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Abstract—During excavation works in downtown, stability 

and safety considerations of such excavations and constructions 

are crucial for which continuous wall structures with varying 

structural components are commonly used. Most of the current 

models used for this purpose are often complex, where the 

accepted parameters do not have a clear physical meaning. 

Moreover, accurate ground movement forecasts are challenging 

due to nonlinear and inelastic soil behavior. Therefore, this study 

proposes a method to predict the lateral displacement of the 

braced wall at each stage of excavation by using all the basic 

information necessary for braced wall design, including ground 

information of the excavation site, support methods such as the 

type of brace, location and stiffness, information about the 

neighboring buildings, and the results of numerical analysis. 

One-dimensional convolutional neural network and long short-

term memory network are used for estimation and prediction to 

develop an optimal prediction model based on well-refined but 

limited data. The applicability of the braced wall was confirmed 

for safety management by predicting the horizontal displacement 

of the braced wall for each stage of excavation. The proposed 

model can be used to predict the stability of the horizontal wall 

for each excavation step and reduce accident risks, such as 

collapse of the retaining wall, which may occur during 

construction. 
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I. INTRODUCTION 

Owing to the increase in high-rise buildings in urban areas, 
an increasing number of excavations are being planned. It is 
important to consider the potential serviceability issues caused 
by the construction of these structures. To maintain the stability 
of excavations, continuous wall structures with varying 
structural components are commonly used. These components 
can help prevent ground movements and reduce the impact on 
nearby structures. A reasonable estimate of the lateral wall 
deflection profiles caused by braced excavations is critical to 
ensure safe and economical construction. Therefore, 
measurements during construction are critical for determining 
the stability of the braced wall during excavation. In particular, 
wall displacement is the primary sign of problems with 
stability of the braced wall. To monitor this during 
construction, it is periodically measured using an inclinometer 
that can measure the lateral displacement of the braced wall, 
and thus the risk is determined. In addition, the inclinometer is 
the only method for measurement of the lateral displacement of 

the braced wall during excavation throughout the entire 
construction stage. Therefore, monitoring the lateral wall 
displacement through the inclinometer is indispensable; 
however, the measurement cost increases drastically if it is 
installed on all braced walls at an excavation site. Currently, 
engineers measure the lateral displacement of the braced wall 
using an inclinometer at a section that is representative of the 
entire structure. Therefore, there are still limits to management 
in sections other than the representative section, and accidents 
sometimes occur in these sections. As such, the retaining wall 
displacement for the unmeasured section can be estimated 
using numerical analysis or interpolation of the database. 
However, it is difficult to accurately predict ground movement 
because soil is a complex material and has inelastic behavior. 
Although various numerical models consider various features 
of soil, many of these models are often complex, and the 
accepted parameters do not have a clear physical meaning. 
Factors that affect the behavior of retaining walls at excavation 
sites are very diverse, such as the type of ground, the presence 
of adjacent buildings, and the support and wall construction 
methods. Based on empirical analysis of measured 
displacements in a large number of case histories, it is a proven 
method [1-4] to identify the main parameters affecting the 
deformation behavior during excavation works, as well as to 
examine general trends and patterns. This empirical design 
method is currently used a lot by engineers, but it is more 
inaccurate than a numerical model. However, it requires 
enormous computing resources to use a numerical model to 
predict the retaining wall. Therefore, an artificial intelligence 
(AI) based approach in geotechnical engineering is being used 
to analyze the complex behavior of underground structures. 

An artificial neural network (ANN) was used in many 
research [5-16] to estimate the lateral wall displacement in 
excavation works. As some research trend, ANN was also used 
by Kung et al. [11] to calculate the deflection of diaphragm 
walls caused by excavation in clays. Chern et al. [12] used a 
back-propagation neural network (BPNN) model to forecast 
lateral wall displacement in top-down excavation. Random 
forest (RF) algorithm was utilized by Zhou et al. [13] to 
anticipate ground settlements caused by the building of a 
shield-driven tunnel. For the inverse analysis of soil and wall 
parameters in braced excavation, Zhang et al. [14] used 
multivariate adaptive regression splines (MARS). For the 
determination of Earth Pressure Balance (EPB) tunnel-related 
maximum surface settlement, Goh et al. [15] used the MARS 
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model. Xie and Peng [16] tested the prediction power of 
Random Forest (RF) modeling for estimating tunnel 
Excavation Damaged Zones (EDZs). Despite the widespread 
application of supervised learning algorithms in geotechnical 
engineering, they have not been frequently applied for lateral 
wall displacement prediction in deep braced excavations 
considering the anisotropic shear strength. 

As such, various artificial intelligence techniques have been 
utilized in relation to the stability of the retaining wall at the 
excavation site. However, the research so far has been limited 
to the study of the prediction of the maximum displacement of 
the retaining wall at the time when the excavation work is 
completed. In order to determine the stability during 
excavation work, it is important to manage the displacement of 
the retaining wall during construction, that is, according to the 
excavation stage. Most of the accidents related to excavation 
work occur during the excavation process, but no attempt has 
been made to predict the displacement of the retaining wall 
during excavation work. Therefore, predicting not only the 
maximum displacement after the excavation work is 
completed, but also the displacement of the retaining wall at 
each stage of excavation is considered to be helpful in reducing 
collapse accidents that occur in actual excavation work and 
evaluating the stability of the retaining wall. 

This study attempted to predict the lateral displacement of 
the braced wall at each stage of excavation by using all the 
basic information necessary for braced wall design, including 
ground information of the excavation site, support methods 
such as the type of brace, location, and stiffness, information 
about the neighboring buildings, and the results of numerical 
analysis. Therefore, one-dimensional convolutional neural 
network (1D-CNN) and long short-term memory (LSTM) 
network were used, and the applicability of the braced wall was 
confirmed for safety management by predicting the horizontal 
displacement of the braced wall for each stage of excavation. 

II. PREDICTION MODEL AND CONSTRUCTION 

METHODOLGY 

A. 1-D CNN 

Predictions based on existing time series data mainly use 
deep learning algorithms [17, 18]. CNN (Convolutional Neural 
Network) is a deep learning algorithm and an effective neural 
network for identifying patterns in data because it specializes 
in processing array data. Therefore, CNN utilizes various filters 
that can be used as shared parameters; in the case of two 
dimensions, it efficiently extracts and learns features from 
adjacent images while maintaining the spatial information of 
the image. CNN, which mainly uses two-dimensional data, can 
be applied to data feature extraction and data prediction 
analysis by utilizing one-dimensional time series data [19-21]. 
CNN has the advantage of enabling easier training based on 
minimal parameters and preprocessing of data. The following 
equation (1) describes the output of a CNN corresponding to 
one-dimensional input data. 

( ) ( )( ) ( ) ( )s t x w t x a w t a                (1) 

where x  is the input data, w is the kernel map, and ( )s t  is 

the feature map, which is the output layer. The CNN algorithm 
consists of four steps. In the first step, the kernel, which has a 
weighted function as the input data, traverses in a certain flow, 
and several convolution products are calculated in parallel. In 
the second step, the values computed in parallel go through the 
activation function, and the features of the input data are 
detected and output to the feature map. In the third step, the 
pooling function is used in the pooling layer to reduce the 
feature data detected in the feature map. As described above, 
the CNN algorithm extracts the features of the data through the 
iterations of the CNN and pooling layers. In the last step, for 
the dataset extracted from the CNN and pooling layers, the data 
constructed in an array are transformed into a column vector 
array through the fully connected layer, and the features of the 
data are classified. Fig. 1 shows the structure of the 1D-CNN 
algorithm. 

 

Fig. 1. Structure of 1-D CNN Algorithm. 

B. LSTM 

LSTM(Long-Short Term Memory) is mainly used for 
prediction and classification studies such as genes, 
handwriting, voice signals, sensor data, and stock prices [22]. 
Recently, many studies have been conducted to improve the 
prediction performance by modifying the structure of the 
LSTM [23, 24]. The LSTM algorithm was developed to solve 
the problem that owing to the structure of the recurrent neural 
network (RNN) algorithm, the time-series data of the distant 
past are not reflected if the data are large. The RNN algorithm 
transforms the hidden layer into forget, input gate, and output 
gates, which controls the flow of information to reflect time-
series data of the distant past. Fig. 2 shows the structure of the 
LSTM algorithm [25], in which X represents the input layer, h 
represents the output layer, and a represents the hidden layer 
transformed into forget, input, and output gates. 

 

Fig. 2. Structure of LSTM. 
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C. Proposed Model 

The 1D CNN-LSTM model proposed in this study is a 
retaining wall displacement prediction algorithm to produce an 
optimal learning effect with limited iterative learning of time-
series data by combining CNN and LSTM (Fig. 3). The 
structure of the 1D CNN-LSTM model is divided into three 
stages. The first stage has a three-layer CNN structure and max 
pooling. In the first stage, the periodic and non-periodic 
features of the time-series data are extracted from the CNN 
layer, and a feature map is created using the output values. The 
max pooling layer is used to reduce the size of the extracted 
feature data. Max pooling selects the maximum value of the 
feature map. This process was repeated three times to extract 
the periodic and non-periodic features of the time-series data, 
and the data size was reduced significantly compared to the 
initial data size. The second stage consists of a flattened layer 
and a dense layer. The flattened layer converts multi-
dimensional array data into 1D time-series data, and the dense 
layer connects both inputs and outputs. In the third stage, deep 
iterative learning of the LSTM layer was performed to ensure 
that the LSTM layer learns the relationship between the past 
and future data through the CNN. Future data were predicted 
based on the learned relationship. 

 

Fig. 3. Structure of Proposed Wall Deflection Prediction Model. 

D. Data Collection and Preparation 

Data collection is one of the most crucial steps in the 
prediction modeling. In this study, we need training data for the 
design and measurement over time to predict the horizontal 

displacement of the retaining wall for each excavation step. 
Therefore, we used the data obtained from excavation work 
sites in South Korea to prepare 30 input datasets by sorting the 
soil information, member information of the temporary 
retaining wall, numerical analysis results, and measurement 
results for each excavation step. The variables of the retaining 
wall data included all factors affecting the displacement of the 
retaining wall, such as the location, ground layer formation, 
soil strength, height of the retaining wall, height of the upper 
weak layer, retaining wall type, rigidity of the retaining wall, 
support type, and horizontal displacement of the ground. Fig. 4 
is an example in which the various variables used as input data 
are scaled to a value between 0 and 1 and organized by depth. 
We could not collect a large amount of data because it was 
difficult to collect relevant information for step-by-step 
prediction from actual excavation sites. Therefore, the number 
of training data used in this study was relatively small, and we 
attempted to find the optimal model through cross-validation 
by changing the training and validation data. 

 

Fig. 4. Example of Preprocessed Input Data. 

III. RESULTS AND DISCUSSION 

Fig. 5 shows the overall accuracy and loss of the training 
and validation datasets. This shows that both the training loss 
and the validation loss start to converge above the 100th epoch. 
During this time, the overall accuracy of the training and 
validation tends to remain stable. Finally, the training was 
conducted for 1,000 epochs, and the optimal result was 
obtained at the 210th epoch. The performance improvement of 
the model cannot be expected through further training. 

Because it was difficult to collect all excavation data for 
each step of the excavation work, the prediction values through 
cross-validation in this study were validated in this study. After 
training the model by excluding the design values of certain 
excavation site locations, the model by comparing the 
prediction values to the design values of those site locations 
were validated. 
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Fig. 5. Loss per Epoch during the Training of the Predicting Wall Deflection. 

Fig. 6(a) and (b) show the predictions of the design values 
of excavation sites A and B, respectively, for each of the three 
excavation steps. The prediction results show that the changing 
trend of the horizontal displacement of the retaining wall is 
predicted properly in most cases. However, the horizontal 
displacement of the retaining wall was overestimated or 
underestimated at certain sites because the soil conditions and 
construction methods of the excavation sites were all different. 

Fig. 6(a) shows that for site A, the horizontal displacement 
trend of the retaining wall is predicted well in every excavation 
step. Although there is a tendency to slightly overestimate the 
maximum horizontal displacement compared to the design 
value (true value), the depth at which the maximum horizontal 
displacement occurs matches exactly in each excavation step. 
This could help predict the position at which risk occurs before 
construction. Furthermore, the prediction values were mostly 
similar to the true values, regardless of the excavation depth in 
each excavation step. 

In Fig. 6(b), site B also shows that the horizontal 
displacement trend of the retaining wall is predicted well in 
every excavation step. Furthermore, the prediction value 
matched the true value for the depth at which the maximum 
horizontal displacement occurred. However, in contrast to site 
A, the maximum horizontal displacement of the retaining wall 
was underestimated. In every case, it was determined that the 
accuracy of the prediction increases as the excavation 
progresses, and if the amount of training data increases, higher 
accuracy can be expected. 

Fig. 7(a) and (b) show the predictions of the horizontal 
displacement of the retaining wall for certain cross-sections of 
sites A and B, respectively, for each excavation step. Here, the 
true value refers to the value measured using an inclinometer. 
For site A, it can be seen that the inclinometer measurement 
value and the prediction value match well in each excavation 
step. Furthermore, the predicted maximum horizontal 
displacement of the retaining wall is almost the same as the 
actual measurement value, and as the excavation progresses 
step-by-step, the difference from the actual measurement value 
decreases. For site B, few errors appeared to occur at low 
depths, but the trend of the displacement profile of the 
retaining wall was consistent. In actual measurements, the 
traffic on the surrounding roads and the adjacent buildings 
affect the ground. However, it is difficult to prepare these 
values in detail in the training data. Therefore, errors occurred 
at low depths close to the ground surface. 

 
(a) 

 
(b) 

Fig. 6. Wall Deflection Profiles with Numerical Analysis versus Prediction 

(a) Excavation Site A, (b) Excavation Site B. 

 
(a) 

 
(b) 

Fig. 7. Measured Wall Displacement Profiles versus Prediction (a) 

Excavation Site A, (b) Excavation Site B. 
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IV. DISCUSSION 

In this study, a method combining CNN and LSTM was 
applied to predict the displacement of the retaining wall 
according to the excavation work step by step, and its 
applicability was confirmed. Through this study, it was found 
that the displacement change of retaining wall can be predicted 
as the excavation work progresses. While previous studies 
were limited to predicting the maximum displacement of the 
retaining wall, this study made it possible to measure the entire 
profile of the retaining wall. The ground inclinometer is the 
only measurement item that can reflect the entire excavation 
process, and the prediction accuracy can be improved by using 
this measurement value. In the previous study [9, 10, 14] the 
maximum displacement prediction error of the retaining wall 
was about 6~23%, but in this study, the prediction error for the 
maximum displacement was about 3~18%. In addition, the 
prediction error for each stage of excavation was also 
confirmed to be about 15%. Since the machine learning 
materials used so far may not be able to represent various 
environments such as all ground conditions and retaining wall 
construction methods, prediction errors may appear differently 
depending on the characteristics of the site. However, it is 
judged that the signal of accidents can be confirmed in advance 
by comparing the predicted results using the model proposed in 
this study with the retaining wall management standard 
according to the excavation work. 

V. CONCLUSION 

This study proposes a model that predicts the retaining wall 
displacement for each excavation step by combining 1D CNN 
and LSTM using the retaining wall measurement data. 
Compared to previous studies on the prediction of the 
maximum displacement of the retaining wall, this study has the 
advantage that the displacement profile of the retaining wall 
can be predicted for each excavation step. For highly reliable 
predictions, we need a large amount of data; however, we 
aimed to propose an optimal prediction model based on well-
refined data by training the model using limited training data 
and combining 1D CNN and LSTM. The results predicted by 
applying the measurement data of actual sites in the proposed 
model showed few differences from the actual measurement 
values. In these results, there was a tendency to show errors at 
certain sites because each site has different soil conditions and 
construction methods. Furthermore, this phenomenon seemed 
to be caused by the limited number of data, and this problem is 
expected to be solved by inputting additional measurement 
data in future. 

For the safe management of the retaining wall during 
excavation work, predictions are required for not only the 
measurements of representative cross-sections but also for the 
unmeasured sections. In this regard, the proposed prediction 
model of this study can be used to predict the stability of the 
retaining wall for each excavation step and reduce accident 
risks, such as collapse of the retaining wall, which may occur 
during construction. Although the proposed model has some 
limitations, if appropriate data for the proposed model are 
collected and the database is built upon them, it could 
potentially help experts to use the model for designing or 
constructing retaining walls. Furthermore, it can help perform a 

more economical and safer retaining wall design or 
construction. 
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