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Abstract—Deep object detection models are important tools
that can accurately detect objects and frame them for the user
in real time. However, in low visibility conditions, such as fog
or low light conditions, the captured images are underexposed
and blurred, which negatively affects the recognition accuracy
and is not well visible to humans. In addition, the image
enhancement model is complex and time-consuming. Using the
image enhancement model before the object recognition model
cannot meet the real-time requirements. Therefore, we propose
the Parallel Detection and Enhancement model (PDE), which
detects objects and enhances poorly visible images in parallel
and in real time. Specifically, we introduce the specially designed
tiny prediction head along with coordinated attention and multi-
stage concatenation modules to better detect underexposed and
blurred objects. For the parallel image enhancement model, we
adaptively develop improved weighting evaluation models for
each “3D Lookup Table” module. As a result, PDE achieves
better detection accuracy for poorly visible objects and more user-
friendly reference in real time. Experimental results show that
PDE has significantly better object recognition performance than
the state-of-the-art on real foggy (8.9%) and low-light (20.6%)
datasets.

Keywords—Low-visibility condition; image enhance; object de-
tection

I. INTRODUCTION

Deep learning is used for many tasks, such as model fit-
ting [1]–[3], object detection [4], [5], and so on. Recently, deep
object detection models [6]–[8] have been widely used in daily
life. These models provide accurate and 7×24 consistent object
recognition, which facilitates people’s work and helps them
detect inconspicuous objects. However, in most places in the
world, it is dark 42% of the day and there are one to three rainy
or foggy days per week. These natural phenomena inevitably
affect the performance of deep object detection models [9]–
[11]. In addition, object detection models must filter out objects
for user reference in real time (processing more than 30 frames
per second). In this context, object detection in low visibility
conditions has attracted much attention in both academia and
industry to enable accurate and view-friendly object detection
at all times of the day and under all climatic condition [12]–
[14].

To mitigate the negative effects in low visibility conditions,
current research can be divided into two classes: 1) Two-stage
models: Two-stage models use image enhancement models to
first enhance the images with poor visibility and then train the
object detection model on the enhanced images [15], [16]. For
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example, [17] used “GridDehaze” to denoise foggy images,
and [18] introduced a brightening step to lighten the images
before object detection. 2) Joint Learning Models: Joint learn-
ing models jointly train an image brightening model and an
object detection model to deal with poorly visible images [19],
[20]. More specifically, two subnetworks [21] with common
feature extraction layers are used to simultaneously detect the
objects and brighten the images.

As shown in Fig. 1, current object detection models cannot
detect and display objects well due to the following three
challenges: 1) Out-of-focus and low-contrast objects. In low
visibility conditions, objects are out of focus and low contrast,
so their detectable areas are smaller and blurrier than in
high quality images. This negatively affects the accuracy of
conventional object detection methods originally developed
for high-quality images. 2) Unfavorable representation in poor
visibility conditions. Images captured in poor visibility con-
ditions are not well visible to the user. It is necessary to
enhance the images and frame the objects clearly for the
user. 3) Real-time processing requirements. To meet real-time
requirements, the entire process of image enhancement and
object detection should be performed at more than 30 frames
per second. In the two-stage models, the image enhancement
step and the object recognition step are processed serially,
which further limits the processing time of each step and
results in unsatisfactory performance of both steps. In the
joint learning models, the image enhancement model and the
object detection model have completely different optimization
objectives. The joint optimization of these two models may
result in a wobble phenomenon, leading to better performance
in image enhancement or recognition, but negatively affecting
the other objective.

To this end, we study the problem of how to achieve
better enhancement and detection while meeting real-time
requirements. Specifically, we investigate the following three
research questions. 1) How can the enhancement and detection
steps be decoupled to improve both together? 2) How can
objects with blurred edges be accurately detected? 3) How
can images with poor visibility be enhanced to better present
recognition results to users? By exploring the above questions,
our work makes the following three contributions.

● We propose a novel parallel framework called Parallel
Detecting and Enhancing models (PDE) that can solve
the wobble problem while improving detection and
enhancement performance.

● PDE introduces a tailored model for detecting objects
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Fig. 1. Intuitive cases explaining the problems of object detection in low visibility conditions. The first row shows the images taken on foggy days. The second
row shows the images taken in low-light conditions.

in low-visibility images by introducing a tiny pre-
diction head to detect objects with smaller detection
areas. In addition, PDE uses coordinated attention and
multi-stage concatenation to further improve detection
performance in low visibility.

● PDE incorporates a specially designed image enhance-
ment model by developing an adaptively enhanced
weighting model for each “3D Lookup Table” module
to achieve better enhancement performance.

To prove the efficiency of our approach in object detection,
we evaluate the proposed model on synthetic and real low
visibility datasets. Experimental results show that PDE has
significantly better object detection performance on two real
datasets with fog (8.9%) and low light (20.6%). In addition,
case studies show that PDE provides more accurate object de-
tection and clearer rendering than other low visibility models.

The remainder of this article is organized as follows:
Section II provides related work, including object detection,
image enhancement, and multi-tasking in low visibility. Sec-
tion III describes the proposed method used for low visibility
images. Section IV presents the comprehensive experimental
results of our method compared with other methods. Section V
concludes our work.

II. RELATED WORK

A. Object Detection

CNN-based target detectors can be divided into two types
according to the steps of image processing: 1) Single-stage
detectors: YOLOv4 [22], YOLOv5 [23], FCOS [24], and
EfficientDet [25]. 2) Two-stage detectors: R-CNN [26], R-
FCN [27], Mask R-CNN [28], Fast R-CNN [29], etc. From
the point of view of composition, they both consist of two
parts. One part is the CNN-based basic framework, which is
used to extract image features. The other part is the prediction
head, which is responsible for classification and localization.
In addition, existing object detectors add some layers between
the basic framework and the head, which are called the neck of
the detector. The three structures are described in detail below.

Backbone. The backbone often uses VGG [30],
ResNet [31], EfficientNet [32], CSPDarknet53 [33], Swin-
Transformer [34], etc., rather than networks designed by
ourselves, since these networks have been shown to have
strong feature extraction capability in computer vision tasks.
However, the backbone network can be fine-tuned to make it
more suitable for specific tasks.

Neck. The neck was designed to make more efficient use
of features extracted from the backbone network. Its main
task is to further process and use the features extracted from
the backbone in different stages. The neck usually consists of
several top-down and several bottom-up paths. The neck is an
important component of the object recognition network and
connects the backbone to the head. Commonly used linking
modules for the neck include FPN [35], NAS-FPN [36],
PANet [37], BiFPN [25], ASFF [38], etc. The common point
of these modules is the iterative use of various upsampling,
downsampling, dot-sum or dot-product methods to develop
aggregation strategies.

Head. In the detection task, the backbone cannot per-
form the localization task. Therefore, the head network is
responsible for detecting the location and class of objects
based on the feature maps extracted from the backbone. Head
networks are generally divided into two categories: single-
stage object detectors and two-stage object detectors. The most
representative two-stage object detector is the R-CNN [26],
[39] series. Compared to the two-stage detector, the single-
stage object detector predicts both the bounding box and the
object class simultaneously. The most representative single-
stage object detectors are YOLO [22], [40], SSD [41], and
RetinaNet [42] series.

B. Image Enhancement

Image adjustment determines a threshold based on the gray
level range of the image. If it is below the threshold, automatic
color gradation enhancement is applied. On the other hand,
if it is above the threshold, enhancement methods based on
histogram equalization and inverse equalization are performed.
The adaptive image enhancement method can enhance not
only low-contrast images, but also partially dark and partially
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Fig. 2. An overview of the working pipeline with PDE. PDE can detect objects and enhance the low-visibility images in parallel and in real time. The label
and coordinate values are obtained by the object detection model. Then we overlay the detected images with the enhanced image to get the final output.

light images with high robustness, so that the enhanced images
have a better visual effect. Image adjustment is a widely used
technique in image enhancement. Some classical methods [43],
[44] use adaptive filters to control the contributions of the
various enhancement operations so that contrast enhancement
occurs in regions of high detail. [45] proposed a Deep Learning
model that trains data on unpaired images. A Deep Reinforce-
ment Learning approach is also used to decide what action
to take given the current state of the images. [46] effectively
transforms the color and hue of the source image by using a
small CNN to learn image-adaptive 3D lookup tables.

C. Multi-Task in Low-Visibility Conditions

Existing models for object detection in low visibility
include several tasks, such as image denoising and object
detection. Depending on the order in which the different tasks
are performed, they can be divided into two classes: two-
stage models and joint learning models. Two-stage models [5],
[15], [17] use classical visualization enhancement methods to
process images before detection. For example, [47] proposed
an AOD-Net for foggy conditions that denoises images before
detection. However, the object detection models have strict
requirements for deriving the time. When the image enhance-
ment model and the object detection model are connected in
series, the recognition time of both models is constrained,
resulting in suboptimal performance in enhancement and de-
tection. Joint learning models [19], [21] have performed image
enhancement and object detection using a joint structure to
better recognize images with low visibility. However, it is
difficult to adjust the parameters to balance the completely
different optimization goals of image enhancement and object
detection. For this reason, [48] proposed an unsupervised
adaptive system for object detection in rain and fog. After
that, many works [49]–[51] emerged to improve the detection

performance by using range adaptation. [52] proposed a robust
learning method to resist interference from poor visibility and
reduce the information loss caused by range adaptation. [20]
developed a joint learning model (IA-YOLO) that combines
image matching enhancement and object detection to meet the
requirements of real-time recognition. In this work, we use
the classical single-stage model YOLOv5 [53] as a basis and
improve its performance under low visibility conditions.

III. PROPOSED METHOD

The PDE synchronizes the input image with the object
detection module and the image enhancement module, as
shown in Fig. 2. First, the object detection module detects the
image to obtain the coordinates and classification information
of the target. Second, the image enhancement module reduces
the weather noise and increases the brightness of the input
image to obtain a more user-friendly reference. Finally, the
coordinates and classification information of the target are
written into the enhanced image to obtain the result. In
this section, we introduce the object detection and image
enhancement modules.

A. Detection Network Module

Images captured in low visibility conditions contain in-
terference from environmental information that makes object
detection difficult. To overcome this challenge, PDE introduces
a customized model for low-visibility object detection by
importing a tiny prediction head and further employing coor-
dinated attention and multi-stage concatenation to improve the
performance of low-visibility detection. As shown in Fig. 3, the
object detection model is a newly developed implementation
of YOLOv5. These tricks help deep neural networks accurately
locate and identify objects by reducing the detrimental effects
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Fig. 3. The object detection module. 1) A coordinate attention block (CoordAtt) is located at the bottom of the backbone network. 2) The multi-stage
concatenation module (MSC) replaces the original concatenation module. 3) The number of prediction heads has been increased from 3 to 4.

of detectable zones that are smaller and blurrier than in high-
quality images. In addition, the model combines feature maps
generated by shallow and deep neural networks so that se-
mantic information and location features can be fully utilized.
Moreover, an explicit supervised learning task is formed by
setting a learning weight parameter. In this way, excellent
learning results are obtained by perfectly distinguishing the
importance of feature maps from shallow and deep neural net-
works. Therefore, the representative features can be accurately
retrieved and appropriately represented, which improves the
overall detection performance of the model. To get a clearer
picture of the core of the object recognition module, we will
describe the above methods and loss functions in detail below.

Coordinate Attention. Attentional mechanisms have been
shown to be effective in many visual tasks. The core of the
attentional mechanism is to enhance the model’s ability to
extract and represent important features, similar to the way
humans selectively focus on important parts rather than the
totality of information. However, most attention mechanisms
only consider the information between channels and not the
information about spatial location. This ignores the part of the
information that is hidden in space and fails to extract the op-
timal representation of the features. Moreover, the convolution
operation can only extract local relations, but not relations over
long distances. To this end, we use coordinate attention [54] to
capture spatial relationships over long distances with precise
location data by embedding the location information into the
channel attention. Specifically, each input X is decomposed
into w and h dimensions, and the decomposed tensors are pro-
cessed by global pooling to generate Xw and Xh, respectively.
Feeding into a convolutional block with the concatenated
tensors Xw and Xh generates an encoded Y that summarizes

the extracted features of Xw and Xh. The set of operations
can be formulated as follows:

Y = f(G({Xw,Xh} ○W )) (1)

where {Xw,Xh} means concatenating Xw and Xh, ○
means convolution operation, G and f denote normalization
and activation function, respectively, and W is the convolution
filter. Furthermore, we split Y again to obtain X̂w and X̂h:

X̂w, X̂h = Split(Y ) (2)

Also, X̂w and X̂h are convoluted and activated to get the
final output:

Yout =X × σ(F (X̂w)) × σ(F (X̂h)) (3)

where F denotes convolution and σ denotes the sigmoid
function.

By combining attention along the horizontal and vertical
directions of the input sensor, each element of the attention
maps can reflect in two directions whether the object of interest
is present in the corresponding row and column. In this way,
coordinated attention can more accurately determine the exact
location of the object so that the entire model can better
identify objects.

A Tiny Prediction Head. Feature sensitivity is one of
the most important properties of the model for extracting key
information from noisy images. The best way to achieve this
is to add observations from different viewpoints and combine
them to make better use of the fine-grained features from
different viewpoints and achieve better feature representation.
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However, we find that there are three different scales of
prediction heads in the original YOLOv5 model, namely
256×256, 384×384 and 512×512, and the number of anchor
images is 9. Although YOLOv5 has been observed from three
perspectives, the recognition results are still not satisfactory for
noisy images, as shown in Fig. 4. To this end, we add a tiny
prediction head with a scale of 128×128 to extract features
from a more microscopic perspective. We also increase the
number of anchor frames from 9 to 12. Although this is only an
incremental change to the detection head, the structure of the
multi-detection head contributes significantly to improving the
model performance, as shown in the Table IV of experimental
results. We also found that the number of detection heads is not
as large as possible and that the structure with four detection
heads is the most stable and effective. Given the input X, the
individual steps are as follows:

Z =
N

∑
i=1

Anchori ⊕Xi (4)

where N denotes the number of prediction heads. Anchor
denotes an anchor frame set based on prior knowledge. ⊕
denotes the matching of Anchor with X to obtain a set of pre-
diction boxes. Then, the result after matching is concatenated
with the original input X. Finally, the convolution operation
is used to continuously traverse the entire region to obtain the
final feature map. The details are as follows:

Out = Conv(Concat(Z,X)) (5)

where Out denotes the final feature map.

Multi-Stage Concatenation. The receptive field, the most
important component in CNN-based models, is used to extract
abstract features layer by layer. In deep layers, the receptive
field is relatively large to extract features, and conversely, it
is smaller in shallow layers. In general, feature maps captured
by larger receptive fields have stronger semantic representation
but weaker spatial representation. In contrast, feature maps
captured by smaller receptive fields have weaker semantic
representation but stronger spatial representation. To this end,
we combine the original concatenation module with the BiFPN
algorithm [25] to fully exploit the properties of feature maps
from deep and shallow layers. The importance of features from
different layers is defined by a learnable weighting parameter
W . The parameter is defined as :

Wi =
Xi

∑Xi + ε
(6)

where Xi denotes the input of each layer, and Wi denotes
the weight parameter of each input layer. ε is set to 0.0001.

According to Eq. 6 the formation of the result can be
formulated as follows:

Y = Conv(ReLu(
N−1

∑
i=0

Wi ×Xi)) (7)

where Y denotes the result and Conv denotes the convo-
lution operation; Relu denotes the activation function and N
denotes the number of input layers. Both semantic features and
spatial features can be transferred to different depth layers by

feature fusion and mapping. This method improves the model’s
ability to extract and express features, and thus improves
recognition performance.

Loss Function. The loss function of YOLOv5 divides
the objective function into three subfunctions, namely object,
classification, and regression. However, we found that the
original loss function uses the basic Intersection-over-Union
(IoU) loss, which limits the ability to measure the overall
performance of the model. The total loss is calculated as
follows:

Loss = wobj × lossobj +wcls × losscls +wreg × lossreg (8)

where lossobj , losscls, and lossreg denote the object objec-
tive function, classification objective function, and regression
objective function, respectively. wobj , wcls, and wreg denote
their weighting values set a priori to 0.3, 0.05, and 0.7,
respectively.

To better measure the difference between confidence in
the predicted object and the true value, we construct this
objective function lossobj based on cross-entropy loss. For a
given predicted value x and a true value y, the equation is as
follows:

lossobj = −
1

n

n

∑
i=1

(yi × ln i + (1 − yi) × ln (1 − xi)) (9)

Although the predictions are multiclassification, there is
only one positive sample, so we use the loss of cross entropy.
After we use the cross entropy as the loss function, the gradient
of the backpropagation is no longer associated with the deriva-
tive of the sigmoid function. This avoids the disappearance of
the gradient to some extent. lossobj is the same as losscls.

In the regression task, the most direct indicator to determine
the distance between the predicted box and the ground truth is
the intersection over union (IoU), and IoU = ∣A∩B∣

∣A∪B∣
, however,

does not accurately reflect the intersection of the two boxes
and cannot be trained further due to disjunction. Therefore, we
use the complete-IoU [55] to construct the objective function
of the regression task. We consider the similarity of the aspect
ratio between the ground truth and the predicted box.

lossreg = 1 − IoU +
β2 × (bp, bg)

c2
+ α × ν (10)

α = ν

ν − IoU + (1 + ε) (11)

ν = 4

π2
× (wg

hg
− wp

hp
)2 (12)

where bp and bg denote the centers of the prediction box
and the ground truth, respectively. β denotes the Euclidean
distance between the two centers. c denotes the distance of the
diagonals of the smallest region containing both the prediction
box and the ground truth. α denotes the weighting parameter.
ν is used to measure the similarity between the aspect ratio of
the prediction box and the ground truth.
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B. Image Enhancement Module

The 3D lookup table is an algorithm that reconstructs the
hue of an image by creating a color map. The essence of the
3D lookup table is an mapping relation: (R,G,B) = f(r, g, b),
where f represents the mapping function. Moreover, it is
an intuitive idea to learn a classifier to classify the scene.
Suppose M 3D lookup tables, denoted by {µn}n=1,...,M , are
learned. The classifier outputs N probabilities {pn}n=1,...,N for
classifying the scene. The process of 3D lookup table selection
can be described as follows:

q = µi(x), s.t. i = arg max
n

pn (13)

where x denotes an input image and q the output. Another
common method for improving image quality is to manually
adjust the parameters of a 3D lookup table. However, manually
adjusting the parameters is extremely time consuming when
processing large images. The parameters need to be adjusted
based on scenarios that have different negative effects. There-
fore, the applicability of the method is hindered by a lack of
flexibility and practicality.

H. Zeng developed an end-to-end adaptive image en-
hancement method [46] based on 3D lookup tables and a
convolutional network. The model learns how to improve
image quality based on paired data, namely the affected
images and the images optimized by experts. To this end, we
propose a specific model for image enhancement by developing
adaptive models for each “3D Lookup Table” to improve the
weighting evaluation. Moreover, in this work, we train the
image enhancement model by combining preprocessed images,
i.e., foggy images and low-light images, with clear original
images.

The image enhancement model introduces 4 basic 3D
lookup tables along with a CNN-based model g that predicts
weights for the output of each 3D lookup table. For an input
image x, the final enhancement result is as follows:

q =
4

∑
n=1

wnµn(x) (14)

where {wn}n=1,...,4 = g(x) are the content-dependent
weights output by the CNN-based model. Specifically, we
use different 3D lookup tables to enhance different images.
Moreover, the color space of the image is transformed using
3D lookup tables, while the CNN weight predictor extracts
information about the image content, including hue, brightness,
contrast, etc. The weights obtained by the CNN predictors are
assigned to the corresponding 3D lookup tables. Therefore, our
model adaptively improves the image quality according to the
image content and scene in low visibility conditions.

IV. EXPERIMENTS

We evaluate the effectiveness of PDE in fog and low-
light conditions. We report the object detection metric mAP
(average of all 10 IoU thresholds in the range of [0.5: 0.95])
and the image enhancement metrics PSNR (Peak Signal to
Noise Ratio) and SSIM (Structure Similarity). We will present
this section under the following aspects.

A. Experimental Details

Datasets. For the two tasks that PDE faces, i.e., target
detection and image enhancement, we need to take different
approaches to create datasets for the corresponding tasks so
that we can effectively evaluate the performance of the model.

In object detection, we first evaluate the detection perfor-
mance of the model under three conditions, including normal,
foggy, and low light. We use the VOC dataset [56], [57]
as a benchmark and the RTTS dataset [58] and the ExDark
dataset [59] as test sets. To make better use of these datasets,
we filtered out the common categories of the datasets. The
VOC dataset shares five categories with the RTTS dataset,
namely pedestrians, cars, buses, bicycles, and motorcycles.
Similarly, the VOC dataset shares 10 categories with the Ex-
Dark dataset, namely, bicycles, boats, bottles, buses, cars, cats,
chairs, dogs, motorcycles, and people. The VOC 5c training
dataset and the VOC 5c test dataset, namely VOC 5c train
and VOC 5c test, are created after screening and consist of
8111 and 2734 images, respectively.

Although we already have a dataset for normal conditions,
we lack sufficient images of foggy conditions and low light
conditions. Therefore, we use a weather simulation algorithm
to simulate images under low visibility conditions. Accord-
ing [60], for the original input image O(x), the foggy image
F (x) can be calculated as follows:

F (x) = O(x) × g(x) +L × (1 − g(x)) (15)

where L denotes global atmospheric light, and g(x) de-
notes the medium transmission map, which is defined as:

g(x) = e−β × s(x) (16)

where β denotes the scattering coefficient of the atmo-
sphere, and s(x) denotes the scene depth which is calculated
by

s(x) = −0.04 × ρ +
√
max(row, col) (17)

where ρ denotes the Euclidean distance from the current
coordinate to the pixel coordinate of the image center, row and
col represent the number of rows and columns of the images.
Combining the Eq. 15, 16 and 17, we obtain the following
equation for the generation of fog images:

F (x) = O(x) × e−β × s(x) +L × (1 − e−β × s(x)) (18)

In this work, L is set to 0.5 and β is calculated using the
formula β = 0.05 + 0.01 × Num. Num is set to a random
integer between 0 and 9. In this way, for each input image,
we get up to 10 foggy images with different effects of fog
concentration.

Similarly, we simulate low lighting conditions to create the
low lighting conditions dataset. For a given input image, each
pixel x in the image is transformed as follows:

f(x) = xγ (19)

where γ is determined randomly from a uniform distribu-
tion with a range of values of [1.5, 5].
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TABLE I. AN OVERVIEW OF ALL DATA SETS USED IN THIS EXPERIMENT

Dataset Number
VOC 5c train 8111
VOC 5c test 2734

VOC 10c train 12334
VOC 10c test 3760
VOC fog train 8111
VOC fog test 2734

VOC low-light train 12334
VOC low-light test 3760

RTTS 4322
ExDark 2563

LUTs fog train 20000
LUTs fog test 2000

LUTs low-light train 20000
LUTs low-light test 2000

To achieve ideal recognition performance under normal
and low visibility conditions, we use a hybrid data training
scheme for PDE. Each image in the normal datasets has a 2/3
probability of being randomly tagged with some kind of fog
or converted to a low-visibility image before being input to the
model for training. The hybrid data contains images from both
normal and low visibility situations. The model becomes more
robust when it learns with normal and low visibility images
simultaneously, resulting in high performance.

Second, training an image enhancement model for image
enhancement tasks requires a large amount of data to achieve
an excellent result. Therefore, we extend the data again based
on the simulated images in foggy and low-light conditions
in the object recognition task. For the foggy conditions, we
first add three random fog patches to each image in the
VOC 5c train dataset. Second, we randomly select 20,000
images from this dataset to form the fog training dataset, i.e.,
LUTs fog train. Similarly, we first randomly add fog to each
image in the VOC 5c test dataset. Second, we randomly select
20,000 images from this dataset to form the test dataset under
foggy conditions, i.e., LUTs fog test.

In low light conditions, we perform the same steps to
obtain the dataset, i.e. LUTs low-light train and LUTs low-
light test.

We count the number of all records for this experiment,
as shown in Table I. VOC 5c train, VOC 5c test,
VOC 10c train, VOC 10c test, VOC fog train,
VOC fog test, VOC low-light train, and VOC low-light test
denote training and test sets, respectively, for object detection
under normal, foggy, and low-light conditions. RTTS
and ExDark are real-world datasets consisting of images
taken under foggy and low-light conditions, respectively.
LUTs fog train, LUTs fog test, LUTs low-light train, and
LUTs low-light test denote training and test datasets for
image enhancement in foggy and low-light conditions,
respectively.

Baselines. This work focuses on improving the accuracy
of object detection in low visibility conditions, complemented
by image enhancement techniques to obtain more user-friendly
references. Therefore, we perform comparison experiments and

ablation experiments mainly for the object recognition module,
while for the image enhancement module, we only present its
experimental results without detailed comparison with other
excellent methods.

To evaluate the universality and effectiveness of PDE in
fog and low-light conditions, we choose YOLOv5 as our
baseline model. In addition, we compare our model with
other excellent models for detecting objects in low visibility.
We choose the real-time target detection model YOLOv3 as
our comparison model. We also choose GridDehaze [35],
MSBDN [5], and ZeroDCE [15], the most widely used CNN-
based image enhancement methods, to process images before
detection and then combine them with the object detection
model YOLOv3 [43]. GridDehaze and MSBDN are both image
enhancement models for removing fog by developing novel
network modules to learn more effective feature representa-
tions for image unveiling. ZeroDCE achieves effective image
enhancement by implementing intuitive and simple nonlinear
curve mapping to adapt to different lighting conditions. For the
domain adaptation approach, we choose DAYOLO [19], which
combines multiple adaptation paths and corresponding domain
classifiers with the YOLO object detector to produce domain-
invariant features. For the multi-task learning algorithm, we
choose DSNet [22], which can learn denoising and detection
together. We also choose IA-YOLO [34], which can adaptively
enhance each image to improve detection performance.

B. Experiments Results

To fully demonstrate detection performance, for each
model we evaluate the model’s ability to recognize objects
under different conditions, namely normal, foggy, and low
light. The improvements are calculated by comparing PDE
with the best baseline (underlined). From Table II and Table III,
it can be seen that PDE significantly outperforms the other
SOTA models at low visibility in the detection scene in all data
sets and at all settings. In particular, for the mAP metric, PDE
outperforms the baseline model by 8.9% (RTTS) and 19.7%
(VOC fog test) in foggy conditions. In low-light conditions,
PDE outperforms the baseline model by 20.6% (ExDark) and
15.8% (VOC low-light test).

These results demonstrate the consistent superiority of our
PDE in detection performance under poor visibility conditions.
Moreover, the PDE also performs better than the corresponding
best baselines in a normal scene. This phenomenon proves the
strong scalability of PDE.

Image enhancement is a secondary task that helps improve
the display for the user, as this work focuses on target detec-
tion. Therefore, we did not perform comparison experiments
for the image enhancement task. We evaluate the model’s
ability to enhance images in fog and low-light conditions. For
the PSNR metric, PDE achieves a score of 23.64 (fog test
set) and 23.97 (low-light test set). For the SSIM metric, PDE
achieves a value of 0.838 (fog test set) and 0.827 (low-light test
set). In the following subsection IV-D, we conduct a case study
to illustrate the excellent results of the image enhancement
task.

C. Ablation Study

To test the effectiveness of the object detection model in
PDE, we compare the detection performance of our model
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TABLE II. COMPARISON OF DETECTION PERFORMANCE WITH BASELINES IN TWO SCENARIOS, INCLUDING NORMAL AND FOGGY CONDITIONS. THE
IMPROVEMENTS ARE COMPUTED BY COMPARING OUR MODEL WITH THE CORRESPONDING BEST BASELINES (UNDERLINED)

Model Train data VOC 5c test VOC fog test RTTS
MSBDN [5] VOC 5c train - 57.4 30.2

GridDehaze [35] VOC 5c train - 58.2 31.4
DAYOLO [19] Hybrid data 56.5 55.1 29.9

DSNet [22] Hybrid data 53.3 67.4 28.9
IA-YOLO [34] Hybrid data 73.2 72.0 37.0
YOLOv3 [43] VOC 5c train 70.1 31.1 28.8
YOLOv3 [43] Hybrid data 64.1 63.4 30.8
YOLOv5 [23] VOC 5c train 86.2 68.5 45.1
YOLOv5 [23] Hybrid data 85.6 71.4 50.5

PDE Hybrid data 86.7(1.3%↑) 85.5(19.7%↑) 55.0(8.9%↑)

TABLE III. COMPARISON OF RECOGNITION PERFORMANCE WITH BASELINES IN TWO SCENARIOS, INCLUDING NORMAL AND LOW LIGHT CONDITIONS.
THE IMPROVEMENTS ARE COMPUTED BY COMPARING OUR MODEL WITH THE CORRESPONDING BEST BASELINES (UNDERLINED)

Model Train data VOC 10c test VOC low-light test ExDark
ZeroDCE [15] VOC 10c train - 33.6 34.4
DAYOLO [19] Hybrid data 41.7 21.5 18.2

DSNet [22] Hybrid data 64.1 43.8 37.0
IA-YOLO [34] Hybrid data 70.0 59.4 40.4
YOLOv3 [43] VOC 10c train 69.1 45.9 36.4
YOLOv3 [43] Hybrid data 65.3 52.3 37.0
YOLOv5 [23] VOC 10c train 78.2 60.8 43.2
YOLOv5 [23] Hybrid data 77.1 64.5 45.0

PDE Hybrid data 79.5(3.1%↑) 74.7(15.8%↑) 54.3(20.6%↑)

TABLE IV. ABLATION ANALYSIS OF MODULES OF OUR MODEL IN REAL DATA SETS UNDER LOW VISUAL CONDITIONS. CA DENOTES THE COORDINATE
ATTENTION MODULE. MSC DENOTES THE CONCATENATION MODULE COMBINED WITH MULTI-STAGE FEATURE FUSION. MH DENOTES THE MODULE

WITH MULTIPLE PREDICTION HEADS. THE IMPROVEMENTS ARE COMPUTED BY COMPARING THE VARIANTS WITH YOLOV5 (UNDERLINED)

Model Method RTTS ExDark
CA MSC MH mAP mAP

YOLOv5 ✗ ✗ ✗ 50.5 45.0
PDE w/o MH ✓ ✓ ✗ 52.5 (3.9%↑) 49.9 (10.9%↑)

PDE w/o MSC ✓ ✗ ✓ 52.9 (4.7%↑) 53.6 (19.1%↑)
PDE w/o CA ✗ ✓ ✓ 55.0 (8.9%↑) 53.8 (19.5%↑)

PDE ✓ ✓ ✓ 55.0 (8.9%↑) 54.3 (20.6%↑)

with its variants on two real datasets (RTTS and ExDark) in
Table IV. In the following experiments, we use the data as
our training dataset. “PDE w/o MH” means we omit the tiny
prediction head in PDE. “PDE w/o MSC” means we omit
the multi-stage concatenation module in PDE. “PDE w/o CA”
means we omit the coordinate attention module in PDE.

As shown in Table IV, “PDE w/o MH” is 3.9% and
10.9% higher than YOLOv5 in RTTS and ExDark, respec-
tively. However, “PDE w/o MSC” is 4.7% and 19.1% higher
than YOLOv5, respectively, whereas “PDE w/o CA” is 8.9%
and 19.5% higher than YOLOv5, respectively. Although the
coordinate attention module can improve the performance of
the model, the effect is not very large when the Table IV is ana-
lyzed. On the contrary, the tiny prediction head and multi-stage
concatenation module significantly improve the performance of
the model. In particular, the growth rate obtained with “PDE
w/o MSC” reaches the maximum in ExDark, which proves

that the module uses the features extracted from the backbone
network very effectively under low light conditions. Moreover,
the growth rate of “PDE w/o CA” reaches the maximum
in RTTS, where the multi-stage concatenation module fully
utilizes the effective features in the images combined with the
tiny prediction head to perform target detection.

According to Table IV, PDE consistently outperforms the
other variants, underscoring the need for and effectiveness of
these methods, as noted in III-A.

D. Case Study

In Fig. 4, we visualized the detection result on two real
datasets (RTTS and ExDark). In particular, we compare the
detection results of the base models YOLOv5 and PDE.
As you can see in Fig. 4, PDE can achieve better object
detection accuracy and user representation in low- visibility.
Moreover, inference time is an important metric to evaluate
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Fig. 4. Visualization. Detection results of YOLOv5 (middle row) and PDE (bottom row) on RTTS (columns 1, 2) and ExDark (columns 3, 4). PDE achieves
better object detection accuracy and better visualization for the user in low visibility images.

the practicality of models. Therefore, we conduct extensive test
experiments to evaluate PDE by processing 480×480 images
on a single GTX 2080Ti GPU. The experiment showed that
PDE can process more than 30 frames per second. Therefore,
PDE can achieve better user representation and detection while
meeting real-time requirements.

V. CONCLUSION

In this paper, we note that the existing low visibility models
suffer from the wobble phenomenon caused by the absence
of better detection and image enhancement performance. We
propose the parallel detection and enhancement model (PDE)
to ensure that image enhancement and object detection perform
their tasks. For object detection, PDE introduces a tailored
model for low-visibility object detection by introducing a tiny
prediction head, combined with coordinate attention and multi-
stage concatenation modules. For image enhancement, PDE
proposes a dedicated image enhancement model by developing
an adaptively enhanced weighting model for each “3D Lookup
Table” module. By decoupling these two concepts, PDE can
improve the overall performance. Extensive experiments show
that PDE achieves better accuracy in detecting low-visibility
objects and more user-friendly reference in real time in all
situations.
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