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Abstract—Agricultural drought is still difficult to anticipate 

even though there have been developments in remote sensing 

technology, especially satellite imagery that is useful for farmers 

in monitoring crop conditions. The availability of open and free 

satellite imagery still has a weakness, namely the level of 

resolution is low and coarse with atmospheric disturbances in the 

form of cloud cover, as well as the location and period for taking 

images that are different from the presence of weather stations 

on Earth. This problem is a challenge for researchers trying to 

monitoring agricultural drought conditions through satellite 

imagery. One approach that has recently used is high 

computational techniques through machine learning, which is 

able to predict satellite image data according to the conditions of 

mapping land types and plants in the field. Furthermore, using 

time series data from satellite imagery, a predictive model of crop 

cycles can be regarding future crop drought conditions. So, 

through this technology, we can encourage farmers to make 

decisions to anticipate the dangers of agricultural drought. 

Unfortunately, exploration of the use of machine learning for 

classification and prediction of agricultural drought conditions 

has not conducted, and the existing methods can still improve. 

This review aims to present a comprehensive overview of 

methods that used to monitor agricultural drought using remote 

sensing and machine learning, which are the subjects of future 

research. 

Keywords—Drought monitoring; exploration of the use of 

machine learning; Landsat imagery; remote sensing 

GLOSSARY 

Term Description 

AMSR-E Advanced Microwave Scanning Radiometer 2 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

ASTER 
Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 

AVHRR Advanced Very High Resolution Radiometer 

AWS Autonomous Weather Stations 

BRT Boosted Regression Trees 

CDR Climate Data Record 

CHOMPS 
CICS High-Resolution Optimal Interpolation Microwave 

Precipitation from Satellite 

CMAP CPC Merge Analysis of Precipitation 

DEM Digital Elevation Model 

DFNN Deep Forward Neural Network 

DT Decision Tree 

ERT Extreme Regression Tree 

ESA-CCI European Space Agency - Climate Change Initiative 

ESTARFM 
Enhanced Spatial and Temporal Adaptive Reflectance Fusion 

Model 

EVI Enhanced Vegetation Index 

GA Genetic Algorithm 

GAM General Additive Model 

GDEM Global Digital Elevation Model 

GLDAS-2 Global Land Data Assimilation System Version-2 

GMDH Group Method of Data Handling 

GPCP Global Precipitation Climatology Project 

GPM Global Precipitation Measurement 

GRACE Gravity Recovery and Climate Experiment 

HSMDI High Soil Moisture Drought Index 

IMERG Integrated Multi-satellitE Retrievals for GPM 

ISMN International Soil Moisture Network 

KKN K-nearest neighbors algorithm 

Landsat 

ETM 
Landsat + Enhanced Thematic Mapper 

LST Land Surface Temperature 

M5P 
is a reconstruction of Quinlan's M5 algorithm for inducing trees of 

regression models. 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications 

MIDI Microwave Integrated Drought Index 

MLP Multi-Layer Preceptron 

MODIS Moderate Resolution Imaging Spectroradiometer 

MCD43C4 MODIS Product 

MOD11C1 MODIS Product 

MOD13A3 MODIS Product 

MYD11C3 MODIS Product 

MYD13C2 MODIS Product 

MCD12Q1 

MODIS Product provides global land cover types at yearly 

intervals (2001-2016) derived from six different classification 

schemes 

MCD43A4 
MODIS Product contains 16 days of data provided in a level-3 

gridded data set in Sinusoidal projection 

MOD09A1 

MODIS Product provides an estimate of the surface spectral 

reflectance of Terra MODIS bands 1-7 at 500m resolution and 

corrected for atmospheric conditions such as gasses, aerosols, and 

Rayleigh scattering 

MOD11A2 
MODIS Product provides an average 8-day land surface 

temperature (LST) in a 1200 x 1200 kilometer grid 

MOD16A2 

MODIS Product provide Evapotranspiration/Latent Heat Flux 

product is an 8-day composite product produced at 500 meter pixel 

resolution 

NDVI Normalized Difference Vegetation Index 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

765 | P a g e  

www.ijacsa.thesai.org 

NOAA National Oceanic and Atmospheric Administration 

ORLIKE-

OWA 
ORLIKE-Ordered Weighted Averaged (OWA) 

ORNESS-

OWA 
ORNESS-Ordered Weighted Averaged (OWA) 

PCI Precipitation Condition Index 

PERSIANN 
Precipitation Estimation From Remotely Sensed Information using 

Artificial Neural Networks 

RCI Rainfall Condition Index 

RF Random Forest 

RFE Recursive Feature Elimination 

SMAP Soil Moisture Active Passive 

SMDI Soil Moisture Deficit Index 

SPEI Standardized Precipitation Evaporation Index 

SPI Standardized Precipitation Index 

SRTM Shuttle Radar Topography Mission 

SVM Support Vektor Machine 

SVR Support Vektor Regression 

SWDI Soil Water Deficit Index 

TAMSAT Tropical Applications of Meteorology using Satellite data 

TCI Temperature Condition Index 

TRMM 

(3B43) 
Tropical Rainfall Measuring Mission 

UAV Unmanned Aerial Vehicle 

VCI Vegetation Condition Index 

VSDI Shortwave Infrared Drought Index 

VSWI Vegetation Supply Water Index 

VTCI Vegetation Temperature Condition Index 

I. INTRODUCTION 

One of the problems of rainfed agriculture productivity is 
prolonged drought, lack of rainfall, and lack of water supply in 
the soil during the vegetative growth phase [1], [2], [3], [4]. In 
addition, high temperatures during the ripening phase can 
reduce the conversion yield of sucrose to fructose and glucose 
[5]. Climate change can also cause diseases and pests [6]. 
Therefore, it is essential to monitor drought conditions to 
schedule appropriate irrigation based on the response of plants 
to drought at various stages of vegetation [7], [8]. 

However, measuring plant response to drought is very 
difficult and complex [9], [10], [11], [12], [13], [14]. 
Detecting and integrating crop water deficits is still complex 
based on single plant responses [15]. Until 2017 [16]  grouped 
four methods to monitor plant response to drought, namely, 
(1) Groundwater measurement; (2) Groundwater balanced 
approach; (3) Plant-based approach; (4) Remote sensing 
methods. The approach (4) remote sensing is based on the 
spectral index of vegetation obtained from the Unmanned 
Aircraft Systems (UAS) hyperspectral sensor, which is the 
best considering the cost of the sensor is not expensive; the 
determination of leaf moisture status indicators and plant 
stomata conductance is high. Non-destructive and non-labor 
intensive is suitable for automation. The remote sensing 
method can be adopted as an irrigation scheduling decision 
[17]. 

The fact there is an abundance of free Landsat satellite 
data with open access globally by the US Geological Survey 
(USGS) starting in 2008 [18] on the Earth Resources 
Observation and Science (EROS) Center website  has attracted 
researchers from various countries to apply it as a producer of 

land use land cover (LULC) maps in their respective regions 
[19], [20]. However, constructing medium and high-resolution 
land cover maps in cloud-prone areas is still challenging due 
to infrequent satellite visits and the lack of cloud-free data. It 
is both an opportunity and a challenge for researchers to 
accurately map plant droughtes with hyperspectral indices 
through machine learning classification methods for persistent 
cloud areas with high temporal dynamics of land cover types 
that require further investigation. Overall, there have been 
numerous former studies showing that the use of remote 
sensing to monitor drought has increased significantly in 
recent times. Still, the application of machine learning to 
remote sensing for drought monitoring has not been well-
diversified, so there are still numerous exploration gaps that 
show that its application has not been thoroughly assessed or 
utilized for drought monitoring purposes. 

As a result, in this article we attempt to conduct a 
systematic review utilizing the meta-analysis method of prior 
studies using machine learning techniques in remote sensing 
for agricultural drought monitoring. Meta-analysis methods 
and systematic reviews can aid in the creation of evaluations 
that are clearer and more succinct [21]. If there are more 
studies on similar subjects, the advantages of systematic 
reviews can be further extended [22]. Systematic reviews can 
help scientists uncover factors faster, lessen data bias, more 
accurately define variables, spot trends that previous 
researchers might have missed, and choose the direction of 
future study topics [23]. Additionally, systematic reviews can 
assist researchers in comparing, debating, and choosing from 
the larger body of literature in order to obtain more 
trustworthy results [24]. 

II. RELATED WORK 

The use of machine learning techniques to categorize 
satellite imaging data in remote sensing applications has 
gained popularity in recent years. On this subject, several 
research studies have been released, some of which are listed 
in the paragraphs below. 

 Various formalisms are used in applications of machine 
learning and signal/image processing, including 
classification and clustering, regression and function 
approximation, image coding, recovery and 
enhancement, source separation, data aggregation, and 
feature selection and extraction [25]. 

 Machine learning techniques have recently been used 
in various ways to process data from multispectral and 
hyperspectral remote sensing [26]. 

 Using the input data from the satellites Spot5, 
Sentinel1, and Sentinel2, a Symbolic Machine 
Learning (SML) classifier with spatial generalization 
treatment, random theme noise, and spatial 
displacement noise was created. It made use of 
multiple Maximum Likelihood Supervised Algorithms, 
Logistic Regression, Linear Discriminant Analysis, 
Naive Bayes, Decision Trees, Random Forests, and 
Support Vector Machines [27]. 
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 Training data needs, user-defined parameter selection 
and optimization, impact and attenuation feature space, 
computing costs, and choice of k-nearest neighbor 
algorithms, enhanced DT, single decision tree (DT), 
Random Forest, and somewhat mature support vector 
machine (k-NN) approaches are all taken into account 
[28]. 

These studies have shown how well machine learning 
algorithms work for categorizing remote sensing images and 
the possibility for further improving the precision and 
effectiveness of these algorithms through on-going study and 
development. Previous studies on machine learning in remote 
sensing have concentrated on a range of methods, such as 
deep learning algorithms and other supervised and 
unsupervised approaches, and have investigated their 
application to various types of remote sensing data and 
application domains. Overall, applying machine learning to 
remote sensing has the potential to dramatically increase this 
field's capabilities and open up a number of new and enhanced 
applications for satellite data. 

III. MATERIALS AND METHODS 

The aim of this work is expected to be able to answer the 
following four research questions (RQ): 

 RQ1: What publications are the main targets of 
machine learning based remote sensing drought 
monitoring? 

 RQ2: What kind of environment observed for drought 
monitoring? What types of remote sensing data have 
been used? 

 RQ3: Which is the most widely used and most accurate 
machine learning algorithm for the drought monitoring 
approach? 

 RQ4: How does machine learning play a role in 
drought monitoring? 

After determining the research question (RQ) of interest, 
selecting a candidate paper, and performing data extraction, 
the last step of a systematic literature study is to synthesize the 
results. For each RQ, the inclusion results are classified into 
categories corresponding to the RQ, and the results are 
presented in graphs or tables. Furthermore, the results are 
discussed using various evaluation approaches. Finally, the 
narrative summary describes the main findings of the 
systematic literature study. 

In this work, we collect and determine the most relevant 
literature for this particular study with the PRISMA method 
[29] search strategy to provide a comprehensive and 
systematic review of relevant previous studies related to the 
role of machine learning algorithms in remote sensing for 
drought monitoring on crop land cover maps. Food, semi-arid 
plantation is suspected to experience drought. A recent search 
was conducted on Harzing's Publish or Perish search engine 
with open data sources Google Schoolar and Crossref based 
on the title text "Drought monitoring" with keywords "remote 
sensing" and "machine learning" in the publication period 
between 2010 and 2021. 

This study eliminates research that does not use remote 
sensing and machine learning approaches from the collection 
of articles obtained. Each article is rated based on the use of 
remote sensing databases, machine learning methods, 
accuracy of results, and year of publication. There are about 
1147 articles on remote sensing drought monitoring published 
from 2010 to 2021 (Fig. 1). The search for literature was 
conducted on July 6, 2022, through the search engine 
Harzing's Publish or Perish on two open-source articles, 
namely Google scholar and Crossref with the context of the 
article title "drought monitoring" and the keywords "remote 
sensing" and "machine learning," with the limitation of the 
publication period between 2010 and 2021. 

The literature search selection process in Fig. 1 is 
conducted according to the PRISMA concept, as follows: 

1) Identification: initial search obtained 147 articles from 

open-source Google Scholar and one thousand articles from 

open-source Crossref. Our next step is to limit the selected 

articles based on the number of citations in each article to at 

least twenty citations. This is done to select articles that have 

referenced popularity by researchers. The results of this limit 

of twenty citations selected thirty-four articles from the open-

source Google Scholar and 171 articles from the open source 

Crossref, so that the initial number of identified article data 

containing the context of the article title "drought monitoring" 

and the keywords "remote sensing" and "machine learning" 

was as much as 205 articles. 

2) Screening: 205 articles from the previous stage 

(Identification) were checked for duplication of articles, and it 

turned out that there were 11 related articles, so that they were 

obtained (n = 194). The process at this stage is conducted on 

the Microsoft Excel application. Next is the excluded process, 

namely, discarding a number of articles that do not contain 

relevant text related to "remote sensing" and "machine 

learning" in the Abstract section. The results excluded at this 

stage are n = 166, so the remaining n = 28 articles. 

3) Eligibility: at this stage, the articles are examined in 

full text with the aim of finding research articles that 

consistently apply machine learning algorithms and the studies 

carried out contain quantitative analysis or accuracy values. 

The results are discarded (n = 8 papers without the use of 

machine learning algorithms); (n = 5 types of paper reviews); 

(n = 3 papers without quantitative analysis or accuracy 

scores), leaving (n = 12) articles using machine learning 

algorithms. The process at this stage is conducted on the 

Zotero and Mendeley application. 

4) Included: from n = 12 selected articles containing the 

context of "drought monitoring", "remote sensing", and 

"machine learning", with the type of research article based on 

observation or experimentation, not a review article. This is 

done because of a systematic review and meta-analysis, not a 

narrative review. Furthermore, the selected articles are used as 

a reference for the main systematic review or meta-analysis. 
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Fig. 1. PRISMA workflow diagram for new systematic review which 

included search of free database. 

IV. RESULT AND DISCUSSION 

The inclusion of the PRISMA strategy brief yielded the 
results of twelve articles that were then analyzed in depth for 
the content of a meta-analysis that could answer four research 
questions (RQs). 

In response to RQ1, Fig. 2 demonstrates that out of a total 
of 194 papers, the publishers who publish the most scientific 
journals mention remote sensing-based drought monitoring. 
The breakdown is as follows: MDPI 50% (n = 97), Elsevier 
30% (n = 57), Taylor & Francis 10% (n = 20), IEEE 3% (n = 
7), Springer and Wiley both 2% (n = 4), and the remaining 3% 
from various publishers (n = 5). 

Details of the names of the candidate publication journals 
are listed in Table I. 

 
Fig. 2. Publication sources of selected study works. 

TABLE I. PUBLICATION SOURCE SELECTED PAPERS 

Journal Name Publisher Total 

Remote Sensing MDPI 97 

Remote Sensing of Environment Elsevier 42 

International Journal of Remote Sensing Taylor & Francis 13 

GIScience & Remote Sensing Taylor & Francis 5 

Journal of Applied Remote Sensing Other 5 

Agricultural and forest meteorology Elsevier 4 

Water Resources Research Wiley AGU 4 

Environmental monitoring and assessment Springer 4 

IEEE Geoscience and Remote Sensing Letters IEEE 3 

IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing 
IEEE 3 

International Journal of Applied Earth 

Observation and Geoinformation 
Elsevier 3 

ISPRS Journal of Photogrammetry and 

Remote Sensing 
Elsevier 3 

Computers and Electronics in Agriculture Elsevier 2 

Journal of Hydrology Elsevier 2 

Remote Sensing Letters Taylor & Francis 2 

Science of The Total Environment Elsevier 2 

The list of journal names in Table I can be used as a 
reference source. It is remarkably interesting to observe that 
all these journals are indexed in the Journal Citation Report, 
mostly in the Q1 and Q2 quartiles. 

Fig. 3 presents the trend in the number of articles 
published per year from 2010 to 2019. This graph shows that 
there has been a significant increase in the number of 
publications in the area of Remote Sensing for Drought 
monitoring. Since 2010, this growth has followed a linear 
trend. Although the number of selected papers is not too 
many, it does not rule out the possibility of many publications 
at the end of 2021. 

In order to respond to the RQ2 questions, we looked 
through the chosen articles and then searched for metadata 
pertaining to each paper's research location and the 
environmental state of the area covered. Table II lists the 
location, the surrounding environment, and remote sensing 
data for observations of regions thought to be experiencing 
drought conditions. We also complete the dryness index that 
was utilized in each chosen publication. 

 
Fig. 3. Publication trends throughout the years 2010 – 2021. 
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TABLE II. ENVIRONMENT AND REMOTE SENSING DATA 

Ref. Environment Data Index Validation 

[30] Basin area (Iran) NOAA-AVHRR, Landsat ETM VCI, NDVI, AVI 
NDVI from Landsat+ETM 18 years 

(1982 - 1999) 

[31] Climate (China) GRACE TWSA 

TWSC, SWS, SMS, GWS. Fifty-five 

stations in Yunnan and Guizhou (1950 – 

2012) 

[32] Corn and Soybean (USA) 

NDVI (MOD16A2 ET and 

MOD13A3); 

LST (MOD11A2 and 

MOD09A1); 

TRMM 3B43 

LST, NDVI, NDWI, NMDI, ET, 

and TRMM 

SPI at 54 stations (28 stations in the arid 

region and twenty-six stations in the 

humid region) from 1975 to 2012. 

NDMC 

[33] 
Sierra Nevada Forest Tree 

(California, USA) 

MODIS Terra and Aqua 

observations (MCD43A4, 

collection 5); 

DEM 

NDVI, EVI, NDWI 

reserved validation dataset from USDA 

Forest Service (USFS) Aerial Detection 

Surveys (ADS) 

[34] 

Nineteen percent rice paddies 

and 64% forests (South 

Korea) 

TRMM 3B43, GPM IMERG , 

MCD43C4 , MYD11C3 , 

MYD13C2 

SPI and SPEI from ASOS 

SPI and SPEI calculated from 61 ASOS 

weather stations, with 3-, 6-, 9-, and 12-

month time scales. 

[35] 
crop yield and land cover 

(Korea) 
AMSR-E, MODIS,TRMM 

High resolution Soil Moisture 

Drought Index (HSMDI 

SPIs for March to November (2003–

2011); twenty-nine stations (1973 to 

2011 

[36] agriculture (East Asia) 

ESA-CCI for soil moisture; 

MOD11C1 for LST and NDVI; 

TRMM 3B42 for precipitation 

PCI, TCI, VCI, SDCI, SMCI, 

MIDI, VSDI; Madden–Julian 

Oscillation (MJO) Index; 

Three satellite-based drought indices 

SDCI, MIDI, and VSDI 

[37] 

three distinct climatic regions 

including the mountainous 

area (Iran) 

GPCP, CMAP, CHOMPS, 

PERSIANN-CDR, TRMM, 

MERRA-2 and GLDAS-2 

nonparametric-SPI; 

ORNESS-OWA; 

ORLIKE-OWA; 

K-nearest neighbors‟ algorithm 

(KNN) 

Precipitation data for twenty-four 

stations (1981 - 2011); 

the Fars Meteorological Organization 

and Fars Regional Water Organization 

[38] pasture (Kenya) MODIS and TAMSAT NDVI, VCI, RFE, RCI, SPI Precipitation data from TAMSAT 

[39] 

terrain mountains, plains, 

basins, valleys, and River 

(China) 

Vegetation index product 

(MOD13A3),  

surface temperature product 

(MOD11A2),  

land use product (MCD12Q1), 

and TRMM,   

SRTM-DEM. 

NDVI, EVI, LST, TCI, CI, 

SPEI, AWC, VSWI, Percentage 

of precipitation anomaly and 

TRMM-Z index 

_Fifteen major meteorological stations 

and nine agricultural meteorological 

stations in Henan Province, 

(http://data.cma.cn/).  

_soil Available Water Capacity (AWC), 

(http://globalchange.bnu.edu.cn/).  

 

[40] 
Bare land, Woodland, Water, 

and Winter wheat (China) 

MODIS NDVI, MODIS LST, 

Sentinel-2 NDVI, Sentinel-2 

biophysical, ASTER GDEM 

VCTI 

Daily precipitation data in eighteen 

selected counties of the Guanzhong 

Plain 

[41] 
Darling River Basin 

(Australia) 

SMAP, GLDAS,  

Soil attribute product, GPM,  

ISMN. 

SWDI, SMDI 

ISMN provides in situ Soil Moisture 

(SM) measurements of 1400 stations 

and thirty-five international SM 

networks available from 1952 to the 

present. https:// 

ismn.geo.tuwien.ac. at 

Data are gathered from Table II. It turns out that the 
majority of studies employ MODIS satellite data products to 
gauge the extent of drought in different types of ecosystems. 
However, some studies use validation data received from data 
centers, while the majority of research is based on 
observations from ground observation stations. 

On the basis of the metadata analysis of the selected papers 
shown in Table III, RQ3 may be addressed by stating that the 
following categories can be used to categorize the application 
of machine learning in remote sensing for agricultural drought 
monitoring. The potency of each machine learning method is 
shown in Table III. There is evidence that ANN (91.00 percent 
in [31]), BRT (93 percent in [32]), GA (95.73 percent in [37]), 
and RF are algorithms with accuracy values of more than 90 
percent (93 percent in [32] and 96.30 percent in [33]). 

Although the GA method competes with RF among other 
algorithms for the second-best accuracy value, in actuality, 
researchers frequently choose for the RF approach. This could 
be the result of a number of problematic situations and 
different facts. 

Responding to RQ4 based on an analysis of the metadata 
of a few articles as indicated in Table IV. The following four 
categories describe how machine learning is used in remote 
sensing to monitor agricultural drought. First, for prediction 
NDVI [30], waves [31], unmeasured area [34], drought [36], 
np-SPI [37], vegetation condition [38], and vegetation 
temperature [40]. Second, detect tree death [33]. Third, it 
measures degree of correlation (sixteen drought factors [32], 
various hazard factors [39]). Fourth, down-scaling (AMSR-E 
and TRMM [35], SMAP-SM [41]). 
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TABLE III. MACHINE LEARNING ALGORITHM FOR THE DROUGHT 

MONITORING APPROACH 

Algorithm Ref. Accuracy 

ANFIS [37] 85.72 
   

ANN 
[30], [31], 

[38] 
79.00 91.00 83.00 

 

BRT [32] 93.00 
   

CUBIST [32] 60.00 
   

DFNN [39] 85.60 
   

DT [34] 15.92 
   

ERT [34] 32.01 
   

ESTARFM-SVM [40] 83.00 
   

GA-ORNESS-

OWA 
[37] 95.73 

   

GAM [38] 86.00 
   

GMDH [37] 88.21 
   

KKN [37] 89.68 
   

M5P model tree [37] 89.78 
   

MLP [37] 90.47 
   

PERSIANN [41] 80.00 
   

RF 
[32], [33], 

[35], [36] 
93.00 96.30 69.00 70.00 

SVM [40] 83.00 
   

SVR [37] 83.57 
   

TABLE IV. ROLE OF MACHINE LEARNING IN REMOTE SENSING FOR 

AGRICULTURE DROUGHT MONITORING 

Ref. Algorithm Role 

[30] ANN Forecast of NDVI 

[31] ANN Forecasting future waves 

[32] RF; BRT; Cubist Model of the relationship 

[33] RF Detection trees mortality 

[34] DT; RF; ERT; 
Models for decision making drought in 

unmeasured areas 

[35] RF 
Downscale AMSR-E soil moisture and 

TRMM precipitation 

[36] RF Developed drought prediction models 

[37] 
KNN; MLP; ANFIS; 

M5P; GMDH; SVR; GA 

Estimating np-SPI based on remotely 

sensed data 

[38] GAM; ANN To predict vegetation conditions 

[39] DFNN 
To construct models by considering a 

number of various hazard factors 

[40] SVM; ESTARFM 
Developing a fused vegetation 

temperature condition index (VTCI) 

[41] PERSIANN 
Downscaled SMAP-SM as well as 

GLDAS-SM against the in-situ SM 

Our review of the two literature with the highest yields 
[33], [37] showed that the results of the CRF model analysis 
[33] found that baseline summer NDVI or EVI was one of the 
key variables to differentiate significant tree mortality. Higher 
ground may be denser or have higher biomass, resulting in 
more opportunities to obtain more water during prolonged dry 
seasons, and thus more resistant to stressors and mortality. 
The model also reveals that altitude also plays a significant 

role in the vulnerability of the Sierra Nevada Forest to 
surviving drought conditions. Altitude affects the local climate 
and water availability, and thus affects the distribution and 
drought tolerance of forest types. Vegetation index Z-scores, 
such as NDVI, proved to be another important variable for 
detecting tree mortality. The NDVI z-score in a given year 
represents the cumulative impact of drought on vegetation 
activity, while the NDWI z-score shows reduced water 
content. Single-dated mid-resolution imagery from MODIS 
and VIIRS is limited for monitoring forest health and 
detecting mortality, particularly at finer scales, but higher 
temporal frequencies, e.g., daily coverage, are a major 
advantage for monitoring forest health and potential 
forecasting capabilities across the globe (big landscape). 

Meanwhile, the second-best body of research [37] 
demonstrates that the ORNESS-OWA fusion approach 
considerably enhances estimates compared to other models 
and that ORNESS-OWA performs better for long-term 
timelines than for short-term estimates. CHOMPS, GPCP, 
CMAP, PERSIANN-CDR, TRMM, GLDAS-2, and MERRA-
2 are some examples of remote sensing precipitation products 
that can be used to estimate np-SPI. Three sophisticated data 
fusion approaches (ORNESS-OWA, ORLIKE-OWA, and 
KNN) are also tested against ground-based np-SPI 
estimations. 

Even though they both employ various methodologies and 
observational settings, each with their own set of limitations, 
the two literatures produce the finest results to date. However, 
further research is still required to achieve results with higher 
spatial and temporal resolution, wider coverage, and more 
cost-effective operation. Future study will likely integrate 
satellite imagery data with field camera and aerial 
photography in order to provide a more comprehensive 
strategy that takes into account all factors, including the plant 
cycle. This will undoubtedly present new challenges. 

V. CONCLUSION 

This systematic review has provided sophisticated 
quantitative and qualitative analysis in this fast-growing field. 
Since 2010, more than 1147 journal and conference papers 
were found, and this trend is expected to continue in the 
future. A selection of the 12 most cited papers was undertaken 
to obtain an in-depth view of the state of the research. Drought 
monitoring based on remote sensing is a very active area of 
research with a significant impact on enhancing global 
sustainability and optimizing natural resources. This is 
supported by sensor observation technology with open access 
to satellite data and advances in digital machine learning 
computational techniques. The role of Machine learning 
methods has proven to be effective in prediction, detection, 
correlation and downscaling tasks when processing satellite 
imagery data. 
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