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Abstract—The benefits of requirement traceability are well 

known and documented. The traceability links between 

requirements and code are fundamental in supporting different 

activities in the software development process, including change 

management and software maintenance. These links can be 

obtained using manual or automatic means. Manual trace 

retrieval is a time-consuming task. Automatic trace retrieval can 

be performed via various tools such as Information retrieval or 

machine learning techniques. Meanwhile, a big concern 

associated with automated trace retrieval is the low precision 

problem primarily caused by the term mismatches across 

documents to be traced. This study proposes an approach that 

addresses the term mismatch problem to obtain the greatest 

improvements in the trace retrieval accuracy. The proposed 

approach uses clustering in the automated trace retrieval process 

and performs an experimental evaluation against previous 

benchmarks. The results show that the proposed approach 

improves the trace retrieval precision. 
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I. INTRODUCTION 

Many software development standards have been proposed 
in response to the high rate of software project failures. These 
standards include SEI’s CMMI and IEEE’s JSTD-016. A 
common feature of these standards is that they all impose 
requirement traceability (RT) practices on the software 
development process [1]. RT is an important quality factor of 
software development that intends to ensure a continued 
alignment between stakeholder requirements and various 
outputs of the system development process. In addition [2], 
RT makes it easy to determine what software artifacts must be 
updated to fulfill a change request made during the 
maintenance phase of the software project. 

In 2014, members of the Center of Excellence for Software 
traceability (CoEST) established a roadmap for advancing the 
state of practice in software traceability and presented a 
focused research agenda for software traceability. They 
identified seven broad research focus areas and outlined the 
specific research needed in each of these areas. Under the 
umbrella of one of these research areas, that is, Creating & 
Maintaining Traces, we focus herein on trace retrieval, which 
is concerned with dynamically generating trace links between 
source and target artifacts [3]. Researchers utilized different 
algorithms to infer the trace links between related artifacts 
based on the assumption that related artifacts contain related 
terms [4]. The underlying concept behind this was that these 

algorithms could be used to estimate the similarity between 
two documents. 

A big concern associated with trace retrieval research is 
the low precision problem. Precision is the percentage of 
correct traces over all retrieved traces. “Low precision” 
indicates that many false traces have been incorrectly 
retrieved, and the user must manually evaluate the retrieved 
links to identify the correct traces. This leads to an emphasis 
on precision. Accordingly, some researchers examined ideas 
on how to increase it [4] [5]; however, these ideas resulted in 
only a minor increase in precision. The problem is primarily 
caused by term mismatches across documents to be traced. 
The reason for choosing the proposed approach is to enhance 
trace retrieval precision. Therefore, the authors formulated the 
problem by choosing an intelligent solution based on 
unsupervised learning using clustering. The datasets have a 
limited number of labels. These labels are provided for testing 
only. So, the suggestion for addressing this problem is by 
choosing an intelligent solution based on unsupervised 
learning to find similarities in the data point and group similar 
data points together to enhance trace retrieval precision. 

In this work, to address the term mismatch problem in 
automated trace retrieval, we follow the proposed research 
direction toward achieving automated trace retrieval, that is, to 
develop intelligent tracing solutions, “which are not 
constrained by the terms in source and target artifacts, but 
which understand domain-specific concepts, and can reason 
intelligently about relationships between artifacts” [3]. We lay 
down the foundations needed to use clustering in automated 
trace retrieval between source code and requirements. 

Clustering, which relies on unsupervised machine learning, 
is the task of grouping a set of objects in such a way that 
objects in the same group, called a cluster, are more similar in 
some sense to each other than to those in other groups or 
clusters [6]. In this study, we used K-means++, Hierarchical, 
Gaussian mixture model (GMM), and Density-based Spatial 
Clustering of Application with Noise (DBSCAN) algorithms. 
Clustering algorithms can be summarized in three steps: 

1) Inputs: dataset after preprocessing and other steps related 

to the dataset type. 

2) Applying suitable models. 

A.  Outputs: evaluating the results after the clustering 

processes; for this, we decided to use clustering to cluster 

the dataset into two: clusters 0 and 1. Cluster 1 means the 
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items are similar. Cluster 0 means the items are different. 

All clustering steps are described in Section IV. We 

present an overview of these methods below. 

The K-means is a partition-based iterative clustering 
algorithm, in which each cluster is characterized by its center 
point. It is widely used because of its implementation 
simplicity and effectiveness. It assumes that the number of 
clusters represented by “K” in K-means is already known. 
This algorithm aims to minimize the distance inside the same 

cluster and maximize the distance between the clusters [7]. 

Hierarchical clustering divides the data set at different 
levels to form a tree-shaped cluster structure that naturally 
defines clusters by branches in the hierarchical tree. It makes a 
few assumptions regarding the overall data point distribution; 
hence, it is suitable for datasets of many different shapes. 
Hierarchical clustering has two main implementations: 
agglomerative and divisive clustering [8]. 

In model-based clustering, each cluster is considered as a 
generative model with mean and variance. Instances arise 
from a distribution that is a mixture of several components. 
Gaussian (normal) distributions are the most used 
representation in model-based clustering. The mixture model 
is the GMM, whose components are Gaussian distributions 
with different means and variances [9]. 

The density-based clustering algorithm, called DBSCAN, 
recognizes arbitrary-shaped clusters under a high noise level 
of the studied data. The efficiency of DBSCAN depends on 
the parameter values set up at the initial step of the algorithm 
usage [10]. 

In this paper, we adopted four widely used metrics to 
evaluate the new proposed approach, precision, recall,            
F-score, and accuracy. Both precision and recall are used to 
assess the effectiveness of the requirement tracing tools [11]. 
Precision is defined as the percentage of correct retrieved 
candidate links and measures the fraction of retrieved 
documents which are relevant [12]. Recall is the percentage of 
the found correct links [13]. F-score is used to provide a 
balance between recall and precision [14]. It is the harmonic 
mean of recall and precision [15] and used to aggregate both 
measures into a single value [16]. Finally, accuracy measures 
are the rate of normal and outlier values correctly classified 
between the total number of classifications [17]. 

The remainder of this paper is structured as follows: 
Section II describes the related works in the trace retrieval 
field; Section III presents the proposed approach; Section IV 
explains the obtained results; Section V includes a result 
evaluation; and Section VI provides the conclusions and future 
work. 

II. RELATED WORKS 

This section reviews some methods used to solve the term 
mismatch problem in automated requirement trace retrieval. 

In the paper [19] titled “Automatic traceability link 
recovery via active learning”, the authors proposed a new 
traceability link recovery approach based on active learning 
(AL). They evaluated their approach on seven datasets used in 
traceability and compared them with an information retrieval 

(IR)-based approach and a state-of-the-art machine learning 
approach, called traditional supervised learning. The used 
datasets are available from the CoEST website 
(http://www.CoEST.org). The results showed that the AL-
based approach outperforms the other two in terms of the F-
score. 

In the paper [20] titled “Traceability Transformed: 
Generating more Accurate Links with Pre-Trained BERT 
Models”, the authors proposed a framework, called Trace 
BERT (T-BERT), to create trace links between the source 
code and the natural language artifacts. They then applied the 
T-BERT framework to recover links between issues and 
commits in open-source projects. The evaluation results as 
regards the accuracy and efficiency of three BERT 
architectures indicated that the Single-BERT architecture 
generated the most accurate links, while the Siamese-BERT 
architecture produced comparable results with significantly 
less execution time. By learning and transferring knowledge, 
all three models in the framework outperformed classical IR 
trace models. 

In the paper [21] titled “Analyzing close relations between 
target artifacts for improving IR-based requirement 
traceability recovery”, the authors proposed a method for trace 
link recovery by combining the IR method and the close 
relations between the target artifacts. This approach was 
referred to as IR_CRT. Aside from textual similarity, the close 
semantic relations between the target artifacts were 
considered. Experiments on five public datasets indicated that 
the precision on these datasets improved by 15.6% on average, 
showing that their method outperformed the baseline when 
working under the same conditions. 

In the paper [22] titled “Ontology-based Trace Retrieval”, 
the authors solved the term mismatch problem in automated 
requirement trace retrieval by incorporating information from 
the general and domain-specific ontologies into the tracing 
process. They used ontologies to identify relationships that 
would not be recognized by standard IR techniques. They then 
experimentally evaluated their approach against the standard 
vector space model (VSM). Their results showed that a 
domain ontology combined with a generalized ontology 
returns the greatest improvements in trace accuracy. 

In the paper [23] titled “Towards an Intelligent Domain-
Specific Traceability Solution”, the authors solved the term 
mismatch problem in automated requirement trace retrieval by 
presenting the domain-contextualized intelligent traceability 
(DoCIT) solution. This approach mimicked some of the 
higher-level reasoning that a human trace analyst performs. 
The authors focused their efforts on the complex domain of 
communication and control in a transportation system and 
found that their approach can significantly improve the quality 
of the generated trace links. They illustrated and evaluated 
DoCIT with examples and experiments from the control and 
communication sector of a transportation domain. 

In the paper [24] titled “Combining Machine Learning and 
Logical Reasoning to Improve Requirements Traceability 
Recovery”, the authors proposed a novel traceability link 
recovery approach that measures the similarity between 
requirements and the source code by exploring their features. 

http://www.coest.org/
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They combined machine learning and logical reasoning 
models and conducted a series of experiments on four datasets 
to evaluate the performance of their method against existing 
approaches. Their experiments showed that their approach is 
substantially better than other methods. 

III. PROPOSED APPROACH 

In this section, we divided the task of the proposed 
approach using clustering to improve the recovery of links 
between source code and requirements, into two main phases. 
Fig. 1 illustrates the two phases of the proposed trace retrieval 
approach. 

B. Phase 1: Choosing Suitable Datasets 

Research on automated requirement traceability relies on 
the availability of different dataset types. In general, obtaining 
datasets has been one of the reported barriers for researchers 
in the software engineering domain [25]. This phase 
introduces the three datasets used in this study to evaluate 
automated trace retrieval between the source code and 
requirements. Table I defines the characteristics of the datasets 
used in the proposed approach. These datasets are available 
from http://www.CoEST.org. 

TABLE I.  DATASET CHARACTERISTICS [25],[26],[27], [28][29][30] 

Dataset 

description  

Freq Traceability 

details 

Trace 

space 

CC UC Trace 

links 
eTour: “an electronic 

tourist guide 

developed by 

students” 

10 Use cases to 

code 

6728 116 58 366 

SMOS: “an 

application that is 

used to monitor high 

school students (e.g., 

absence, grades)” 

7 Use cases to 

classes 

6700 100 67 1044 

eANCI: “system 

providing support to 

manage Italian 

municipalities” 

3 Use cases to 

classes 

7645 55 140 567 

The above-mentioned datasets were chosen because they 
are available for all researchers and compatible with 
TraceLab’s environment. 

With these datasets, we ran into some issues related to the 
two artifacts (requirements and source code). For example, all 
three datasets are imbalanced datasets. They included useless 
words, with some words starting with extra letters and ending 
with extra letters without meaning. A few single characters 
can be found between the lines of the files that did not have a 
clear meaning. According to the Answer set of the dataset, 
some source codes did not have any requirements, which 
affected the links between the two artifacts and gave wrong 
similarities. Some words and sentences were written in 
different languages. Some of them were in English, while 
others were in Italian. 

C. Phase 2: Choosing and Applying Clustering Models 

Clustering is an unsupervised machine learning task used 
to gather data into many collections or clusters according to 
the similarities of the data point features and characteristics 
[31]. In this phase, we followed seven main steps to apply 
clustering models to the three datasets: 

 
Fig. 1. Proposed trace retrieval approach 

http://www.coest.org/
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Step 1, Feature extraction: The requirements (source 
artifact) and the source code (target artifact) were written in 
natural and programming languages, respectively. Hence, they 
included different types of information that were not all useful 
for identifying the traceability links between the two artifacts. 
For that, we extracted the most important source code feature, 
namely (class_name, class_attribute, class_comments, 
method_comment,method_name,method_parameter,method_r
eturn). We also extracted the two main features related to the 
requirements (i.e., Title and Description) as shown in Fig. 3. 

Step 2, Translation: The content of the two artifacts (i.e., 
UC and CC files) included Italian words and sentences in 
some files and some parts of the file lines. Therefore, the 
content of the two artifacts was translated into English. To this 
end, we leveraged the advanced translation engine to translate 
documents into English if they were originally unspecified in 
English. We used one of the tools used for translation into the 
English language namely Google Translate [32], which 
enables a method of translating text from one language to 
another. 

Step 3, Preprocessing: We followed a classic process to 
pre-process the contents of the software artifacts, UC and CC. 
The preprocessing comprised the following steps: removing 
the camel case, splitting the words, converting to a lower case, 
and removing punctuations, Stop Words, and numbers. We 
performed lemmatization for all words to facilitate natural 
language analysis, such as transforming the verb, noun, 
adjectives, and adverbs into their bases and examining the 
study of word texts with the intention of finding something 
that adds meaning to the word text [33] and removing any 
single character from both artifacts. 

Step 4, Query expansion using WordNet: WordNet is an 
online lexical system (database) for the English language that 
provides diverse and wide-ranging semantic information [34]. 
We used query expansion to add related words to a query to 
increase the number of returned documents and improve the 
recall accordingly. In most cases, all words in each query 
should first be extracted. For each word, the synonyms were 
automatically selected. 

Step 5, Text encoding: Many methods can be used to 
convert text into numerical vectors, such as TF-IDF encoding, 
Dec2Vec, Word2Vec, and Bag of Words (BOW) [35]. We 
experimented Dec2Vec and Word2Vec, but they did not 
improve experiments results, so we used the TFIDF to have 
better results. 

Step 6, Computing similarity: Using the cosine similarity 
[36], we computed the similarity between two vectors after 
converting the corresponding contents of each feature into a 
vector by using the TFIDF algorithm. The cosine similarity 
algorithm measures the similarity between two vectors, which 
can represent paragraphs, sentences, words, or the entire 
document. 

Step 7: In this step, four types of clustering models were 
used, namely K-means++, GMM (hard clustering type), 
Hierarchical, and DBSCAN. After the previous steps, we first 
prepared the dataset. Fig. 2 illustrates the total columns and 
rows of the dataset which are 14 columns. Second, we chose 
the clustering type. Third, evaluating the results, we 
performed external evaluation criteria and computed the 
confusion matrix (i.e., precision, recall, F-score, and accuracy 
measures. Table II shows the meaning of the confusion matrix 
symbols that are used for precision, recall, F-Score, and 
accuracy. The mathematical formulas of accuracy, precision, 
recall, and F-score are as follows: 

Accuracy = (TP + TN) / (TP + FP + FN + TN). 

Precision = TP/ (TP + FP) 

Recall = TP/ (TP + FN) 

F-score = 2*(precision*recall)/ (precision + recall). 

TABLE II.  MEANING OF THE CONFUSION MATRIX SYMBOLS [18] 

Symbol Description 

TP The number of data pairs found in the same cluster, both in C and 

in P. 

FP The number of data pairs found in the same cluster in C but in 

different clusters in P. 

FN The number of data pairs found in different clusters in C but in the 

same cluster in P. 

TN The number of data pairs found in different clusters, both in C and 

in P. 

C means the actual cluster and P means the prediction 
cluster. 

 
Fig. 2. The 14 columns of the dataset 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 12, 2022 

787 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 3. Feature extraction 

IV. RESULTS 

In this section, we present the results of applying the 
Proposed Trace Retrieval Approach described in Section 3, 
which consists of two main phases as shown in Fig 1. 

As mentioned in Section III, we applied four clustering 
models (i.e., K-means++, GMM, Hierarchical, and DBSCAN) 
to the three datasets described in Phase 1 of the proposed trace 
retrieval approach. 

The results of the new proposed trace retrieval approach 
are presented here which include four measures: Precision, 
recall, F-score, and accuracy as shown in (Table III). 

Comparing the proposed approach with two experiments, 
namely TraceLab and IR as shown in Tables IV (A) to (C). 
Tables V (A) to (C) show the comparison results of the 
proposed method and the two studies (i.e., studies [19] and 
[24]). 

First, Table III and Fig. 4 present the results of K-means++ 
for three datasets: eTour, SMOS, and eANCI achieved high 
values compared to GMM, hierarchical DBSCAN results. The 
proposed trace retrieval approach is effective in improving 
precision, recall, F-score, and accuracy. The extent of 
improvement differed from one dataset to another depending 
on the dataset type. We used accuracy as an additional 
measure, whereas TraceLab and Information retrieval R and 
two studies [19] and [24] did not. The proposed approach 
achieved highest results using accuracy with the three datasets 
(i.e., eTour = 0.91, SMOS = 0.66, and eANSI = 0.60). Three 
parameters used in the experiments: max_feature with a value 
of 400 for the eTour dataset, SMOS, featurewiz when 
(corr_limit values) equal 0.5, and corr_limit values equal 0.5 
for eANSI. 

TABLE III.  SUMMARY OF THE RESULTS OF THE PROPOSED TRACE 

RETRIEVAL APPROACH USING TWO CLUSTERING ALGORITHMS FOR THREE 

DATASETS 

 

Fig. 4. Summary of the results of the proposed trace retrieval approach using 

two clustering algorithms for three datasets 

Second, presenting a comparison between the proposed 
trace retrieval approach and two experiments, namely 
TraceLab and IR. Table IV (A) to (C) and Fig. 5(a) to (c) 
present a comparison of the proposed approach and the two 
experiments. The results showed that the former returns the 
greatest improvements in the trace measures. 

 
(a) 

0
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0.8

1

PRCESION  RECALL F-SCORE ACCURACY 

eTour SMOS eANCI

eTour dataset: 

Model Name Precision Recall  FScore Accuracy  

K-means++ 0.93 0.97 0.94 0.91 

SMOS dataset 

K-means++ 0.73 0.76 0.74 0.66 

eANCI dataset 

K-means++ 0.64 0.77 0.70 0.60 
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(b) 

 
(c) 

Fig. 5. (a). eTour result comparison: clustering, IR, and TraceLab (b) SMOS 

result comparison: clustering, IR, and TraceLab (c) eANCI result comparison: 

clustering, IR, and TraceLab 

1) Experiment one (TraceLab): Study [37] designed to 

help and support the reproducibility of experiments in 

software engineering and maintenance. In TraceLab’s visual 

modeling environment [38], IR algorithms are implemented as 

experiments using a library of reusable and user-defined 

components [39]. An already existing experiment, called 

Basic IR [40], which is a standard support vector model 

experiment, was conducted to implement the VSM/TF*IDF 

algorithm. 

2) Experiment two: four steps were applied. The first step 

was preprocessing, which included transforming the upper 

case to the lower case, removing the punctuations and digits, 

converting plurals to singulars, and transforming verbs into 

infinitives. The second step was getting the weight of each 

term into artifacts using TFIDF. The third step was computing 

the similarity between the source and target artifacts using the 

cosine similarity. The fourth and final step was computing the 

precision, recall, and F-score. 

TABLE IV.  (A). ETOUR COMPARED WITH IR AND TRACELAB 

Measure Clustering IR TraceLab 

Precision 0.93 0.39 0.046 

 

Measure Clustering IR TraceLab 

Recall 0.97 0.07 0.98 

 

Measure Clustering IR TraceLab 

F-score 0.94 0.11 0.088 

(B). SMOS COMPARED WITH IR AND TRACELAB 

Measure Clustering IR TraceLab 

Precision 0.73 0.24 0.19 

 

Measure Clustering IR TraceLab 

Recall 0.76 0.14 0.99 

 

Measure Clustering IR TraceLab 

F-score 0.74 0.18 0.32 

(C). EANCI COMPARED WITH IR AND TRACELAB 

Measure Clustering IR TraceLab 

Precision 0.64 0.31 0.03 

 

Measure Clustering IR TraceLab 

Recall 0.77 0.11 0.95 

 

Measure Clustering IR TraceLab 

F-score 0.70 0.16 0.06 

Tables IV (A) to (C) and Fig. 5(a) to (c) show that the 
proposed trace retrieval approach achieved high results with 
three datasets in the precision measure, which was the concern 
in this work. TraceLab achieved high results in recall because 
the precision and F-score measures were very low, and the 
false negative (FN) of the links was more than the true 
positive with the three datasets. The proposed approach 
achieved high results with the three datasets in F-score 
compared to the IR and TraceLab. 

Third, compared the results of the proposed approach and 
those of other studies. Tables V (A) to (C) and Fig. 6(a) to (c) 
present the results obtained from applying clustering models 
into the three datasets. The performance of the proposed 
approach was compared to those of studies 19 and 24, which 
addressed the same problem and used the same datasets. Four 
measures were used: precision, recall, and F-score as the 
comparison metrics. The two studies used precision, recall, 
and F-score, but not accuracy. 

Tables V (A) to (C) and Fig. 6(a) to (c) depict that the 
proposed trace retrieval approach achieved high results with 
precision, recall, and F-Score in the eTour dataset than in the 
two studies. In the SMOS dataset, the proposed approach trace 
retrieval achieved high results using precision, recall, F-Score 
than in the two studies. Meanwhile, in the eANCI dataset, the 
proposed approach obtained low results using precision than 
in the two studies and highest results in recall and F-Score. 

TABLE V.  (A). ETOUR COMPARED WITH THE TWO STUDIES 

Measure Clustering Study [19] Study [24] 

Precsion 0.93 0.68 0.66 

 

Measure Clustering Study [19] Study [24] 

Recall 0.97 0.34 0.59 
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Measure Clustering Study [19] Study [24] 

F-score 0.94 0.46 0.61 

(B). SMOS COMPARED WITH THE TWO STUDIES 

Measure Clustering Study [19] Study [24] 

Precsion 0.73 0.57 0.75 

 

Measure Clustering Study [19] Study [24] 

Recall 0.76 0.29 0.33 

 

Measure Clustering Study [19] Study [24] 

F-score 0.74 0.39 0.51 

(C). EANCI COMPARED WITH THE TWO STUDIES 

Measure Clustering Study [19] Study [24] 

Precsion 0.64 0.73 0.62 

 

Measure Clustering Study [19] Study [24] 

Recall 0.77 0.44 0.54 

 

Measure Clustering Study [19] Study [24] 

F-score 0.70 0.55 0.58 

 

(a) 

 
(b) 

 
(c) 

Fig. 6. (A). eTour result comparison: clustering and studies [19] and [24] 

(B). SMOS result comparison: clustering and studies [19] and [24] (C). 

eANCI result comparison: clustering and studies [19] and [24] 

Finally, the authors will present all the experimental 
results obtained from K-means++, hierarchical, and DBSCAN 
as shown in (Tables VI-XVII). Those tables include different 
results using various parameters used during running the 
experiments such as (max_features). The max_features set the 
maximum number of features to be used by specifying the 
value between (100 and 900). Also, featureswiz package was 
used. The package is available at 
https://pypi.org/project/featurewiz/. featurewiz package is 
used for selecting the most important features using different 
parameters like corr_limit parameter using different values 
(0.1 – 0.9) as follows: 

features, train = featurewiz (data, target, corr_limit=0.9, 
verbose=2, sep=",”, header=0, test_data=" ", 
feature_engg=" ", category_encoders=""). 

First: eTour dataset, (Tables VI and VII) presents the 
results of the experiments obtained from K-means++ and 
hierarchical. 

Table VI shows the result of the proposed trace retrieval 
approach using K-means++ based on max_feature values 
(100,300,400,800). The Table indicated that the precision 
achieved the highest value with all max_feature values. Recall 
achieved the highest results when is max_feature values=400 
and 800 and F-Score with max_feature values=300 and 
400.Finally, the accuracy achieved highest results when is 
max_feature values=300,400, and 800. 

TABLE VI.  ETOUR_K-MEANS ++ (MAX_FEATURE) 

 

Measure’s name 

max_feature values 

800 400 300 100 

Precision 0.93 0.93 0.93 0.93 

Recall 0.97 0.96 0.96 0.95 

F-Score 0.93 0.94 0.94 0.93 

Accuracy 0.91 0.91 0.91 0.90 
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According to Table VII, the proposed trace retrieval 
approach using hierarchical based on the max_feature values 
achieved the highest results with precision, recall, F-Score, 
and accuracy when is max_feature value =950. 

TABLE VII.  ETOUR_ HIERARCHICAL (MAX_FEATURE) 

Measure’s name  Max_feature vlues 

800 400 300 950 

Precision 0.91 0.91 0.91 0.93 

Recall 0.56 0.56 0.56 0.95 

F-score 0.69 0.69 0.69 0.93 

Accuracy 0.56 0.57 0.56 0.90 

Second: SMOS dataset, (Tables VIII–XII) presents the 
results of the experiments obtained from K-means++ and 
hierarchical. 

Table VIII indicates the results of the proposed trace 
retrieval approach using K-means++ based on max_feature 
values (100 - 500). Precision achieved the highest results 
when are max_feature values-=400. Both Recall and accuracy 
achieved the highest results when is max_feature values=500, 
and F-score achieved the highest results when are max_feature 
values=300 

TABLE VIII.  SMOS_ K-MEANS ++MAX_FEATURE (MINMAX_SCALARE) 

The authors inferred that the corr_limit values enhance 
precision, recall, F-Score, and accuracy with different values 
as shown in Table IX. Precision achieves the highest results 
when the corr_limit values =0.7 and 0.5. Recall and accuracy 
obtain the highest results when the corr_limit values = 0.7.  F-
Score obtains the highest result when corr_limit values=0.7 
and 0.5. 

TABLE IX.  SMOS_KMEANS++ USING FEATURE_WIZ (MIN, AXSCALER) 

Measure’s name  Corr_limit values 

0.7 0.5 0.4 0.3 

Precision 0.72 0.72 0.71 0.71 

Recall 0.71 0.70 0.67 0.67 

F-score 0.71 0.71 0.69 0.69 

Accuracy 0.64 0.63 0.61 0.61 

As shown in Table X, the proposed trace retrieval 
approach using K-means++ based on standard scalar 
(corr_limit values). Precision and accuracy achieve the highest 
results when corr_limit value=0.5. Also, the recall and F-

Score achieved the highest results when is corr_limit 
value=0.3. 

TABLE X.  SMOS_KMEANS ++ USING (STANDARD SCALAR) 

Measure’s name 

 

Standard scalar  

(corr_limit values) 

0.5 0.4 0.3 0.6 

Precision 0.73 0.70 0.66 0.71 

Recall 0.76 0.75 0.96 0.77 

F-score 0.74 0.72 0.78 0.74 

Accuracy 0.66 0.63 0.65 0.64 

Table XI lists the results of the proposed trace retrieval 
approach using hierarchical based on max_feature values 
(100,200, 300, and 500). The precision achieved the highest 
value with all values of the max_feature. Recall, F-Score, and 
accuracy obtains the highest value when is max_feature values 
=500. 

TABLE XI.  SMOS_ HIERARCHICAL MAX_FEATURE(MINMAX_SCALARE) 

Measure’s 

name  

max_feature values 

500 300 200 100 

Precision  0.71 0.71 0.71 0.71 

Recall 0.80 0.79 0.73 0.77 

F-score 0.76 0.75 0.72 0.74 

Accuracy 0..66 0.65 0.64 0.64 

Table XII presents the proposed trace retrieval approach 
using hierarchical based on featurewiz using (corr_limit 
values). Precision achieved highest results when is corr_limit 
value=0.5. The recall, F-Score, and results enhance when 
corr_limit values equal 0.6. Accuracy when corr_limit equal 
0.5 and 0.6 

TABLE XII.  SMOS _ HIERARCHICAL USING SELECT FEATURES 

(FEATUREWIZ) 

Measure’s name 

 

Standard scalar (corr_limit values) 

0.5 0.6 0.4 0.8 

Precision 0.73 0.67 0.71 0.71 

Recall 0.75 0.94 0.68 0.76 

F-score 0.74 0.78 0.69 0.73 

Accuracy 0.66 0.66 0.62 0.65 

Third: eANCI dataset, (Tables XIII-XVII) presents the 
results of the experiments obtained from DBSCAN, K-
means++, and hierarchical. 

The proposed trace retrieval approach using DBSCAN 
achieved the highest value in precision when is corr_limit 
values-=0.5 and 0.7. Recall F-Score,and accuracy achieved the 
highest value when is corr_limit values=0.7 as shown in Table 
XIII. 

Measure’s 

name 

max_feature values 

500 400 300 200 100 

Precision 0.71 0.72 0.71 0.71 0.71 

Recall 0.80 0.74 0.79 0.73 0.69 

F-score 0.75 0.73 0.77 0.70 0.68 

Accuracy 0.66 0.65 0.65 0.64 0.62 
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TABLE XIII.  EANCI_DBSCAN USING FEATUREWIZ 

Measure’s name 

 

Standard scalar (corr_limit values 

0.5 0.6 0.7 

Precision 0.64 0.61 0.64 

Recall 0.71 0.53 0.77 

F-score 0.67 0.57 0.70 

Accuracy 0.57 0.51 0.60 

As shown in Table XIV, the proposed trace retrieval 
approach using K-means++ based on standard scalar achieves 
highest precision with all values of the Max_feature. Recall-
Score, and accuracy achieves the highest results when are 
Max_feature =200. 

TABLE XIV.  EANCI_KMEANS ++ USING MAX_FEATURE 

Measure’s name Max_feature 

100 200 300 

Precision  0.63 0.63 0.63 

Recall  0.82 0.84 0.84 

F-Score 0.71 0.72 0.72 

Accuracy 0.59 0.60 0.72 

From Table XV, the authors inferred that the proposed 
trace retrieval approach using K-means++ based on standard 
scalar (corr_limit values) achieves the highest results with 
precision when is corr_limit value=0.5 and 0.7. Recall, F-
Score, and accuracy achieved the highest results when is the 
corr_limit value=0.7. 

TABLE XV.  EANCI_ KNEAMS USING FEATURERWIZ 

Measure’s 

name 

Standard scalar (corr_limit values) 

0.5 0.6 0.7 

Precision 0.64 0.61 0.64 

Recall 0.71 0.53 0.77 

F-score 0.67 0.57 0.70 

Accuracy 0.57 0.51 0.60 

According to Table XVI, the proposed trace retrieval 
approach using hierarchical achieves the highest results for 
precision, Recall, F-Score, and accuracy when is MinMax 
scalar = 100. 

TABLE XVI.  EANCI_ HIERARCHICAL USING MAX_FEATURE 

Measure’s name  Standard scalar = 400 Standard scalar = 100 

Precision 0.62 0.63 

Recall 0.68 0.77 

F-score 0.65 0.69 

Accuracy 0.56 0.59 

As shown in Table XVII, the proposed trace retrieval 
approach using a GMM based on a standard scalar achieves 

the highest value in precision, Recall, F-Score, and accuracy 
when is corr_limit values = 0.5. 

TABLE XVII.  EANCI _GMM_ USING FEATUREWIZ 

Measure’s name Standard scalar (corr_limit values) 

0.5 0.6 

Precision 0.63 0.61 

Recall 0.65 0.52 

F-score 0.63 0.56 

Accuracy 0.56 0.50 

Regardless of the results, the suitable intelligent solution 
for addressing the term mismatch problem between 
requirements and source code for a few labels or unlabelled 
data is UNSUPERVISED machine learning using clustering, 
which is the only way to solve the problem of labels and 
enhance low precision. 

V. EVALUATION 

This section presents the evaluation method of the 
retrieved links evaluated with respect to two criteria. The first 
criterion is the performance of the three measures (i.e., 
precision, recall, and F-score), when evaluating the 
traceability links between the source and target artifacts. The 
second criterion is the comparison of the proposed trace 
retrieval approach with two experiments (IR and TraceLab) as 
shown in Tables IV (A) to (C) and two studies ([19]and [24]) 
as shown in Tables V (A) to (C). The proposed trace retrieval 
approach achieved high results compared to the two 
experiments and the two studies. 

VI. CONCLUSION AND FUTURE WORK 

This study presented new clustering-based approach that 
addresses the term mismatch problem to obtain the greatest 
improvements in precision. The study followed the proposed 
research direction toward realizing automated trace retrieval 
by developing intelligent tracing solutions. Then the authors 
applied the intelligent solution that is based on unsupervised 
learning using clustering. After that, evaluate the proposed 
approach results with respect to two criteria: performance of 
the confusion matrix (i.e., precision, recall, F-score) and 
comparison of the proposed trace retrieval approach with two 
experiments and two studies. Clustering yields high results in 
precision with other measures (i.e., recall, F-score, and 
accuracy), which is a big concern associated with trace 
retrieval precision. 

In the future work, the authors will look for another 
intelligent solution that can be applied to the same datasets 
(i.e., eTour, SMOS, and eANCI) for improving trace retrieval 
precision. 
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