shown the relation
between different data and discovered new patterns. One can
say that the temperature is a factor in the virus‟s spread. It
spreads faster in lower temperatures like in the USA, Russia,
and some European countries (Fig. 9 demonstrates the yearly
average temperature of the world). It also spreads faster in
countries with a high population like India.

REFERENCES

[1] Manyika J, Chui M, Brown B, et al. Big data: the next frontier for
innovation, competition, and productivity. McKinsey Global Institute
Report, May 2011.

[2] Gartner. Gartner IT Glossary: Big Data definition. Available from:
http://www.gartner.com/it-glossary/big-data [Accessed 22-2-2021].

[3] Gupta D, Rani R. A study of big data evolution and research challenges,
Journal of Information Science. 2019; 45(3) :322–340.

[4] Moorthy J, Lahiri R, Biswas N, Sanyal D, Ranjan J, Nanath K, et al. Big
Data: Prospects and Challenges. VIKALPA The Journal for Decision
Makers. 2015;40(1):74-96 Available from:
DOI:10.1177/0256090915575450 .

[5] ElDahshan K, Elsayed E.K, and Mancy H. Enhancement Semantic
Prediction Big Data Method for COVID-19: Onto-NoSQL. IAENG
International Journal of Computer Science.2020;47(4):613-622

[6] Khadir A, Aliane H, Guessoum A. Ontology learning: Grand tour and
challenges. Computer Science Review. 2021;39(100339). Available
from: https://doi.org/10.1016/j.cosrev.2020.100339.

[7] DB engines, Available from: https://db-engines.com/en/ranking
[Accessed 8-12-2021].

[8] MongoDB, Inc. What is NoSQL?. Available from:
https://www.mongodb.com/nosql-explained [Accessed 22-2-2021].

[9] Bansal S, Kagemann S. Semantic Extract-Transform-Load framework
for Big Data Integration. Computer. 2015 Mar 1;48(3):42-50.
https://doi.org/10.1109/MC.2015.76.

[10] Abbes H, Gargouri F. Big Data Integration: a MongoDB Database and
Modular Ontologies based Approach. Procedia Computer Science.
2016; 96:446-455. Available from:
https://doi.org/10.1016/j.procs.2016.08.099

[11] Hassan M, Bansal S. Semantic Data Querying over NoSQL Databases
with Apache Spark. In: 2018 IEEE International Conference on
Information Reuse and Integration (IRI), Salt Lake City, UT, USA.
IEEE; 2018. P.364-371, doi:10.1109/IRI.2018.00061

[12] ElDahshan K, Elsayed E Mancy H. Semantic Smart World Framework.
Applied Computational Intelligence and Soft Computing. 2020, Article
ID 8081578. Available from: https://doi.org/10.1155/2020/8081578

[13] Mhammedi, S., El Massari, H., Gherabi, N. Cb2Onto: OWL Ontology
Learning Approach from Couchbase. In: Gherabi, N., Kacprzyk, J. (eds)
Intelligent Systems in Big Data, Semantic Web and Machine Learning.
Advances in Intelligent Systems and Computing, vol 1344. Springer,
Cham. Available from: https://doi.org/10.1007/978-3-030-72588-4_7

[14] Lima V, Bernardi F, Domingues M, Kritski A, Rijo R P, Alves D. A
computational infrastructure for semantic data integration towards a
patient-centered database for Tuberculosis care. Procedia Computer
Science. 2022;196:434-438. Available from:
DOI:10.1016/j.procs.2021.12.033

[15] Ahmed J, Ahmed M. Semantic Web Approach of Integrating Big Data.
International Journal of Computer Sciences and Engineering. Sep
2018;6(9):529-532. Available from: DOI:10.26438/ijcse/v6i9.529532

[16] Khan N, Yaqoob I, et al. Big Data: Survey, Technologies, Opportunities,
and Challenges The Scientific World Journal. 2014, Article ID 712826.
Available from: http://dx.doi.org/10.1155/2014/712826

http://www.gartner.com/it-glossary/big-data
https://doi.org/10.1016/j.cosrev.2020.100339
https://db-engines.com/en/ranking
https://doi.org/10.1109/MC.2015.76
https://doi.org/10.1155/2020/8081578
https://doi.org/10.1007/978-3-030-72588-4_7
http://dx.doi.org/10.1155/2014/712826

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 12, 2022

726 | P a g e

www.ijacsa.thesai.org

[17] Hacherouf M, Bahloul S.N, Cruz C. Transforming XML documents to
OWL ontologies: A survey. Journal of Information Science.2015;
41(2):242-259.Available from: DOI:10.1177/0165551514565972.

[18] rdflib documentation. Available from:
https://rdflib.readthedocs.io/en/stable/ [Accessed 15-3-2022]

[19] National Centers for Environmental Information. Available from:
https://www.ncei.noaa.gov/ [Accessed 20-12-2021]

https://rdflib.readthedocs.io/en/stable/
https://www.ncei.noaa.gov/

