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Abstract—Network connectivity preservation is one of the 

substantial factors in achieving efficient mobile robot teams' 

maneuverability. We present a connectivity maintenance method 

for a robot team's communication. The proposed approach 

augments the Radio Frequency Mapping Recognition (RFMR) 

method and the signal strength gradient decent approach for an 

overall goal to create a Proactive Motion Control Algorithm 

(PMCA). The PMCA algorithm controls and helps strengthen 

mobile communicating robots' connectivity in the existent Radio 

Frequency (RF) obstacles. The RFMR method takes advantage 

of Hidden Markov Models (HMMs) results, which assist in 

learning electromagnetic environments depending on 

measurements of RF signal strength. The classification results of 

HMM lead the robots to resolve whether to continue the current 

trajectory for avoiding the obstacle shadow or move back to 

desirable robust Signal Strength (SS) positions. In both cases, the 

robot will run the gradient approach to determine the signal 

change trend and drive the robot toward the strong SS direction 

for maintaining link connectivity. The PMCA, depending on the 

results of RFMR and gradient approaches, promises to preserve 

robots' motion control and link connectivity maintenance. 

Keywords—RF mapping recognition; link connectivity; 

gradient algorithm 

I. INTRODUCTION 

The majority of Communication networks, especially 
wireless networks, are deployed in territories with different 
interference sources (Different obstacles), affecting the 
communication signals and creating no Line Of Sight (LOS) 
among communication devices, so they can not identify each 
other. However, the Frezonet zone where the signal 
propagates should be free of interferences sources such as 
conducting and conducting obstacles of different types to an 
actual LOS [1,2]. One problem of the RF communications in 
disasters such as crumpled buildings is many signal 
interference sources that cause no LOS and disrupt the 
communication signal. Robot swarms of small size can 
collaborate in search and rescue environments and accomplish 
tasks that no one robot can complete alone [3]. Fig. 1 
illustrates the urban search and rescue (USAR) robot team 
collaborating and communicating to transmit data to the 
network base station (BS). The robot team will encounter 
many problems when discovering the collapsed area. One of 
the critical problems is maintaining a reliable link between the 
robot team members to transmit the message to the BS. For 
example, a single robot could not send messages directly from 
the most distant network topology to the BS. What's more, 

each robot in the team has different duties. For example, it 
searches for survivors, maintains communication through 
network topology, and transmits data to the BS. 

Collaborating teams of small robots can facilitate tasks 
beneficial to monitoring, surveillance, and other rescue 
services in unsafe locations [4]. However, they have limited 
mobility, power, and communication coverage [5]. 
Consequently, the system resources are distributed among 
multiple robots, which work as a team to accomplish a 
mission. Hence, each small robot in the collaborating team has 
inadequate sensing and processing abilities for the assigned 
tasks, e.g., mapping the collapsed area, transmitting acquired 
data to BS, and carrying necessary sensors for the mission. 

A robot in the robotic network can quickly lose 
communication with team members while collaborating. 
Therefore reliable strategies for wireless communication are 
essential [6]. Consequently, a dedicated link maintenance 
strategy is vital for reliable mobile ad hoc networks 
(MANETs) connectivity, particularly when the network 
experiences sporadic connectivity caused by hostile 
environments. Hence, network connectivity maintenance is a 
target for achieving adequate network performance. In this 
context, it is possible to employ the variations in the SS 
measurements in control algorithms that control motion and 
preserve connectivity. 

 

Fig. 1. Robots Warm in a Collapsed Building. 
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Furthermore, significant developments in robotic networks 
have led to reliable, self-organizing communication schemes 
that do not require the collaboration of robots with existing 
communication infrastructure. Besides, the communication 
scheme has given bonds to the motion control concept for 
movable agents, tied to the robot's movement ability to reach 
proper positions in the field to preserve connectivity and 
accomplish assigned tasks [7,8]. In [9], the authors manifest 
the possibility of designing trajectories by co-optimizing 
sensing and communication information when motion 
planning. 

This article introduces the RFMR method, which uses SS 
measurements collected from the field to discover, identify, 
and identify hostile environments with different RF obstacles. 
In addition, this method also studies the impact of RF 
obstacles on RF-SS in various scenarios. In addition, 
according to the RFMR method, we propose a SS gradient 
algorithm to control the movement trend of the robot. Most 
up-to-date gradient strategies use a standing interference 
source to compute a two-dimensional (2-D) gradient to an 
appointed stable source of the signal source, similar to 
regression in a 2-D space. However, these approaches did not 
extend their gradient calculation to nodes in motion that 
require a four-dimensional (4-D) space gradient estimation. 
Consequently, augmenting the gradient algorithm and RFMR 
approach will support creating the PMCA control algorithm to 
preserve mobile robots' successful communication in the 
appearance of RF obstacles. 

In the simulation and physical experiments, two robots are 
moved in a different direction around RF obstacles and study 
their effect on the measurements of the RF signal. The 
interference sources include cages, walls, and cylinders of 
various dimensions. The obstacles used are conductively made 
of a Perfect Electrical Conductor (PEC). When robots move 
and collect SS measurements around a fixed position obstacle, 
the collected SS string along the robot's path retains useful 
information for obstacle recognition and classification. First, 
the collected SS measurements were segmented, and then 
features (observation sequence) were extracted using Fast 
Fourier Transform FFT [4,5]. Afterward, the observation 
sequences are coded using a clustering algorithm known as K-
means [10]. Then, first-order HMMs are used to model the 
observation sequences [11,12], trained, and then used for the 
RFMR method. Using this approach, the outcomes of the 
experiments show very accurate recognition results. As the 
movable robots identify the nature and assess the dimensions 
of the confronted obstacle, the PMCA will decide whether to 
continue moving along the current trajectory to bypass the RF 
obstacle's shadow or reverse drive to a position where the 
robot gains a reliable SS. In either case, the gradient descent 
algorithm is applied, and the multi-dimensional gradient of the 
strong SS direction used by the robot PMCA for connection 
maintenance is estimated. 

In short, our proposed robot PMCA for preserving 
communication links and fixing disrupted links is 
implemented depending on RFMR and gradient methods. The 
RFMR method uses HMM to discover the RF environment 
based on SS measurements to estimate the type and size of 
obstacles. The gradient algorithm outcome decides the 

direction of the robust SS to maintain connectivity. Finally, 
the robot motion control can keep the connection and repair 
the broken link depending on the RFMR and gradient results. 
The PMCA algorithm's reliability and performance were 
tested by conducting various simulation experiments. 
Consequently, the proposed approach has exhibited assuring 
solutions for the connectivity problem of a robotic network. 

We organized this paper as follows. The relevant prior 
work in a controlled mobile sensor network, estimating and 
mapping radio signals, is briefly introduced in Section II. 
Section III presents the RFMR method formulation and 
modeling to justify this new development. In Section IV, the 
physical obstacle experiments are described. The simulation 
and physical results validation is described in Section V. 
Section VI explains the obstacle parameterization. In Sections 
VII and VIII, RFMR based on HMM and numerical results are 
explained. PMCA and gradient methods are described in 
Sections IX and X. The experimental gradient results are 
presented in Section XI. The control motion algorithm 
simulation is illustrated in XII. Section XIII presents 
conclusions and future work. 

II. LITERATURE AND RELATED WORK 

Recently, connectivity and SS measurements have become 
essential attributes of communication networks to ensure 
quality communication [13,14]. In addition, the robot network 
should maintain connectivity when performing tasks [15]. 
Based on the information from radio SS, authors in [16] 
calculate the 2-D gradient of a robot in motion. Besides, the 
authors calculated the gradient of the robot in mobility to a 
stationary source of RF signal. In [17], the possibility of 
localizing and navigating to a standstill source of RF signal by 
utilizing the two-dimensional gradient of a cooperating sensor 
network is studied. Authors [15,17] defined a 2-D gradient for 
a robot in motion to a standstill source of RF signal. The robot 
follows a predefined trajectory to accommodate its velocity. 
Authors in [18] proposed a probabilistic framework for 
evaluating wireless channels. Authors in [19] developed tools 
for estimating and mapping radio signals. In an attempt to 
create an urban radio map, Authors in [20] constructed a BS in 
an unknown location, which transmits data to one or more 
mobile robots to create a map of the radio signal for a 
specified area. An algorithm that sets the team's goals and 
controls its movement makes sure it reaches designated targets 
without degrading the quality of the link maintaining the map. 

Moreover, [20] discussed experimental validation of a 
procedure that automatically conserves the connection 
between collaborating robots over such a distributed network. 
A feedback control framework that is distributed and does not 
impose restrictions on the network's structure except for 
desired connectivity specifications has been proposed by [21] 
concerning the local connectivity of a network. In [22], the 
authors introduce a measure that provides a measure of the 
network's global connectivity if certain conditions are met. 
The authors [22] solved stratum stability's distributed 
maintenance problem with the nearest neighbor links. Authors 
propose robots to overcome environmental interference and 
enable end-to-end communication [23,24]. Several 
measurements in the robot network are used to estimate the 
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spatial variation of the wireless channel by [25], where the 
link quality predicts communication. 

Current research on wireless sensor networks focuses on 
developing energy-saving routing protocols, distributed data 
compression, transmission schemes, and cooperative signal 
processing algorithms [26]. In addition, our research is 
interested in creating a wireless video sensor network of 
robots that work in hazardous areas and accomplish different 
tasks while maintaining team connectivity. The wireless 
network of video sensors is a locally distributed mobile sensor 
system that captures, processes, and transmits information 
through a self-organizing wireless network, as shown in 
Fig. 2. Compared with traditional communication systems, 
wireless video sensor networks operate underneath a unique 
set of resource restrictions, including airborne computing and 
transmission bandwidth. In [12], the authors investigated the 
resource utilization behavior and analyzed the Video sensor 
network performance under resource constraints. 

III. RFMR FORMULATION AND MODELING 

The RFMR Method depends on the RF-SS determinations 
on the robot’s path. First, the technique identifies and 
classifies the types of RF shadows on the robot's path. Then, it 
provides the learned knowledge to PMCA. The outcome of the 
HMM gained from the RFMR method advises the moving 
robots underneath the obstacle’s special effects. After that 
PMCA relies on HMM results to determine the proper control 
on the robot motion, firstly, to recover from the shadow of RF 
obstacles and then preserve the connectivity of the robot. 
PMCA decided to let the robot move forward on the current 
trajectory under the influence of the shadow of the RF 
obstacle. It did that depending on the size and type of the 
obstacle. In contrast, PMCA guided them to back movement 
to a vital SS location and then applied the SS gradient 
algorithm to find the trend of another robot to communicate. 

All RFMR experiments use two mobile sensors 
transmitting and receiving RF signals at a frequency of 2.4 
GHz. They measure the RF-SS at their present location. 
Multipath, fading, and interference may affect the measured 
RF signal [3,29]. Mobile sensors, at t=0, are positioned at (xt, 
yt) in the 2-D Cartesian space. The mobile sensors 2-D 
configuration spaces are divided into grids of equal area. The 
grid width is Δx = Lx / M, where Lx is the length and M is the 
number of segments, lengths, and segments along the x-axis. 
The grid length is Δy= Ly / N, where Ly and N are the lengths 
and the number of segments in the y-axis. For example, the 

grid's width might be 
1

3
 𝜆, 

2

3
 𝜆 or λ, which is 12.5 cm at 2.4 

GHz. 

In RFMR simulation experiments, the robots move 
predefined trajectories to acquire RF-SS measurement. The 
robot’s trajectory, l th, can be expressed by. 

𝑥𝑡,𝑙
(𝑖)

=  𝑥0,𝑙
(𝑖)

,  𝑦𝑡,𝑙
(𝑖)

= 𝑦0,𝑙
(𝑖)

+ 𝑘 𝛥𝑦 , 𝑡 1,2, … . , 𝑁,          (1) 

Where the trajectory index is l, the robots index is i ε{1,2}, 

the ith robot start location at time t=0 is (𝑥0,𝑙
(𝑖)

, 𝑦0,𝑙
(𝑖)

). The ith 

robot's motion starts at the initial location ( 𝑥0,𝑙
(𝑖)

, 𝑦0,𝑙
(𝑖)

) and 

increased by a step size of 𝜟𝒚 along with the y-direction is 

defined in Equation (1). Besides, the first robot started at 

( 𝑥0,𝑙
(1)

= 𝑙𝛥𝑥 , 𝑦0,𝑙
(1)

= 0 )  for the trajectory, lth. Then, the 

second robot location is expressed in 𝑥0,𝑙
(2)

=  𝑥0,𝑙
(1)

+

𝑑,  and 𝑦0,𝑙
(2)

=, 𝑦0,𝑙
(1)

 . The robots have the exact coordinates in 

the y-axis, and they are a d distance in the x-axis. Fig. 3(a) 
shows an experiment scenario of two robots. The SS at the 
receiver antenna can be expressed as. 

𝑆𝑖
(𝑗)

(𝑡) = 𝑓 (𝑥0,𝑙
(1)

, 𝑦0,𝑙
(1)

, 𝑥𝑡,𝑙
(1)

, 𝑦𝑡,𝑙
(1)

, 𝑥0,𝑙
(2)

, 𝑦0,𝑙
(2)

, 𝑥𝑡,𝑙
(2)

, 𝑦𝑡,𝑙
(2)

 ϕ𝑗)     (2) 

 

Fig. 2. Wireless Video Sensor Network. 

 
(a) 

 
(b) 

Fig. 3. (a) A Transmitter and Receiver Exchange about an Obstacle (b) The 

2-D configuration Space. 
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This is the SS measurement on the trajectory, lth, in the RF 

obstacle of type j existence at time t. The 𝑆𝑖
(𝑗)

(𝑡) function 

represents the robot’s start location (𝑥0,𝑙
(𝑖)

, 𝑦0,𝑙
(𝑖)

), time t robot’s 

location ( 𝑥𝑡
(𝑖)

, 𝑦𝑡
(𝑖)

) and the special characteristics of the 

obstacle ϕj. The index of trajectory l is l = 1,..., L(j) for each 
obstacle of type j. L(j) is the trajectory’s number in the 
existence of type j obstacle. In equation (2), j ε{1,2,3} 

characterizes the type of the obstacle and ϕ𝑗 = { (𝑥𝑐
(𝑗)

, 𝑦𝑐
(𝑗)

), 
ϴ(j)} signifies the obstacle’s characteristic and comprises the 
obstacle shape parameters ϴ(j) (dimensions information) and 

the obstacle central position (𝑥𝑐
(𝑗)

, 𝑦𝑐
(𝑗)

), 𝑒. 𝑔. Wall obstacle has 
a central position ( Lx/2, Ly/2), [34]. 

We demonstrated the SS measurements in the field, 
expending three different types of RF obstacles. Therefore, it 
can classify and identify the RF characteristics of a particular 
type of RF obstacle by examining the changes in the SS 
measurements obtained at diverse locations from different 
trajectories [27,28]. Computer Simulation Technology (CST) 
is used for the simulation experiment. It is a professional 3D 
electromagnetic simulation tool [29]. The simulation uses a 
60mm x 60mm patch antenna. It sends and receives 
communication signals and creates interference from purely 
conductive materials [30]. 

A. Wall Obstacle 

One of the known obstacles of various dimensions (7 x 30 
x 30 cm3, 10 x 30 x 30 cm3, and 15 x 130 x30 cm3) are used in 
the experiments. The RF-SS result in the field is shown in 
Fig. 4(a) for the 10 x 30 x 30 cm3 wall. When the transmitter 
approaches the wall’s edge on one side and the receiver is one 
meter far on the other side, SS drops down and becomes very 
low, and vice versa. The SS improves as the receiving or 
transmitting robot moves away from the obstacle edges, as 
depicted in Fig. 4(a). The top view of the results is illustrated 
in Fig. 4(b), where the dark red dots illustrate spikes of 
Fig. 4(a). Fig. 4(c) depicts various waveforms resulting from 
the wall obstacles at the receiving robot location for different 
distances. The waveform reflects the influence of RF obstacles 
on the RF-SS between robots when the robot moves about the 
RF obstacle. 

B. Cage Obstacle 

A Faraday-like cage is shown in Fig. 5(a). It is made of 
PEC material. The size of the cage is 30 x 30 x 30 cm3. The 
SS drops and signal expire when a robot is trapped in the cage, 
as presented in Fig. 5(a). Due to conducting material effects, 
the SS exhibits oscillating patterns as either antenna 
approaches the cage opening. The signal drops down when 
there is no LOS between antennas and becomes weak, as 
presented in Fig. 5(a). Fig 5(b) is the SS intensity image of 
Fig. 5(a) and illustrates that the SS goes up as a LOS exists. 
The effect on RF-SS by the cage obstacle is depicted in 
Fig. 5(a), 5(b), and 5(c). Different waveforms represent 
measurement sequences of different trajectories around the 
obstacle are depicted in Fig. 5(c). 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Wall Obstacle (a) RF-SS Measurements (b) Top view of (a), and (c) 

Waveforms for Multiple Trajectories. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Cage Obstacle (a) RF-SS Measurements (b) Top view of (a), and (c) 

Waveforms for Multiple Trajectories. 

C. Cylinder Obstacle 

Cylinders of radiuses 10 cm, 15 cm, and 20 cm and height 
of 30cm were used in this experiment. 

SS measurements simulation results in the field in the 
existing on an obstacle of 15 cm diameter centered in the 
testing area are depicted in Fig. 6(a). The SS dropped down 
and became unreliable as the receiving robot approached the 
cylindrical obstacle. Fig. 6(b) presents the SS intensity image 
of Fig. 6(a). 

The influence of the cylinder on the RF-SS is depicted in 
Fig. 6(a), 6(b), and 6(c). Since the antenna moves in line on 
either obstacle side, the SS sequence contains enough 
evidence to identify the obstacle type. When the receiver 
antenna is close to an HF obstacle, the shadow of the HF 
obstacle in the HFSS measurement will produce different 
waveforms for different distances. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Cylinder Obstacle (a) RF-SS Measurements, (b) Top view of Fig. 6, 

and (c) Waveforms for Multiple Trajectories. 
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IV. PHYSICAL EXPERIMENTS FOR MULTIPLE OBSTACLES 

Conductive known RF obstacles such as cages, walls, and 
cylinders are created to run multiple physical experiments in 
the field [27]. Then, we sought a minimum interference 
environment to run the experiments, and a CC2510 
development kit was used. The copper obstacle is centered on 
the cardboard box in the laboratory space. Then, 2.4 GHz 
transceivers are moved manually in all directions around the 
obstacle. We recorded SS measurements at different antenna 
positions around the obstacle. RF-SS measurements are made 
on both sides up to 100 cm in all directions. Next, we made 
various RF obstacle shapes similar to those used for 
simulation. The physical results are based on surroundings and 
floor type. Different materials such as carpets and wood have 
other effects on the RF signal. Running multiple extensive 
experiments to choose the best environment leads us to select 
a box of 15 cm height for best results [27]. 

 

Fig. 7. Copper Wall Obstacle, Receiver and Transmitter. 

A. Copper Wall Obstacle 

A wooden box of dimensions (10 x 30 x 30 cm3) is created 
and then covered with a copper screen, as seen in Fig. 7. We 
collected SS measurements around the obstacle by moving the 
antennas in different directions. The results are shown in 
Fig. 8(a). The SS measurements range from high to low, 
depending on the obstacle effects. The SS turned out to be 
deficient, as indicated by the spikes in Fig. 8(a). The SS 
improved when the transceiver was 1 m apart on one side 
while the other was still and close to the obstacle, but it 
remained low as the obstruction prevented LOS. 

The physical results presented in Fig. (8) approximates the 
simulation outcomes shown in Fig. 4(a). The low SS is 
apparent in Fig. 8(b) that the top view of Fig. 8(a). Therefore, 
we take advantage of the position of the spikes in estimating 
the obstacle dimensions, which is valid for simulation results 
too. 

When the transceivers diverge from the obstacle shadow, 
SS improves, and it reaches the maximum as the transceivers 
maintain a LOS. The copper obstacle effects on the SS are 
depicted in Fig. 8(a)-(c). Therefore, after examining the results 
of the experiment robots' movements all over the obstacle for 
multiple straight trajectories, it is clear that the SS contains 
helpful information that is used to recognize and classify 

obstacle types. Fig. 8(c) illustrates the signature of the 
obstacle on the RF signals, and it shows different signal 
shapes for various trajectories. 

B. Copper Cage Obstacle 

A four-sided wood cage of length = 30 cm, width =30 cm, 
and height =30 is created and covered by a screen of pure 
copper. The obstacle is centered on a cardboard box that 
insulates the transceivers from the ground. Next, the 
transceivers, which preserve a distance of 1 m apart, are 
moved around the obstacle. Finally, the transceivers move in 
all directions outside and inside the cage for SS 
measurements. Inside the cage, the SS is extremely low and 
not conducive, as shown in Fig. 9(a). 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Copper Wall Obstacle (a) RF-SS Measurements (b) Top view of Fig. 

7(a), and (c) Multiple Signal Shapes. 
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(a) 

 
(b) 

 
(c) 

Fig. 9. Copper Cage Obstacle (a) RF-SS Measurements (b) Top view of Fig. 

8(a), and (c) Multiple Signal Shapes. 

As a result of LOS loss between the transceivers, the SS 
dropped down and produced poor conductive connectivity. It 
is shown in Fig. 9(b), the top view of Fig. 9(a). The SS 
improves as the transceivers retain the LOS and become more 

conductive, approximating the simulations as depicted in 
Fig. 4(a). In Fig. 9(b), the backside of the cage, the SS reaches 
the maximum conductivity as the transceiver moves further. 
The results depicted in Fig. 9(a) override the results illustrated 
in Fig. 5(a) by a value of -5dB, resulting from different 
surrounding electromagnetic sources. Fig. 9(c) illustrates the 
signature and the obstacle impact on RF-SS, showing different 
signal shapes for varied trajectories. 

V. VALIDATION OF PHYSICAL AND SIMULATION RESULTS 

The simulation and physical results comparison and 
validation of the RF obstacle discussed in previous sections 
are presented. For accuracy and comparison, different signal 
shapes of the obstacles are plotted in the same graph. 
Additionally, the effect of various electromagnetic sources on 
the physical signal shapes is detectable in the signal shapes. 

A. Validation of Wall Results 

 Using the setup of Fig. 7, multiple wall physical 
experiments are conducted to demonstrate the simulation 
results. The experiments are conducted in an environment 
with fewer interference sources. The transceivers are moved in 
a bounded area of 2 m2 around a centered wall obstacle in all 
directions. The resulting signal shapes for the simulation 
(black) and physical (red and blue) are depicted in Fig. 10. 
The signal power difference between the black and red signals 
ranges from -2 to -8 dBm, while it was above -15 dBm 
between black and blue signals due to interference source 
existence. 

B. Validation of Cage Results 

Numerous cage physical experiments are conducted to 
demonstrate the simulation results. First, the experiments are 
conducted in an environment with fewer interference sources. 
Then, the transceivers are moved in a bounded area of 2 m2 
around a centered cage obstacle in all directions. 

 

Fig. 10. Wall Simulation and Physical Results Comparison. 
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The resulting signal shapes for the simulation (black) and 
physical (red and blue) are depicted in Fig. 11. The signal 
power difference between the black and red signals ranges 
from -3 to -20 dBm, while it was above -20 dBm between 
black and blue signals due to interference source existence. 

 

Fig. 11. Cage Obstacle Physical Results Comparison. 

VI. OBSTACLE PARAMETERIZATION 

Radio SS propagation is a complicated process. In 
Sections I and II, we explained that SS is a function of 
different parameters. In addition, the power of the received SS 
is a function of how far the transmitter is, obstacles effects, 
and multipath occurrences such as reflections and refractions 
[2,15]. 

 

Fig. 12. Signal shapes for different (a) Different Radiuses (b) Wall widths. 

A. Wall Parameterization 

Different RF walls obstacles are used in our experiments 
with varying sizes of width w. As a result, the wall signal 
shapes are almost preserved in the "U" shape. The signal 
shapes are scaled and stretched as the width of the wall 
increases. Table I shows the average signal strength in dBm 
on the robot's trajectories for different wall widths. As the wall 
width increases by 1 cm, the signal strength average alongside 
the robot path decreases by −1.2 dBm, as shown in Fig. 12(b). 

TABLE I. AVERAGE SS ON THE ROBOT TRAJECTORY 

Cylinder radius r 10 cm 15cm 20 cm 

Average SS(dBm) -53 -59 -64 

VII. RFMR METHOD BASED ON HMM 

The RFMR method is summarized in the significant steps 
shown in the diagram of Fig. 13. Foremost, in Fig. 14, the 
measurement vector acquired through multiple robot motion 
paths is split into various segments (small components) of 
comparable lengths. Afterward, features are extracted in the 
frequency domain by applying Fast Fourier Transform (FFT) 
on every element of the segmented signal. The features 
components extracted are written to vectors, and then we used 
a subset of the vectors of features for the training purpose of 
the created model and the remaining vectors used for model 
testing. Next, the training subset is clustered to generate 
observation sequences using the K-mean clustering algorithm 
[31]. Then, three HMMs models are trained using the 
generated observation sequences. Each HMM model that 
contains five states is assigned to each obstacle type. The five 
states correspond to 5 small segments produced on the robot-
specific trajectory. As illustrated, we trained each HMM 
model using a specific set of observation sequences. Finally, 
the training set of features is used to train classification 
models. Accordingly, we accomplished the RFMR method 
results [28]. Consequently, the results were used by the robot 
PMCA algorithm that uses the trained HMM results. As a 
result, we accomplished proactive connectivity [30]. 

 

Fig. 13. RFMR Method Block Diagram. 

The robot's movement is a sequential event, and our goal is 
to classify the robot movement in sequential order of the 
segments. Furthermore, there is a strong analogy between the 
RFMR method based on HMM results and the word 
recognition via speech patterns [32]. Therefore, using HMM 
offers a more spontaneous methodology for RF shadows 
classification. Naturally, it breakdowns the measurements on 
the robot's pathway to approximate components comparable to 
how they were created. However, the HMM method offers a 
simple technique for classifying segments subset on the 
robot's path as it moves through an obstacle shadow rather 
than categorizing the pieces after the obstacle shadow. The 
HMMs and their application in RFMR are discussed in the 
following sections. Hence, HMM is a method for stochastic 
events of a model. Clearly, A model λ consists of several 
states Q, observations B corresponding probabilities, and 
transitions between states probabilities [11]. Therefore, 
specified a sequence of observations, O, and λ as a model, one 
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can obtain P(O|λ). Fundamentally, it is the model 
representation of the event, and it could be a good or bad 
representation. To classify data using HMM, we need to create 
a model λ(j), j=1, …, mo, for each class, where mo denotes 
obstacle types number. Then, we must calculate P(O|λ(j)) 
corresponding to each obstacle type available. Finally, the 
model with the highest probability is allocated to a novel 
observation O. Therefore, the obstacle type membership is 
given to O. 

A. Feature Extraction based on SS Measurement 

Segmentation 

The collected SS measurement vector through the robot 

moves on the trajectory, lth, is 𝛽𝑙
(𝑗)

=  [𝑆𝑙
(𝑗)

 (1), 𝑆𝑙
(𝑗)

(2), … 

𝑆𝑙
(𝑗)

(Nm)   ]T
 , For the jth obstacle type, Nm is the SS 

measurements number on the lth path. Then, as in Fig. 14, 

each ᵦ𝑙
(𝑗)

 is segmented into five segments represented as 

𝛼𝑙,𝑢
(𝑗)

= [𝑆𝑙
(𝑗)

((𝑢 − 1) + 1) … 𝑆𝑙
(𝑗)

(5𝑢)]𝑇 , 𝑤ℎ𝑒𝑟𝑒 𝑢 =

1,2, … , 5, . Subsequently, a measurement segment 𝛼𝑙,𝑢
(𝑗)

 is 

transformed to the using FFT. Results are represented as 

ᴦ𝑙,𝑢
(𝑗)

= 𝐹𝐹𝑇(𝛼𝑙,𝑢
(𝑗)

 , NFFT), NFFT shows the points number in the 

FFT results. The first ten elements in the FFT result ᴦ𝑙,𝑢
(𝑗)

 are 

denoted as the feature vector 𝛾𝑙,𝑢
(𝑗)

=

 [ᴦ𝑙,𝑢
(𝑗)

 (1) ᴦ𝑙,𝑢
(𝑗)

(2) …  ᴦ𝑙,𝑢
(𝑗)

(10)]𝑇  Of the measurement 

corresponding to the lth trajectory and jth obstacle type. Once 
each segment is (j) transferred into frequency space, the 

feature vector ᴦ𝑙,𝑢
(𝑗)

 is clustered using the K-means clustering 

algorithm [35]. 

Then, the HMM uses these binned segments to classify the 
obstacle shadow based on the probabilistic sequence of 
segments. Our numerical experiments tried different training 
sets to examine their effect on the recognition rate. We found 
that the recognition rate is affected positively by the size 
increase of the training sets. Data were randomly split into 
training and testing sets to verify the HMM classifier [35]. We 
randomly select 60% of the measurement vectors into the 
training set 𝑆𝑡𝑟𝑎𝑖𝑛

𝑐  which is used for c clustering and training, 
and the rest constitutes the testing set 𝑆𝑡𝑒𝑠𝑡

𝑐 . 

 

Fig. 14. One Segmented Wall Signal. 

B. The Generation of Observation Sequences 

The collected vectors 𝛾𝑙,𝑢
(𝑗)

 in the model training set 

𝑆𝑡𝑟𝑎𝑖𝑛
𝑐  𝑎 re split into G different clusters using the k-means 

algorithm. The G clusters are arranged as D1 , D2 , · · ·, DG. 
Therefore, we can minimize the within-cluster sum of squares 
(WCSS). Equation (3) presents the k-means algorithm stages, 
and it is written as. 

arg 𝑚𝑖𝑛𝐷1 ,· · ·,𝐷𝐺  ∑  𝐺
𝑔=1 ∑  

𝛽𝑙
(𝑗)

∈𝑆𝑡𝑟𝑎𝑖𝑛
𝑐 ,𝛾𝑙,𝑢

(𝑗)
∈𝐷𝑔 

|| 𝛾𝑙,𝑢
(𝑗)

−  µg ||2           (3) 

where the parameter µg represents the centroid of Dg, i.e., 

the points mean in Dg, || 𝛾𝑙,𝑢
(𝑗)

− µg ||2 represents the vector 𝛾𝑙,𝑢
(𝑗)

 

and µg distance separation. After the k-means clustering 
algorithm generates Dg and µg, it allocates observation 
symbols to the feature vectors. As a result, the observation 
sequences for HMM training and test sets are produced. 
Initially, The C = {C1, · · ·, CG } with Cg as the gth symbol 

signifies the symbol set of HMM observations [34]. The 𝐶𝑙,𝑢
(𝑗)

 

symbol conforming to the data segment 𝛾𝑙,𝑢
(𝑗)

 is allocated to the 

value Cg if || 𝛾𝑙,𝑢
(𝑗)

−  µg ||2 has the minimum value in the set, g 

∈ {1, 2, · · ·, G}. Explicitly, 𝐶𝑙,𝑢
(𝑗)

 is allocated to symbol Cg 

when µg is the closer centroid to the feature vector 𝛾𝑙,𝑢
(𝑗)

. The 

𝐶𝑙,𝑢
(𝑗)

 vectors of the lth trajectory segments are concatenated to 

form the vector 𝐶𝑙
(𝑗)

 = [𝐶𝑙,1
(𝑗)

 … 𝐶𝑙,5
(𝑗)

]𝑇  [34]. The resulting 

vector 𝐶𝑙
(𝑗)

 is the observation sequence corresponding to the 

measurement vector 𝛽𝑙
(𝑗)

 . The HMM training set 𝑆𝑡𝑟𝑎𝑖𝑛
𝐻𝑀𝑀 

conforming vector 𝛽𝑙
(𝑗)

 contains the observation sequence 𝐶𝑙
(𝑗)

 

is included in the training set 𝑆𝑡𝑟𝑎𝑖𝑛
𝑐 ; otherwise, it is in the test 

set 𝑆𝑡𝑒𝑠𝑡
𝐻𝑀𝑀. 

In conclusion, applying the mentioned procedure, for the 
trajectory, lth, in the existence of type j obstacle, the vector 

𝛽𝑙
(𝑗)

 is segmented into segments 𝛼𝑙,𝑢
(𝑗)

 , u = 1, 2, 3, 4, 5. 

Consequentially, each 𝛼𝑙,𝑢
(𝑗)

 is converted by FFT, and the FFT 

result is symbolized by ᴦ𝑙,𝑢
(𝑗)

 . The first ten elements in ᴦ𝑙,𝑢
(𝑗)

 are 

selected to form the feature vector 𝛾𝑙,𝑢
(𝑗)

. The feature vectors 

are clustered using the k-means algorithm to generate G 
clusters, D1, · · ·, DG, and the corresponding cluster centroids 
µ1, …, µG. 

The individual segment feature vector 𝛾𝑙,𝑢
(𝑗)

 is consigned 

with a symbol 𝐶𝑙,𝑢
(𝑗)

 ∈ C by the parameters of the cluster [35]. 

Then, the observation sequence 𝐶𝑙
(𝑗)

 is created by 

concatenating the 𝐶𝑙,𝑢
(𝑗)

 vector [34]. Finally, the observation 

sequence 𝐶𝑙
(𝑗)

 is created from each trajectory 𝛽𝑙
(𝑗)

 vector and 

ready for training or testing HMMs models [34, 35]. 

VIII. RFMR BASED HMM NUMERICAL RESULTS 

The HMM training set 𝑆𝑡𝑒𝑠𝑡
𝐻𝑀𝑀 resulted from the previous 

section will be used for training HMMS models. Three 
HMMs, models, λ(j), with j = 1, 2, 3, conforming wall, cage, 
and cylinder obstacles, are trained for classification. 
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Assumed an observation sequence Cl

(j) 
, is comprised of 

numerous observation symbols. Next, given the HMM λ(p), 

the P (Cl | λ(p) ) is a conditional probability of Cl

(j)
. For the 

classification process, the P (Cl | λ(p)), can be calculated for 
the parameter p = 1, 2, 3. When the value p = p̂ , the maximum 
probability P(Cl| λ(p) ) is achieved, and the obstacle of type p̂ is 
the prediction of RFMR method results. 

Moreover, if a transceiver approaches an obstacle while 
the complete observation sequence was not existing, the first 
few observations for the classification.is found in the 

observation sequence of a variable-length vector Cl

(j)
. 

A. Examining Cylinder Obstacle of different Radius 

The total measurement vectors used are 535. A set of 321 
vectors is for the training, and the rest is for testing. These 
measurement vectors contain data from three different 
cylinder radiuses, 10 cm, 15 cm, and 20 cm, with a height of 
30 cm. The confusion matrix (CM) that signifies the RFMR 
results is depicted in Tables II, III, and IV, each row of the 
CM denotes the predicted class. Table II establishes the CM 
using the first two segments of observation sequences; a 
percentage of 88% was the classification rate attained. 
Table III reflects the CM using the first three segments, and 
the rate was 95%. Finally, a rate of 100% was reached using 
four segments as presented in Table IV. The results are 
improved for the HMM classifier as the number of segments 
increases, and consequently, the rates become reliable. 

B. Examining Wall Obstacle of Various Dimensions 

The total measurement vectors used are 455. A subset of 
two hundred seventy-three vectors is for the training, and the 
rest is for testing. The measurement vectors contain data for 7 
× 30 × 30 cm3, 10 × 30 × 30 cm3, and 15 × 30 × 30 cm3 wall 
dimensions. The CM of the RFMR results is shown in 
Tables V, VI, and VII. Table V demonstrates the CM of 
RFMR of wall measurement vectors based on the first two 
segments, and the rate was 70%. 

In comparison, Table VI presents the CM with the first 
three segments, and the rate was 77%. Finally, Table VII 
validates the CM of RFMR results based on the first four 
segments; the success rate was 93%. The results are improved 
for the HMM classifier as the number of segments increases, 
and consequently, the rates become excellent. 

TABLE II. CM OF RFMR FOR CYLINDER USING 2 OBSERVATIONS 

Cylinder radius r 10 cm 15cm 20 cm 

10 cm 1 0.0 0.14 

15 cm 0.0 1 0.22 

20 cm 0.0 0.0 0.64 

TABLE III. CM OF RFMR FOR CYLINDER USING 3 OBSERVATIONS 

Cylinder radius r 10 cm 15cm 20 cm 

10 cm 0.86 0.0 0.0 

15 cm 0.14 1 0.0 

20 cm 0.0 0.0 1 

TABLE IV. CM OF RFMR FOR CYLINDER USING 4 OBSERVATIONS 

Cylinder radius r 10 cm  15cm  20 cm 

10 cm 1 0.0 0.0 

15 cm 0.0 1 0.0 

 20 cm 0.0 0.0 1 

TABLE V. CM OF RFMR FOR WALL USING 2 OBSERVATIONS 

Wall width (w) 7 cm 10 cm 15 cm 

7 cm 0.85 0.46 0.0 

10 cm 0.15 0.54 0.31 

15 cm 0.0 0.0 0.69 

TABLE VI. CM OF RFMR FOR WALL USING 3 OBSERVATIONS 

Wall width (w) 7 cm 10 cm 15 cm 

7 cm 0.87 0.44 0.0 

10 cm 0.13 0.56 0.16 

15 cm 0.0 0.0 0.84 

TABLE VII. CM OF RFMR FOR WALL USING 4 OBSERVATIONS 

Wall width (w) 7 cm 10 cm 15 cm 

7 cm 0.95 0.08 0.0 

10 cm 0.05 0.92 0.12 

15 cm 0.0 0.0 0.88 

TABLE VIII. CM OF RFMR FOR ALL OBSTACLES USING 2 OBSERVATIONS 

Different 

Obstacle 

Cage  

30 cm3 

Wall 

10 cm 

Wall  

15 cm 

Cylinder 

10 cm 

Cylinder 

15 cm 

Cage 

 30 cm3 
1 0.0 0.0 0.0 0.0 

Wall  

w = 10 cm 
0.0 1 0.44 0.00 0.0 

Wall  

w = 15 cm 
0.0 0.0 0.56 0.0 0.0 

Cylinder 

 r = 10 cm 
0.0 0.0 0.00 0.80 0.0 

Cylinder  

r = 15 cm 
0.0 0.0 0.0 0.20 1 

C. Examining Walls, Cages and Cylinders Obstacle of 

Different Sizes 

In the experiment that combines three different size 
obstacles, the total measurement vectors used are 825. Four 
hundred ninety-five vectors are the training set and the rest for 
testing. Tables VIII, IX, and X illustrate the CM of the RFMR 
results for all combined obstacles observation vectors where 
the predicted class is expressed by CM rows approximated to 
the actual class. Table VIII establishes the CM of RFMR 
results using the first two segments, and the classification rate 
is 87%. When increasing the segment number to three, the 
success rate was 89%, as shown in Table IX. Ultimately, the 
classification rate increases and reaches 92% as the segments 
number increased to four and above, as illustrated in Table X. 
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TABLE IX. CM OF RFMR ALL OBSTACLES USING 3 OBSERVATIONS 

Cage 

 30 cm3 
1 0.0 0.0 0.0 0.0 

Wall  

w = 10 cm 
0.0 0.34 0.0 0.00 0.0 

Wall  

w = 15 cm 
0.0 0.66 0.44 1 0.0 

Cylinder 

 r = 10 cm 
0.0 0.0 0.56 0.80 0.0 

Cylinder  

r = 15 cm 
0.0 0.0 0.0 0.20 1 

TABLE X. CM OF RFMR FOR ALL OBSTACLES USING 4 OBSERVATIONS 

Different 

Obstacle 

Cage  

30 cm3 

Wall 

10 cm 

Wall  

15 cm 

Cylinder 

10 cm 

Cylinder 

15 cm 

Cage 

 30 cm3 
1 0.0 0.0 0.0 0.0 

Wall  

w = 10 cm 
0.0 1 0.40 0.00 0.0 

Wall  

w = 15 cm 
0.0 0.0 0.60 0.0 0.0 

Cylinder 

 r = 10 cm 
0.0 0.0 0.0 1 0.0 

Cylinder  

r = 15 cm 
0.0 0.0 0.0 0.00 1 

In conclusion, the results are improved for the HMM 
classifier as the number of observation segments increases, 
and consequently, the rates of successful classification become 
promising and outstanding. Therefore, it proves that the 
proposed methods are reliable for the best classification rates, 
thus, achieving proactive robot control in the field. 

IX. PROACTIVE MOTION CONTROL ALGORITHM (PMCA) 

FOR PRESERVING CONNECTIVITY 

The developing application of mobile robotics networks 
has produced the control motion concept of mobile nodes 
communication, so nodes can preserve connectivity while 
finishing their tasks in the field [8, 34]. However, the control 
motion techniques require deep exploration and the creation of 
more reliable algorithms in the robotic field [7]. When the SS 
drops down in the field, and a robot loses the collaborating 
robots in the swarm, it starts preserving connectivity through 
the movement control algorithm, which assists the robot in 
reaching a location in the field, where it can gain coverage 
communicate with other team members. Depending on the 
results of the RFMR method, the proposed PCMA algorithm 
decides either to continue the current trajectory or backward 
movement until it retains reliable SS. The PCMA control 
decision is mainly based on the information learned from the 
obstacle shadow recognition. 

The proactive control motion algorithm has two choices to 
achieve its motion control of mobile robots. As mentioned 
earlier, the control choices are based on the information 
learned from RFMA results. Firstly, the PMCA can continue 
to move robots in the current trajectory across the obstacle 
until the robots preserve communication successfully. The 
second control choice is moving the robot backward and 

computing a 4-D gradient based on SS to define the strong SS 
direction and then communicate with the team [33]. In 
summary, algorithm one and the flowchart of PCMA in Fig. 
15 illustrate the actual steps to control the mobile robot motion 
to preserve communication. 

Algorithm 1: Proactive Motion Control Algorithm (PMCA) 

1: Input: RFMR result. 

2: Output: Maintaining connectivity of mobile rebots. 

3: Get RFMRRecognitionResults() 

4:   if (Obstacle type and size are estimated) then 

5:       if Segments length ≥ (estimated size/2) then 

6:              MoveCurrentPath() 

7:              GradientDecsentAlgorithm() 

8:       else 

9:              MoveBack() 

10:             GetStrongSignalPos() 

11:            GradientDecsentAlgorithm() 

12:      end if 

13:   else 

14:          Moveback() 

15:          GetStrongSignalPos() 

16:          GradientDecsentAlgorithm() 

17: end if 

18: MaintainConnextivity() 

 

Fig. 15. The PMCA Flow Chart. 
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X. GRADIENT-BASED ON THE PROACTIVE CONTROL 

ALGORITHM 

The gradient computation process in the field is based on 
measuring SS between to mobile transceivers that are at d 
distance apart as in Fig. 20, where the SS is measured at the 

receiver side. The signal 𝑆𝑙
(𝑗)

(t) at time t of the lth trajectory 

around an obstacle type j is calculated according to Equation 

(2). When mobile robots move and retain LOS, 𝑆𝑙
(𝑗)

(t) is stable 

and preserves robots connectivity. In contrast, the SS dropped 
as a conductive obstacle blocks the moving robots [34]. 

Accordingly, the signal measurements, 𝑆𝑙
(𝑗)

(t), collected 

through the robot's motion at the position (𝑥𝑡
(𝑖)

,  𝑦𝑡
(𝑖)

), i = 1, 2 

at time t. Next, the gradient is calculated for a specific robot 
trajectory [34]. For the lth trajectory, the gradient vector can 
be expressed as 

𝛻𝑆𝑙
(𝑗)

(𝑡) = [ ∂𝑆𝑙
(𝑗)

(𝑡)

∂ 𝑥𝑡
(1)  

∂𝑆𝑙
(𝑗)

(𝑡)

∂ 𝑦𝑡
(1)  

∂𝑆𝑙
(𝑗)

(𝑡)

∂ 𝑥𝑡
(2)  

∂𝑆𝑙
(𝑗)

(𝑡)

∂ 𝑦𝑡
(2) ]𝑇            (4) 

 

Fig. 16. The Transmitter and Receiver Robot Stepwise Trajectory. 

The SS gradient is calculated following the of Fig. 16, the 
initial position at time t for robot one and robot two are 

(𝑥𝑡
(1)

,  𝑦𝑡
(1)

) and 𝑥𝑡
(2)

,  𝑦𝑡
(2)

). As explained in the method below, 
we assumed that one robot is moving while the other stays still 
to compute the gradient. As pointed out in Fig. 16, during time 
t and t+1, robot one moves along trajectory segment 1, so 

𝑥𝑡+1
(1)

= 𝑥𝑡
(1)

+  ∆𝑥 , 𝑦𝑡+1
(1)

= 𝑦𝑡
(1)

 , 𝑥𝑡+1
(2)

= 𝑥𝑡
(2)

 , 𝑦𝑡+1
(2)

= 𝑦𝑡
(2)

 , 

and the gradient element 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(1)  is computed a. 

 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(1) ≈

∂𝑆𝑙
(𝑗)

(𝑡)

∂ 𝑥𝑡
(1) =

𝑆𝑙
(𝑗)

(𝑡+1)− 𝑆𝑙
(𝑗)

(𝑡)

∆𝑥
             (5) 

Throughout time t + 1 and t + 2, robot two moves along 

segment 2, so 𝑥𝑡+2
(1)

= 𝑥𝑡+1
(1)

 , 𝑦𝑡+2
(1)

= 𝑦𝑡+1
(1)

 , 𝑥𝑡+2
(2)

= 𝑥𝑡+1
(2)

+  ∆𝑥 , 

𝑦𝑡+2
(2)

= 𝑦𝑡+1
(2)

 And the gradient element 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(2)  is computed as. 

 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(2) ≈

∂𝑆𝑙
(𝑗)

(𝑡+1)

∂ 𝑥𝑡+1
(2) =

𝑆𝑙
(𝑗)

(𝑡+2)− 𝑆𝑙
(𝑗)

(𝑡+1)

∆𝑥
           (6) 

In time t + 2 and t + 3, robot one moves along segment 3, 

so 𝑥𝑡+3
(1)

= 𝑥𝑡+2
(1)

 , 𝑦
𝑡+3
(1) = 𝑦

𝑡+2
(1) + ∆𝑦 , 𝑥𝑡+3

(2)
= 𝑥𝑡+2

(2)
 , 𝑦𝑡+2

(2)
= 𝑦𝑡+1

(2)
 , 

and the gradient element 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(2)  is computed as. 

 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑦𝑡
(1) ≈

∂𝑆𝑙
(𝑗)

(𝑡+2)

∂ 𝑦𝑡+2
(2) =

𝑆𝑙
(𝑗)

(𝑡+3)− 𝑆𝑙
(𝑗)

(𝑡+2)

∆𝑦
            (7) 

In time t + 3 and t + 4, robot two moves along trajectory 

segment 4, so 𝑥𝑡+4
(1)

= 𝑥𝑡+3
(1)

 , 𝑦
𝑡+4
(1) = 𝑦

𝑡+3
(1)  , 𝑥𝑡+3

(2)
= 𝑥𝑡+2

(2)
 , 𝑦𝑡+4

(2)
=

𝑦𝑡+3
(2)

+ ∆𝑦, and the gradient element 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑥𝑡
(2)  is computed as. 

 
∂𝑆𝑙

(𝑗)
(𝑡)

∂ 𝑦𝑡
(2) ≈

∂𝑆𝑙
(𝑗)

(𝑡+3)

∂ 𝑦𝑡+3
(2) =

𝑆𝑙
(𝑗)

(𝑡+4)− 𝑆𝑙
(𝑗)

(𝑡+3)

∆𝑦
            (8) 

As shown in Fig. 17, arrows indicate the gradient 
direction, and yellow grids illustrate reliable SS due to LOS 
existence between the communicated transceivers. The 
gradient strength and direction depend on the robot's location 
concerning the obstacle position in the field. For example, if 
one robot is surrounded inside the cage, the gradient drops 
down as green boxes indicate. Accordingly, any movement for 
the outer robot did not improve the SS for communication. 
However, when the robot in the cage changes position, the SS 
improves enough for communication, as in Fig. 17. 

The scenario of Fig. 18 illustrates an obstacle and two 
robots in the simulation field. One robot moves in a stepwise 
trajectory, and the other is stays still. Consequently, the 
gradient is scattered when no LOS exists and does not contain 
useful information due to obstacle shadow. However, the 
gradient improved as the LOS became clear. 

The scenario of Fig. 19 illustrates an obstacle and two 
robots in the simulation field. One robot stays still closer to 
the obstacle corner while the robot moves through a stepwise 
trajectory. The gradient is scattered when no LOS exists and 
does not contain useful information due to obstacle shadow. 
However, the gradient improved as the LOS became clear. In 
summary, the gradient helps find the right direction of the 
partner, as illustrated by Fig. 18 and Fig. 19. 

 

Fig. 17. One Robot is trapped in the Cage, the other Moves in a Stepwise 

Trajectory. 
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Fig. 18. One Robot Moves in a Stepwise Trajectory, and the other Stays Still. 

 

Fig. 19. One Robot Moves in a Stepwise Trajectory, and the other is Close to 

the Obstacle. 

The scenario of Fig. 20 illustrates an obstacle and two 
robots in the simulation field. It shows different trajectories 
for one robot moving straight and the other through a stepwise 
course. The gradient is scattered when no LOS exists and does 
not contain useful information due to obstacle shadow. 
However, the gradient improved as the LOS became clear. 
The gradient is computed according to Section V's equations 
(5) and (7). The gradient helps find the right direction of the 
other robot and preserve connectivity. 

 

Fig. 20. Different Robots Trajectory around the Cage. 

 

Fig. 21. Configuration Space of Two Robots. 

XI. THE EXPERIMENTAL RESULTS OF THE GRADIENT 

ALGORITHM 

Section III explains that the experimental robot field is 
divided into equal grids. Then, two robots move, measure SS 
and compute the gradient for any two grids in the area marked 
yellow in Fig. 21. Next, we created a database containing the 
robot's position, measured SS, and calculated the gradient for 
any two grids (robot's location) at time t. The main steps of the 
algorithm are illustrated in Fig. 22. For example, at time t = 0, 

two robots are placed at 𝑥0
(1)

 = 20; 𝑦0
(1)

 = 5 and robot 2 starts 

at 𝑥0
(2)

= 40; 𝑦0
(2)

 = 5 in the field. Fig. 23 depicts the 

trajectories of the robots resulting from running the gradient 
algorithm, and results confirm that the algorithm helps evade 
obstacles’ shadows and preserve communications. Fig. 24 
depicts another scenario where the robots are placed in front 

of the obstacle at (𝑥0
(1)

 = 18; 𝑦0
(1)

= 14) and the other robot at 

( 𝑥0
(2)

 = 34; 𝑦0
(2)

= 16). The gradient algorithm exhibits 

promising results to preserve communication between mobile 
robots. 

 

Fig. 22. Gradient Algorithm Flowchart. 
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Fig. 23. Robots Start at 𝑥0
(1)

= 20; 𝑦0
(1)

 = 5 and 𝑥0
(2)

= 40; 𝑦0
(2)

= 5 at Time t=0. 

 

Fig. 24. Robots Start at 𝑥0
(1)

) = 18; 𝑦0
(1)

= 14 and 𝑥0
(2)

= 34; 𝑦0
(2)

= 16 at time 

t=0. 

Another scenario is depicted in Fig. 25, where one robot 

faces the obstacle at 𝑥0
(1)

 = 17; 𝑦0
(1)

= 5 and the other at 𝑥0
(2)

 = 

38; 𝑦0
(2)

= 5 at time t = 0. The results confirm the algorithm's 

success in preserving communication. 

 

Fig. 25. Robots Start at 𝑥0
(1)

) = 17; 𝑦0
(1)

= 5 and 𝑥0
(2)

= 38; 𝑦0
(2)

= 5 at time t=0. 

XII. THE EXPERIMENTAL RESULTS OF THE PMCA 

The HMM results of the RFMR method demonstrate the 
detection of obstacles on the robotic path and determine the 
type of distance from the robot path and the size of the 
approximate obstacle. PMCA uses HMM results to encourage 
the robot to continue moving through the current trajectory 
based on the length of the segments covered by the robot. If 
the segment's length is equal to half or greater than the 
estimated obstacle size, then the robot continues forward. 
Otherwise, the robot stops and returns to a position with 
robust signal strength, as shown in the scene in Fig. 26. 
Afterward, the robot runs a gradient algorithm to determine 
the strong SS direction. After that the robot moves in the 
gradient trend and re-establishes connectivity, as shown in the 
scene in Fig. 27. Algorithm 1 and Fig. 15 illustrate the PMCA 
mechanism. 

 

Fig. 26. PCMA uses Three Observations. 

 

Fig. 27. PCMA uses Two Segments. 

XIII. CONCLUSION 

The article introduces Radio Frequency Mapping 
Environment Recognition (RFMR), gradient, and proactive 
robot motion control algorithms (PMCA). Thus, we conducted 
many simulations and physical experiments to assess the 
proposed method's performance. Consequently, this work 
presents promising solutions and becomes a competitive 
alternative for the routing and maintaining broken links 
problems in robot networks. Furthermore, extensive 
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simulation and physical experiments will be conducted to 
validate the recognition of different RF obstacles. Also, 
obstacle parameterization and generalization approaches will 
be addressed in future studies. 
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