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Abstract—Complexity, heterogeneity, schemaless-ness, data 

visualization, and extraction of consistent knowledge from Big 

Data are the biggest challenges in NoSQL databases. This paper 

presents a general semantic NoSQL Application Program 

Interface that integrates and converts NoSQL databases to 

semantic representation. The generated knowledge base is 

suitable for visualization and knowledge extraction from 

different Big Data sources. The authors use a case study of the 

COVID-19 pandemic prediction and other weather occurrences 

in various parts of the world to illustrate the suggested API. The 

Authors find a correlation between COVID-19 spread and 

deteriorating weather. According to the experimental findings, 

the API's performance is enough for heterogeneous Big Data. 
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I. INTRODUCTION 

Large data sets have their roots in the 1960s and 1970s 
when the world of data was just getting started with the 
creation of the first data centers and the development of the 
relational database. Nowadays, the data grows at sky-high 
rates. The world has multiple Big Data sources with different 
structures like sensors, scientific experiments, and social 
networks. We produce and collect more data every minute, and 
we need to be able to process them as soon as possible. 
Everything depends on timing, including stock trading, 
tracking the growth of epidemics, and traffic monitoring. A 
minor misunderstanding could lead to both financial loss and 
fatalities. The high level of adoption of Big Data technology is 
influenced by the quick and continual growth in data volumes. 

A. Research Problem 

Researchers face many problems when dealing with data 
from multiple sources. Because the structure of the data is 
different it makes it difficult to process the data and extract 
knowledge. Most researchers are now trying to store the data in 
a semantic form to make it easier to process. To do this they 
need to collect data from different data stores and preprocess 
these data to present them in semantic form. The preprocessing 
phase takes much time and effort which we need to solve the 
real problems we face and take better decisions based on the 
knowledge extracted from the data. 

B. Research Objectives 

This article studies many semantic Big Data frameworks 
and their limitations. Then it proposes a semantic NoSQL 
application program interface (API). The proposed API can 
read data from multiple NoSQL databases and convert them to 
Ontology. By using the proposed API, it will be possible to 
apply semantic queries on different data stores. The proposed 
API can also be used to integrate different data stores into a 
defined format. 

C. Organization 

This paper is organized in the following way to fulfill the 
research goals: Section 2 reviews a background about Big 
Data, Ontology, and NoSQL databases. Section 3 examines the 
history of earlier similar works. Section 4 Shows the proposed 
API architecture. The implementation of our proposed API is 
described in Section 5. Section 6 provides a case study of the 
API to analyze COVID-19 spread and weather behavior. The 
impact of utilizing the suggested API is described in Section 7. 
The paper's conclusion is covered in Section 8, which also 
analyses the research's significant contribution and limitations. 

II. BACKGROUND 

A. Big Data 

The term Big Data refers to a concept mostly used to 
classify large amounts of data. Despite the wide agreement on 
the promises and prospects of Big Data, there is no standard 
definition for it at this time. 

The Institute of McKinsey Global defined the term Big 
Data as a “very Big Data set that can‟t be stored or managed 
with database software tools” [1]. 

Gartner [2] defined Big Data as "a high-volume, high-
variety, and/or high-velocity information asset that necessitates 
cost-effective, novel types of data processing that provide 
better insight, decision-making, and process automation." 

The term "Big Data" was defined by Deepak Gupta and 
Rinkle Rani [3] as „Big data refers to large datasets which 
require non-traditional scalable solutions for data gathering, 
storage, management, analysis, and visualization, to extract 
actionable insights that could have an impact on every area of 
human life‟. Big data characteristics are portrayed as 
extensions of ‟V‟s [3][4]. Fig. 1 presents the Big Data 
characteristics. 
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Fig. 1. Big Data characteristics 

B. Ontology 

An Ontology consists of O = A, C, I, P, R, T. Where A is 
the set of axioms; C is the set of concepts or classes; I is the set 
of instances; P is the set of properties of the concepts 
describing various features; R is the set of relationships 
between concepts and T is the set of hierarchical relationships 
among concepts that are called taxonomies [5]. 

The components of Ontology are as follows:[6] 

 Individuals: “The ontology population is represented by 
individuals, which are objects. They are instances of 
classes.” 

 Classes: “Classes are particular categories of objects or 
things that represent a collection of instances or specify 
a particular category of entities. They are frequently 
referred to as concepts or entity types. Classes can be 
used to classify individuals, other classes, or a 
combination of both.” 

 Attributes: “Properties associated with objects or classes 
are called attributes. They include statements about 
Datatypes and their DataValues, characteristics, 
features, or parameters of individuals and classes.” 

 Relations:” The numerous links that indicate how two 
individuals or classes are related. Additionally called 
associations, roles, relationship types, and object 
properties”. 

 Axioms:” Logical rules and assertions that together 
create the general theory that describes the relationship 
between the ontology elements. They represent formal 
definitions of the ontology knowledge.” 

C. NoSQL Databases 

NoSQL (Not Only SQL) is a database that is a non-
relational distributed database system. It facilitates the rapid 
structuring of data analysis with large volumes of data and a 
variety of data types. NoSQL is also referred to as a cloud 
database, a non-relational database. NoSQL databases are not 
based on tables and do not often employ structured query 
language to manipulate data. Receive and append operations 
are frequently highly optimized in NoSQL database systems. 

When working with large amounts of data and this data 
structure does not require a relational model, NoSQL databases 
come in handy [4]. 

When compared to relational databases, NoSQL databases 
are more scalable, diverse, simple to use, flexible, and give 
better performance. MongoDB is now the most popular 
NoSQL database, with Apache Cassandra, Redis, and HBase 
following closely behind. Neo4j is the most popular NoSQL 
graph database and the most common cloud database is 
Amazon DynamoDB [7]. NoSQL data models allow related 
data to be stored in a nested data structure [8]. 

Based on their data model, NoSQL databases are classified 
into a variety of types[5]. The main types of NoSQL databases 
are wide-column databases, document databases, key-value 
databases, and graph databases. They provide flexible schemas 
and they are very scalable to large amounts of data and high 
user loads. Table I provides a comparative study of the four 
types of NoSQL databases. 

TABLE I.  A COMPARATIVE STUDY OF THE FOUR TYPES OF NOSQL 

DATABASES 

NoSQL 

database 

types 

Document 

database 

Key-value 

store 

Wide-

column 

store 

Graph store 

Data 

Storage 

It stores 

data in 

JSON, 

BSON, or 

XML 

documents 

It stores 

data as an 

attribute 

name (or 

"key") 

combined 

with its 

value 

It stores 

data in 

tables, 

rows, and 

dynamic 

columns 

It stores data in 

nodes and edges 

Use Cases 

It is great 

for a wide 

variety of 

use cases 

and can be 

used as a 

general-

purpose 

database 

It is the 

best to use 

when you 

need to 

store large 

amounts of 

data but 

you don‟t 

need to 

perform 

complex 

queries to 

retrieve it 

such as 

storing user 

preferences 

or caching 

Common 

use cases 

for wide-

column 

stores 

include 

storing 

Internet of 

Things 

data and 

user 

profile 

data 

It is the best to 

use when you 

need to traverse 

relationships to 

look for patterns 

such as fraud 

detection,  

social networks, 

and 

recommendation 

engines 

Performance 

and 

scalability 

High High High Very high 

Flexibility High High Moderate High 

Complexity Low Very Low Low High 

Examples 
MongoDB, 

CouchDB 

Redis , 

DynamoDB 

, Voldemort 

Hbase, 

Big Table, 

Cassandra 

Neo4j, 

HyperGraph, 

InfiniteGraph 

Big Data 
characteristics  

Volume 

Variety 

Velocity 

Veracity 

Variability 

Venue 

Value 

Validity 

Vocabulary 

Vagueness 
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III. RELATED WORK 

Many researchers studied the relationship between 
semantic technology and Big Data technology. They tried to 
connect knowledge management systems with NoSQL 
database management systems to apply semantic queries on 
Big Data. 

Bansal S and Kagemann S proposed Semantic Extract-
Transform-Load (ETL) framework that uses semantic 
technologies to integrate and publish data from multiple 
sources. The Extract-Transform-Load (ETL) process refers to a 
process in data warehousing that extracts data from outside 
sources, transforms it to fit operational needs, which can 
include quality checks, and loads it into the end target database. 
The authors extracted data from different sources in flat file 
formats such as CSV. The proposed semantic ETL framework 
first creates a semantic model of the datasets being integrated, 
and then it creates semantically linked data that adheres to the 
data model. A semantic data model and semantically linked 
data (RDF triples) are produced using semantic technologies 
and stored in a data warehouse during the transform phase of 
an ETL process. The transformation phase will involve a 
manual process of analyzing the datasets, the schema, and their 
purpose. Based on the findings, the schema will have to be 
mapped to an existing domain-specific Ontology or Ontology 
will have to be created from scratch [9]. 

Hanen Abbes and Faiez Gargouri implemented a tool to 
generate Ontology from MongoDB databases. It proposed 
transformation rules from MongoDB to OWL Ontology. This 
work is done in five main steps. First is the creation of the 
Ontology skeleton by defining Ontology classes and detecting 
the relationships between them. Second, learn object properties 
and datatype properties. Third, identify Individuals. Forth, 
deduce class axioms, property axioms, and constraints. Finally, 
enrich the Ontology with class definition operators [10]. 

Mahmudul Hassan and Srividya K. Bansal proposed a 
solution to execute SPARQL query as SQL query using 
Apache Spark on large-scale RDF data stored in NoSQL 
databases such as HBase and Cassandra. It translated the 
SPARQL query to SPARK SQL for both HBase and Cassandra 
storage schemas. It first converted RDF data to store it in 
HBase and Cassandra and then proposed an algorithm to 
convert SPARQL query to SPARK SQL using the in-memory 
data processing engine Spark. The main purpose of this paper 
is to execute a query on RDF data (semantic data) with a large 
volume. To achieve that, it stored the RDF data in a NoSQL 
database. However, the algorithm can be used to perform 
SPARQL queries on data already stored in HBase or Cassandra 
[11]. 

K. ElDahshan, E. K. Elsayed, and H. Mancy developed a 
semantic dashboard using java JDK to connect to HBase and 
built a universal knowledge base using Protégé. It converted 
the SPARQL query to spark SQL using Sempala. The 
conversion is done using the algebra tree [12]. 

S. Mhammedi, H. El Massari, and N. Gherabi proposed an 
approach to automatically learn OWL Ontology from data in 
the Couchbase database by applying six mapping rules. The 
mapping rules are learning classes, learning object properties 

from the embedded document, learning datatype properties, 
transforming all data values of fields in each document to 
individuals, learning property restrictions, and learning class 
hierarchies [13]. 

All of them except [11,12] do not handle Big Data. All of 
them allow the conversion of only one NoSQL database type. 
The proposed API handles Big Data, accepts any type of 
NoSQL database, allows schema conversion, and the proposed 
API is platform-independent. Table II shows the comparison 
among related works through data sources, NoSQL type, tools 
used, and limitations. 

TABLE II.  A COMPARATIVE STUDY OF THE  RELATED WORKS 

Research 
Data 

Source 

NoSQL 

Type 
Tools Limitations 

[9] 

Data from 

multiple 

sources in 

flat file 

formats 

such as 

CSV 

-- 

Semantic Extract-

Transform-Load 

(ETL) framework 

which generates a 

semantic model of 

the datasets under 

integration and 

then generates 

semantically 

linked data 

The 

framework 

can not deal 

with 

NoSQL 

database 

stores 

[10] MongoDB 
Document 

database 

A tool to generate 

Ontology from 

MongoDB 

implemented by 

the JAVA 

programming 

language 

The tool can 

deal with 

only one 

type of 

NoSQL 

database 

store 

[11] 
HBase and 

Cassandra 

Wide-

column 

A query compiler 

that is written in 

Flex and Bison 

that translates 

SPARQL to Spark 

SQL to execute a 

query on RDF 

data stored in 

HBase and 

Cassandra 

The tool can 

deal with 

semantic 

data in RDF 

format 

stored in a 

wide-

column 

database 

[12] HBase 
Wide-

column 

A semantic 

dashboard using 

java JDK to 

connect to HBase 

and built a 

universal 

knowledge base 

using Protégé 

The tool can 

deal with 

only one 

type of 

NoSQL 

database 

stores 

[13] Couchbase 
Document 

database 

An approach to 

learning Ontology 

from the 

Couchbase 

database using 

mapping rules. 

This work is done 

by the JAVA 

programming 

language and 

OWL API 

The tool can 

deal with 

only one 

type of 

NoSQL 

database 

stores 
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IV. THE PROPOSED SEMANTIC INTEGRATION APPLICATION 

PROGRAM INTERFACE ARCHITECTURE 

Researchers and academics regard data access to be 
unattainable in many situations for a variety of reasons. These 
include the following: a profusion of data, non-computerization 
of processes, heterogeneity, data duplication, and the presence 
of a lot of isolated data in databases that can only be accessed 
in a specific context. These traits typically lead to low-quality 
information, which makes it challenging for researchers to 
organize and evaluate them during the decision-making process 
[14]. Data integration is the process of making it possible for 
people to access, deliver, and utilize data from several sources 
and huge businesses while preserving its integrity and quality. 
Real-time updates to data saved in one source can also be 
mirrored in other sources thanks to this [15]. 

Although Ontology development is not a new field of 
study, Big Data faces new difficulties due to its features 
(velocity, variety, and volume). Therefore, our API takes into 
account the properties of Big Data for Big Data Ontology 
creation. The main idea is to create Ontology from a large 
number of diverse sources. The authors' goal is to make the 
process of automatically generating Ontology and importing 
Big Data as simple as possible for the user by providing an 

independent application program interface. The research's 
additional significant contributions include (1) the ability to 
integrate different sources of NoSQL, (2) the ability to support 
the Ontology creation-based Big Data access layer, (3) the 
ability to re-engineer and combine different Ontologies, and (4) 
the capability to easily build a semantic query over Big Data. 
Fig. 2 shows the proposed API overview. 

The structure of the proposed API is as follows: 

 Connection Phase: In this phase, the authors build a Big 
Data access layer that allows users to connect to any 
NoSQL database. 

 Integration and Extraction Phase: In this phase, the API 
reads and extracts every record in the database and puts 
them in a Python dictionary. 

 Conversion phase: In this phase, the API converts the 
dictionary to an XML file. 

 OWL Creation phase: In this phase, the API creates 
OWL from the XML file. 

 Semantic and visualization phase: In this phase, the API 
builds semantic rules and visualizes the data in a graph. 

 

Fig. 2. The proposed API Overview 
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VI. PROPOSED SEMANTIC INTEGRATION APPLICATION 

PROGRAM INTERFACE IMPLEMENTATION 

The API is created with Python 3.8.5 on Windows 10  

operating system with Intel(R) Core(TM) i7-6500U CPU and 
8GB RAM. The proposed API asks the user to enter the 
databases‟ names to be converted. The API scans the databases 
and retrieves every record in them with the same structure as it 
was in the database. After getting every record, it will be 
converted to XML. The API can handle data with any 
structure. Every record will be retrieved as a dictionary data 
type in Python. Then it will be converted to a JSON array. The 
JSON array will be converted to XML using the „dicttoxml‟ 
package. The API can handle documents with complex 
structures and large sizes. For every collection in MongoDB 
and every table in HBase, a root class will be created. A 
subclass will be created to represent each attribute in the 
records. If the document in the MongoDB collection has 
embedded objects, other subclasses will be created to represent 
the attributes of the embedded object. After the conversion is 
completed, the XML is converted to OWL Ontology using 
DTD2OWL. Fig. 3 explains the proposed API workflow. 
Algorithm 1 demonstrates the Semantic NoSQL API execution 
steps. 

Algorithm 1: Semantic NoSQL API 

Initialize  

Connect to the database 

Scan every record in the database 

For (every record) do 

 Put the record in Python dictionary 

 Convert the dictionary to XML 

 Save the output to a file 

 End 

Convert XML to OWL 

Build semantic Query 

Visualize the result 

The phases of the proposed Onto-NoSQL API are 
implemented as follows: 

A. Connection Phase 

To access a NoSQL database, the author used the pymongo 
package to connect to MongoDB as a document database type, 
the happybase package to connect to HBase as a Wide-Column 
database type, the Redis-py package to connect to Redis as a 
Key-value database, and the Neo4j Python Driver to connect to 
Neo4j as a Graph database type. Algorithm 2 represents the 
connection code to MongoDB. Algorithm 3 represents the 
connection code to Hbase. 

This paper focuses on both document database stores and 
column-oriented database stores as they are the most used 
NoSQL database stores. The most popular document store is 
MongoDB [6]. MongoDB is very popular because it allows 
multiple data types to be used. The database consists of 
collections. The collection stores the data as JSON documents. 
Schema is not needed to store the data in MongoDB. The data 
stored can be a string, number, date, array, or object. 
MongoDB can store data from multiple sources in different 
formats. 

Algorithm 2: Connect to MongoDB 

from pymongo import MongoClient 

client = MongoClient() 

#enter database name 

database= input('Enter DB name:') 

db = client[database] 

One of the most popular column-oriented database stores is 
HBase. HBase is an open-source management system that is a 
versioned and distributed database based on Google's 
BigTable.  

 

Fig. 3. The proposed API workflow 
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This system is column-oriented and built on top of HDFS, 
which speeds up read and write operations across Big Data 
sets. Application programming interfaces (APIs) such as Thrift 
and Java provide access to HBase. There are no query or 
scripting languages specific to these APIs. HBase is reliant on 
a ZooKeeper instance by default [16]. 

Algorithm 3: Connect to HBase 

import happybase as hb 

conn= hb.Connection(HostName,PortNumber) 

conn.open() 

B. Integration and Extraction Phase 

The proposed API integrates MongoDB and HBase 
databases. It extracts every record in the database and puts 
them in a Python dictionary. Algorithm 4 reads records from 
MongoDB. Algorithm 5 reads records from HBase. 

Algorithm 4: Read records from MongoDB 

collection_names = db.collection_names() 

For (every collection ) do 

 #retrieve documents in each collection 

docs = db[collection_name].find() 

 End 

 

Algorithm 5: Read records from HBase 

table = conn.table('table_name') 

For (every key, row) do 

 # retrieve records 

row = str(row) 

 row =json.loads(row) 

 End 

C. Conversion Phase 

The proposed API  converts the dictionary to an XML file. 
Algorithm 6 converts the dictionary generated from MongoDB 
records to an XML file. Algorithm 7 converts the dictionary 
generated from HBase records to an XML file. 

Algorithm 6: Convert dictionary generated from MongoDB to 
XML file 

#create XML file 
f = open(database+'/'+collection_name+'.xml', 'wb') 

For (every doc) do 

 #convert object id to string 

doc_sanitized = json.loads(json_util.dumps(doc)) 

 #convert to XML 

xml = dicttoxml.dicttoxml(doc_sanitized) 

 f.write(xml) 

 End 

f.close() 

 

Algorithm 7: Convert dictionary generated from HBase to 
XML file 

#create XML file 
f = open('table_name.xml', 'wb') 

For (every key, row) do 

 xml = dicttoxml(row) 

 f.write(xml) 

 End 

f.close() 

The interface of the API was created using PHP (Laravel 
Framework). First, we need to install the Process component 
that executes commands in sub-processes. This can be done 
using the composer to install the package. Second, use the 
Process class that enables Laravel to run a script. Third, create 
a new instance of the Process class, which takes three 
parameters the name of the script, the script itself, and the 
arguments passed to the script. An HTML form was created to 
read the data from the user. The user chooses the NoSQL 
database engine (MongoDB or HBase) and writes the name of 
the database (in the case of choosing MongoDB) or the table 
(in the case of choosing HBase) to be converted to XML. After 
the script is executed, the user gets a message that the database 
(in the case of using MongoDB) or the table (in the case of 
using HBase) is converted successfully. The XML files are 
located in the public folder in the Laravel project. Fig. 4, 5, and 
6 represent the screens of the proposed API. Fig. 7 is a 
snapshot from the generated XML file. 

 
Fig. 4. The API screens- the input form 
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Fig. 5. The API screens- choose NoSQL data store 

 
Fig. 6. The API screens- the success message after the database is converted 

 

Fig. 7. A snapshot of the generated XML file 

D. OWL Creation Phase 

The proposed API converts XML format to OWL. The 
Authors implement the DTD2OWL2 Method in python [17]. 

E. Semantic and Visualization Phase 

The proposed API builds a semantic query using rdflib [18] 
and visualization using the Plotly package in Python. 

VII. CASE STUDY 

The authors apply API to COVID-19 and weather data. 
Data was collected from various sources regarding the spread 
of Covid19. The number of cases was collected from the 
WHO. The weather data was collected from National Centers 
for Environmental Information website [19]. The authors used 
the number of confirmed cases, population, and weather data to 
predict a new pattern of confirmed cases and to find a relation 
between it and the other factors. The data was preprocessed 
and converted to JSON format. MongoDB was used to store 
the confirmed case data. HBase was used to store the weather 
data. By converting the database to OWL, it is possible to 
apply semantic queries and extract more knowledge from the 
data. It was possible to visualize the data and find a relation 
between them despite being stored in different databases with 
different structures. Fig. 8, 9, and 10 visualize the data on the 
world map. 

 
Fig. 8. The population of world countries 

<?xml version="1.0" encoding="UTF-8" 

?><root><doc><_id type="dict"><key name="$oid" 

type="str">61c481b0593caffbcd8229d9</key></_id><Co

nfirmed type="int">0</Confirmed><Country 

type="str">Afghanistan</Country><Date 

type="str">2020-01-22</Date><Deaths 

type="int">0</Deaths><Recovered 

type="int">0</Recovered></doc> 

<doc><_id type="dict"><key name="$oid" 

type="str">61c481b0593caffbcd8229da</key></_id><Co

nfirmed type="int">0</Confirmed><Country 

type="str">Afghanistan</Country><Date 

type="str">2020-01-25</Date><Deaths 

type="int">0</Deaths><Recovered 

type="int">0</Recovered></doc> 

<doc><_id type="dict"><key name="$oid" 

type="str">61c481b0593caffbcd822c93</key></_id><Co

nfirmed type="int">157795</Confirmed><Country 

type="str">Afghanistan</Country><Date 

type="str">2021-12-20</Date><Deaths 

type="int">7335</Deaths><Recovered 

type="int">0</Recovered></doc></root> 

Population 
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Fig. 9. The yearly average temperature of the world 

The Covid-19 data was used to implement the proposed 
API. These data are various, change rapidly, and have large 
sizes. The data type can be text describing the case or 
symptoms, numbers describing the number of infected cases, 
images of the X-ray performed on the patients, or geographical 
data describing the spread of the virus. All these data can be 
stored in NoSQL databases. The user can work with one type 
of stored data to predict the behavior of the virus or even 
diagnose a patient based on the X-ray performed on his chest. 
The user needs to integrate these data from multiple sources to 
achieve his goal. The data can be integrated to extract more 
knowledge from them and help countries to prepare and deal 
with the spread of the virus. NoSQL databases can help to 
improve dealing with such important and various data to make 
better decisions. By converting the NoSQL database to 
Ontology, the user can discover new rules and relationships. 

VIII. ANALYSIS OF RESULTS 

The used data were in the form of text and integers that 
represent the number of confirmed cases of Covid19 around 
the world. They also represent other factors like each country's 
temperature and population. The interval of the collected data 
was over 500 days from 22nd Jan 2020 to 31st Aug 2021. The 
confirmed case data and the population of every country in the 
world were stored in MongoDB, whereas the weather data 
were stored in HBase. By studying Fig. 10, it may be possible 
to see the spread of the virus around the world. By studying 
other factors, it could be possible to find a pattern or even a 
factor that deeply affects the infection rate, which will help us 
find a way to decrease the infection rate. 

In Fig. 11 you could see the relation between the 
temperature represented by the blue curve and the number of 
confirmed cases represented by the red curve. The data were 
scaled in the range of 0 to 1 using the min-max scaler 

As stated before, these data were stored in different NoSQL 
databases with different types. By using the proposed API, it 
was possible to connect to these databases and retrieve data 
from them. Four countries from around the globe were chosen 
to study the effect of temperature on the spread rate of the 
virus. The X-axis represents the number of days while the Y-
axis represents the number of confirmed cases and temperature 
degrees every day. 

By choosing a small interval of time such as in Fig. 12, it 
could be concluded that the infection rate is inversely 
proportional to the temperature degree. Of course, other factors 
affect the infection rate such as the population of the country 
under study (Fig. 8 demonstrates the population of world 
countries), the educational level of most of the population that 
affects their behavior, or the economy of the country that 
affects the medical care system. 

 

Yearly Average 

Temperature 
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Fig. 10. The spread of confirmed cases over the world 
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Fig. 11. The relation between temperature (blue) and number of confirmed cases (red) (The X-axis represents the number of days) 
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Fig. 12. The confirmed cases in Egypt during June, July, and August 2020 are in red, and the temperature is in blue (The X-axis represents the number of days) 

IX. CONCLUSION 

This paper presented Big Data concepts, technologies, and 
challenges. It studied NoSQL databases, their types, and the 
relationship between NoSQL Databases and Ontology. A 
proposed API was developed to integrate multiple NoSQL 
databases and generate OWL Ontology from them. By using 
the proposed API, it is possible to apply semantic queries, find 
new rules, and extract more knowledge. Also, it can be used to 
integrate data from different data stores into a unified defined 
format. Semantic data visualization has shown the relation 
between different data and discovered new patterns.  One can 
say that the temperature is a factor in the virus‟s spread.  It 
spreads faster in lower temperatures like in the USA, Russia, 
and some European countries (Fig. 9 demonstrates the yearly 
average temperature of the world). It also spreads faster in 
countries with a high population like India. 
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