
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

194 | P a g e

www.ijacsa.thesai.org

Incorporation of Computational Thinking Practices to

Enhance Learning in a Programming Course

Leticia Laura-Ochoa, Norka Bedregal-Alpaca

Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru

Abstract—The development of computational thinking skills

is essential for information management, problem-solving, and

understanding human behavior. Thus, the aim of the experience

described here was to incorporate computational thinking

practices to improve learning in a first Python programming

course using programming tools such as PSeInt, CodingBat, and

the turtle graphic library. A quasi-experimental methodological

design was used in which the experimental and control groups

are in different academic semesters. Exploratory mixed research

was carried out. The control and experimental group consisted of

41 and 36 students, respectively. The results show that with the

use of support programming tools, such as PSeInt, CodingBat,

Python turtle graphic library, and the incorporation of

computational thinking practices, the experimental group

students obtained better learning results. It is concluded that

student performance and motivation in university programming

courses can be improved by using proper tools that help the

understanding of programming concepts and the skills

development related to computational thinking, such as

abstraction and algorithmic thinking.

Keywords—Programming tools; computational thinking;

algorithmic thinking; motivation; abstraction

I. INTRODUCTION

Computational Thinking (CT) is a fundamental skill for all
students [1]. In [2], CT has been found to involve abstraction,
algorithmic thinking, automation, decomposition, debugging,
and generalization. In addition, the formation and development
of algorithmic thinking in higher education students is a
requirement of the information society, as it provides them
with instruments to solve problems of everyday life [3] and get
a solution through a series of steps [4]. It is a fundamental skill
that students develop when they learn to program [5]. Also,
computer programming involves other skills like logical
reasoning and creativity in problem-solving.

However, learning computer programming for novice
students is considered a challenge for educators, since a
decrease in students’ interest and motivation to learn
programming courses has been noted [6]. The learning process
can be complicated and demanding, difficult to master for
novice programmers [6][7]. Computer programming courses
are considered the most difficult courses in which
undergraduate students do not usually succeed [8]; in [9]
explain that the content of an introductory programming course
emphasizes more on learning the syntax and semantics of the
programming language. In addition, programming courses
should not only focus on teaching students to write code but
should also include the development of skills related to

computational thinking, such as algorithmic thinking, logic,
and problem-solving [4].

According to [10], programming courses introduce a
programming language and the computer science thinking way.
Furthermore, programming exposes students to computational
thinking, because it requires problem-solving using computer
science concepts such as abstraction and decomposition [11].
For [12][13], CT has begun to influence various disciplines and
professions, in addition to all science and engineering
disciplines, making it necessary to include it in general
education.

On the other hand, high dropout rates are found in
introductory programming courses [14], one of the main
reasons being the lack of students’ motivation [15]. Since
computer programming requires constant effort and practice, it
is important to keep students motivated [16], to get their
predisposition to continue learning and improve their learning.

Consequently, the problem we found is that traditional
methods used to teach programming courses to novice
students, based on syntax and semantic content of the
programming language can demotivate students to continue
learning programming courses, causing low performance in
their learning and even dropout.

In this context, the aim of the experience described here
was to select the proper programming language, tools, and
teaching strategies to teach introductory programming courses,
so that students improve their learning outcomes, develop skills
related to computational thinking, learn to program, and
increase their motivation towards the subject of programming.

The rest of the paper is organized as follows: Section II
provides some related works proposed in the literature.
Section III describes the conceptual framework on algorithmic
thinking, abstraction, and Python. Section IV explains the
overview of the methodology. Section V presents a detailed
description of the experience of incorporating computational
thinking practices in the programming course. Section VI
shows the results of applying programming tools and
computational thinking practices to improve student
performance. Section VII discusses the results obtained.
Section VIII presents the conclusions and future work.

II. RELATED WORK

In the work of [17], they present the use of the ADRI
(Approach, Deployment, Result, Improvement) approach in the
teaching and learning process of an introductory programming
course, for which they redesigned their course materials and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

195 | P a g e

www.ijacsa.thesai.org

developed an editor so that students can complete the required
stages of the approach, managing to improve student learning
outcomes compared to previous semesters, focusing on
problem-solving strategies as well as programming knowledge.
Additionally, ADRI's approach and editor reduced failure and
dropout rates.

In [18], they present a teaching approach based on four
components: The use of the Python programming language,
project-oriented and problem-based learning methodologies,
multimedia resources available on virtual platforms, and
evaluation rubrics. The approach used improved the academic
performance of the students, which is evidenced in the grades
obtained, and the dropout rates were reduced. The results
obtained suggest Python as a proper programming language for
students of a first introductory programming course, due to its
simplicity in syntax and code debugging, in addition to the use
of other pedagogical strategies that support the learning
process.

In the work of [3], they carry out an analysis of the
scientific literature considering definitions, main properties,
and characteristics of algorithmic thinking. They then present a
universal sequence of algorithm development, involving
different types of thinking such as abstract, conceptual, logical,
constructive, and figurative. They carried out a survey in which
the participants demonstrated a low level of understanding
about algorithms, algorithmic thinking, and its usefulness in
daily life and professional activity, so they end that algorithmic
thinking is important for any higher education subject, not only
in information and communication technologies (ICT) area and
consider it as a new dimension of learning in higher education.

In [9], they introduce a new teaching approach focusing on
algorithmic thinking skills besides the knowledge of the syntax
and semantics of a programming language in an introductory
programming course, using techniques of flowchart and
pseudocode. Their results show that the ADRI approach

promotes the three-step approach (Problem statement →

Solution plans → Code) to solve a problem, fosters

programming knowledge, as well as problem-solving
strategies, promoting algorithmic thinking.

In the work of [19], they describe the design and
implementation of an introductory computational thinking
course to teach programming to high school students with
activities that take place in a web-based programming
environment that uses a variant of the Haskell language,
promoting higher-order thinking. They address the need for
computational thinking courses geared toward all students, not
just future software developers, by making connections
between learning programming with science and math. Most of
the students who participated in the course considered it
difficult; but there was an overall positive reception from the
students, who learned the language and the general principles
of programming, logic, and modeling. They find that courses
like Python typically do not focus on computational thinking
and follow traditional syntax-oriented approaches to teaching
programming, with little connection to science and math.

III. CONCEPTUAL FRAMEWORK

A. Algorithmic Thinking

Algorithmic thinking is essential in comprehensive general
education and programming is a way to teach the basic
principles of algorithmic thinking from the beginning [10], it is
important in higher education, to develop algorithms in the
context of the future profession and everyday life in the
modern information society [3]. Also, it is considered a
significant component of the cognitive competencies of the
future engineer because the algorithmic activity allows forming
adequate algorithmic skills, through which students develop
techniques of mental actions such as generalization,
classification, analogy, the establishment of patterns and
logical reasoning, which are the main components of
algorithmic thinking [20]. Therefore, it is advisable to promote
the development of algorithmic thinking skills through
programming in the different disciplines and professions,
besides careers related to computing.

According to [5][4][21], algorithmic thinking consists of a
clear definition of the steps to reach a solution, thinking in
terms of instruction sequences and rules that lead to problem-
solving or understanding of situations. It is an important aspect
of computational thinking [22], its main properties include
discretion, abstraction, formality, integrity, and effectiveness
[3].

B. Abstraction

Abstraction, efficiency, and algorithms are considered vital
“mental tools” for computational thinking [23]. According to
[13], abstraction is the most important and high-level thought
process in computational thinking.

Abstraction is a key skill for computing, fundamental for
mathematics and engineering in general [24], it involves
reducing unnecessary details, eliminating complexity, choosing
the correct detail to hide, and thus the problem is easier and
understandable without missing anything important [21][5].
Therefore, it allows developing a potential solution by
eliminating details of the problem [23]. For [25], abstract
thinking is the ability to abstract the properties of objects that
are relevant to a study.

Furthermore, abstraction allows defining patterns,
generalizing by capturing common essential properties from
instances, and parameterization [13]. Without abstraction,
students tend to get overwhelmed with details and feel
frustrated with the programming process [23], so the
development of this skill is necessary, applicable in
programming, mathematics, and the different disciplines.

C. Python

The main professional programming languages are based
on text such as C, Python, Java [26]. Among these, the use of
Python makes it easier for novice students to engage in the
main features of computational thinking, mainly due to its
basic syntax, dynamic typing (declaring variables is not
required), structured and indented writing [4]. Its use is suitable
because it includes turtle graphics libraries that allow a smooth
transition from Logo to Python [10], which allows focusing on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

196 | P a g e

www.ijacsa.thesai.org

concepts without a long introduction to the syntactic details of
the language [27].

In addition, Python is a high-level programming language,
easy to learn, free, and with documentation available on the
Web [4].

IV. METHODOLOGY

The methodological design used was quasi-experimental
with experimental and control groups located in different
semesters, so the selection of its members was not random.
Exploratory mixed research was carried out.

In the experience, the experimental group consisted of 36
students enrolled in the Programming course, group A, of the
2019-A academic period of the Professional School of
Mechanical Engineering of the Universidad Nacional de San
Agustin de Arequipa (Peru). In this group, there were 34 male
students (94%) and 2 female students (6%). The control group
was the students of group A who completed the Programming
course in the 2018-A academic period, made up of 41 male
students (100%).

The Programming course at the Professional School of
Mechanical Engineering of the Universidad Nacional de San
Agustin de Arequipa - Peru, is given in the third academic
semester and it is developed for 17 weeks. It has 3 hours a
week (1 theoretical hour and 2 laboratory hours), it is
equivalent to 2 credits and the Python programming language
is used.

In the control group, tools such as DFD were used to create
data flow diagrams and PSeInt for pseudocode, before the use
of the Python programming language; CodingBat and turtle
graphic library were not used. A greater preference was also
observed for the use of the PSeInt tool concerning the DFD
tool, so in the experimental group only PSeInt was used and
the use of the CodingBat tool and the Python turtle graphic
library were incorporated with an approach oriented to
computational thinking practices, in addition to the Python
programming language.

Data collection was done from the students' grades obtained
in their evaluations of the programming course, before (control
group) and after the experiment (experimental group). Direct
observations were also made during the programming
activities.

To measure success, a comparison of the grades obtained
by the students of the control and experimental groups was
made, to check if there is an improvement in the students’
performance of the experimental group. The results were
validated by statistical analysis using SPSS Statistic V25
software, to determine if there is a statistically significant
improvement.

V. DESCRIPTION OF THE EXPERIENCE

This work describes our experience in the use of PSeInt,
CodingBat, and Python turtle graphical library to motivate and
reinforce students' learning of programming concepts and
develop skills related to computational thinking in a first
programming course with Python.

In the programming course, students learned topics such as
sequential statements, conditionals, loops, functions, structured
types, object-oriented programming.

In the 2019-A academic period, students began learning to
create algorithms to solve problems using the PSeInt tool
(Fig. 1), with which they developed algorithmic thinking skills,
logic, and problem-solving strategies using pseudocode.

With PSeInt, the students were able to execute algorithms
in an automated way to test their solution proposals and verify
results, analyzing the errors in the logic, which allowed the
student to practice automation and debugging.

Then, the Python programming language was taught.
Initially, they were asked to perform the same exercises
developed in PSeInt, to pass their created algorithms to a
computer program using the Python programming language.

Students learned the syntax and semantics of the Python
programming language, practiced coding, running programs,
checking results, parsing, and fixing syntax errors. Automation
and debugging were also present.

To improve students' programming skills, the online code
practice tool called CodingBat [28] was used, which presents
some examples with solutions available for students to practice
coding and executing programs in Python, allowing them to
check your answer or see other ways to solve the same
problem, plus there are several exercises to solve with hints
available, using conditionals, loops, strings, and lists. Fig. 2
shows some exercises that were solved by the students using
Boolean logic and conditionals in CodingBat, which provided
them with more opportunities to practice their programming
constructions, as well as reinforce computational concepts such
as sequential and conditional instructions.

Fig. 1. Creation of Algorithms through Pseudocode using the PSeInt Tool.

Fig. 2. Carrying out Python Logic-1 Exercises in CodingBat.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

197 | P a g e

www.ijacsa.thesai.org

Students learned to create graphics using Python turtle
graphical library, they began by drawing geometric figures
using sequential instructions and functions, then drawing
different shapes and patterns (Fig. 3, 4, 5) incorporating
repetitive instructions.

Fig. 3 shows geometric exercises performed by the
students, where they apply iterations and functions from
squares and rectangles to create different graphics with
repetitive patterns.

Fig. 4 shows additional geometric exercises created from
parallelograms and circles, where students apply their
creativity and logic with the help of iterations and functions.

Fig. 5 shows an example, in which the problem is first
decomposed using the functions parallelograms (to draw small
rhombus by tracing lines of 65 pixels) and parallelogram (to
draw large rhombus by tracing lines of 100 pixels). Through
abstraction and generalization, repetitive patterns were
identified to create the graphics, and then their abstractions
were improved by proposing new solution strategies using
parameters, which allowed reducing the two functions that
drew the rhombuses of different sizes into a single function
called parallelograms(n). The function parallelograms(n)
groups instruction patterns to draw shapes by drawing lines
according to the number of pixels specified in the parameter n,
this function is reused from the main function called main.

Fig. 3. Drawing Geometric figures such as Squares, Rectangles with

different Angles of Rotation using Iterations and Functions.

Fig. 4. Drawing Geometric figures Like Parallelograms, Circles using

Iterations and Functions.

Fig. 5. Using Functions, Loops, Parallelograms of different Sizes (65 and

100 Pixels) with Rotation Angles of 60 and 120 Degrees.

In addition to reinforcing programming concepts such as
sequential instructions, loops, and functions, students gained
computational thinking practices such as decomposition,
iteration, and abstraction that enabled them to recognize
repeating patterns.

VI. RESULTS

In the academic period 2019-A, students obtained an
average grade of 16.75 in their first exam. Then, in the
evaluation with Python, they obtained an average grade of
13.86 in their second exam. Finally, CodingBat and the turtle
graphic library were used to reinforce and motivate them in
their learning process, obtaining an average grade of 14.97,
which improved their grade using only PSeInt for algorithms
creation and the Python programming language. Table I shows
the average of the grades obtained in the first, second and third
exams of group A of the Programming course taught in the
academic periods 2018-A and 2019-A, which range from 0
to 20.

Fig. 6 shows the average grades evolution for Exam 1, 2,
and 3 in the academic periods 2018-A and 2019-A, showing an
improvement for Exam 1 and Exam 3 in 2019-A.

The use of PSeInt, CodingBat, and turtle graphic library has
shown an improvement in the students' grades in their average
grades. Table II shows the global grade average of group A in
2018-A and 2019-A, which range from 0 to 20.

Fig. 7 shows the global grade average for the Programming
course in the academic periods 2018-A and 2019-A, showing
an improvement in 2019-A.

TABLE I. AVERAGE GRADES FOR EXAM 1, 2 AND 3

Academic period Exam 1 Exam 2 Exam 3

2018-A 14.34 13.66 13.37

2019-A 16.75 13.86 14.97

Fig. 6. Average Grade Result for Exam 1, 2, and 3 of the Programming

Course by Academic Year.

TABLE II. GLOBAL GRADE AVERAGE

Academic period Global average

2018-A 14.3

2019-A 15.08

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

198 | P a g e

www.ijacsa.thesai.org

Fig. 7. Global Grade Average for the Programming Course by Academic

Year.

In our experience, we have observed that novice students
are motivated by using Python turtle graphic library to create
their drawings and improve their abstractions, as well as
develop skills related to computational thinking. CodingBat
allowed them to improve their programming skills by
practicing their coding in Python, thereby improving their final
grades in the programming course.

SPSS Statistic V25 software was used for the statistical
analysis of the results. Table III has some descriptive measures
for the grades obtained by students in the years 2018 and 2019.
The average of the grades for the year 2018 is 14.3 and with a
95% confidence level, it can be stated that range between 13.86
and 14.82, while the average of the grades for the year 2019 is
15.08 and with the same 95% confidence level it can be stated
that range between 14.31 and 15.85. Consequently, it could be
assumed that the grades obtained in 2019 were better than
those of 2018.

To determine if the difference was statistically significant,
as a requirement, it was necessary to verify that the conditions
of normality and heteroskedasticity were met. With a
significance level of 5% (0.05), the Kolmogorov-Smirnov test
was applied, obtaining the results of Table IV, as the p-value
(Sig.) is greater than the significance, and the grades
distribution normality is accepted.

When applying the t-test for independent samples, the
results shown in Table V were obtained.

In Levene's test, as the p-value of 0.27 is greater than the
significance, then it was possible to affirm that the assumptions
of normality and heteroskedasticity were met, therefore, it was
possible to apply the t-test for the means difference. Table V
shows that the bilateral p-value is 0.093, so the unilateral value
is 0.046, which is less than the significance; consequently, the
means equality hypothesis is rejected.

TABLE III. DESCRIPTIVE MEASURES FOR THE GRADES OBTAINED IN THE

YEARS 2018 AND 2019

Grade 2018 2019

Mean 14.3415 15.0833

Standard deviation 1.52659 2.27251

Standard error of the mean 0.23841 0.37875

N 41 36

CI 95% lower limit 13.86 14.31

CI 95% upper limit 14.82 15.85

TABLE IV. RESULTS OF THE KOLMOGOROV-SMIRNOV NORMALITY TEST

Year
Kolmogorov-Smirnova

Statistic df Sig.

2018 ,149 41 ,052

2019 ,126 36 ,163

Lilliefors Significance Correction

TABLE V. INDEPENDENT SAMPLES T-TEST

Levene's test for

equality of variances
t-test for equality of means

F Sig. t Sig. (2-tailed)

Equal variances
assumed

5.120 0.27 -1,699 ,093

Equal variances
not assumed

 -1,658 ,103

VII. DISCUSSION

Statistically, it is possible to state that the difference found
between the grades obtained in 2018 and 2019 were
statistically different and, with a confidence level of 95% it can
be stated that the grades obtained by the students in 2019 were
better than those obtained in 2018.

The use of support tools such as PSeInt, CodingBat, and
Python turtle graphic library have increased students’
motivation and performance in a first programming course
with Python, because an approach oriented to computational
thinking practices was also followed. As indicated by [29],
computer programming is the main demonstration of
computational thinking skills. However, they tend to follow
syntax-oriented programming teaching approaches, without
focusing on computational thinking, with few connections to
mathematics and science [19]. Furthermore, in the work of
[18], they indicate that the Python programming language is
suitable for introductory programming courses because of its
simple syntax and ease for code debugging, they also point out
that it is necessary to consider other aspects such as
pedagogical strategies that allow improving the programming
teaching-learning process.

According to [5], algorithmic thinking is a fundamental
skill that students acquire when they learn to program,
developing the ability to think in terms of sequences and rules
to solve problems. In the work of [9], they used flowcharts and
pseudocode for novice students to propose solutions to
problem statements, which promote algorithmic thinking skills.
Similarly, in our work, we use the PSeInt tool for students to
develop algorithmic thinking skills, logic, and problem-solving
strategies by creating algorithms with pseudocode. In addition,
because it is a tool that allows algorithms execution in an
automated way, the students were able to test their solution
proposals, find and resolve errors in logic, practicing
automation and debugging, which are part of the computational
thinking skills found in the work of [2].

We consider that the use of support tools such as
CodingBat is essential so that students can practice their
programming constructs and improve their problem-solving
skills in the programming language used in the course.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

199 | P a g e

www.ijacsa.thesai.org

Likewise, in the work of [17], they express the importance of
practicing programming skills by dedicating more time and
focusing on problem-solving strategies.

According to the experience described, the Python turtle
graphic library allowed the acquisition of computational
practices such as abstraction, decomposition, iteration, and
debugging, which correspond to the computational thinking
practices defined by [30] and adapted in the work of [31]. In
addition, in the programming course, students developed skills
such as algorithmic thinking, automation, and generalization,
which are part of the computational thinking skills identified in
five articles highlighted in the work of [2], which are
abstraction, algorithmic thinking, automation, decomposition,
debugging, and generalization. On the other hand, in the
programming course, concepts such as sequential instructions,
loops, conditionals were learned, which correspond to the
concepts of computational thinking considered in the work of
[31].

We agree with [32], in the sense that programming
environments with graphic components allow the acquisition of
computational thinking practices through programs creation,
which is attractive to them, helping students develop a positive
attitude towards programming.

Currently, technology-mediated training processes are
becoming increasingly flexible and collaborative; therefore,
problem-solving activities can be involved [33] that involve
cooperative learning techniques [34], such as the programming
of a robotic hand. Consequently, the student would not only be
developing computational thinking but also critical spirit,
creativity, and collaborative work.

VIII. CONCLUSION

In this study, we considered two semesters with different
students. Semester 2018-A with 41 students from group A,
served as a control group, where we used the DFD and PSeInt
tools earlier to teach programming using Python, while in
semester 2019-A, with 36 students from group A, we started
with the PSeInt tool before teaching Python, then the students'
learning of Python programming was reinforced with the
CodingBat tool and turtle graphic library. We examined the
grades obtained in the midterm exams and the global average
of the programming course, where an improvement in the
grades in the second experimental group with the support tools
used in the course is evidenced, indicating that they acquired
better programming skills and therefore better performance. In
addition, we observed that students are motivated by using the
Python turtle graphic library that reinforces their learning of
sequential instructions, loops, functions, and allows the
development of skills related to computational thinking such as
algorithmic thinking, decomposition, iteration, and abstraction.
The experience of this work can serve as a reference for
educators interested in approaches oriented to computational
thinking practices in programming teaching.

As future work, we consider investigating computational
thinking measurement evaluations to be applied after following
a programming teaching approach oriented to computational
thinking practices.

ACKNOWLEDGMENT

The authors' thanks are expressed to the National
University of San Agustin de Arequipa for the support received
in the realization of the proposal and the results are expected to
benefit the institution.

REFERENCES

[1] Q. Li, “Computational thinking and teacher education: An expert
interview study,” Human Behavior and Emerging Technologies, vol. 3,
no. 2, pp. 324-338, 2021.

[2] S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari and K. Engelhardt,
“Developing computational thinking in compulsory education -
Implications for policy and practice,” in JRC Science for Policy Report,
2016.

[3] M. F. Byrka, A. V. Sushchenko, A. V. Svatiev, V. M. Mazin and O. I.
Veritov, “A New Dimension of Learning in Higher Education:
Algorithmic Thinking,” Propósitos y Representaciones, vol. 9, no. SPE2,
pp. 990, 2021.

[4] F. Buitrago Flórez, R. Casallas, M. Hernández, A. Reyes, S. Restrepo
and G. Danies, “Changing a generation’s way of thinking: Teaching
computational thinking through programming,” Review of Educational
Research, vol. 87, no. 4, pp. 834-860, 2017.

[5] A. Csizmadia, P. Curzon, M. Dorling, S. Humphreys, T. Ng, C. Selby
and J. Woollard, “Computational thinking-A guide for teachers,”
Computing at School, 2015.

[6] M. Piteira and C. Costa, “Computer programming and novice
programmers,” in Proceedings of the Workshop on Information Systems
and Design of Communication pp. 51-53, 2012.

[7] M. Karaliopoulou, I. Apostolakis and E. Kanidis, “Perceptions of
Informatics Teachers Regarding the Use of Block and Text
Programming Environments,” European Journal of Engineering
Research and Science, pp. 11-18, 2018.

[8] B. Özmen and A. Altun, “Undergraduate students' experiences in
programming: difficulties and obstacles,” Turkish Online Journal of
Qualitative Inquiry, vol. 5, no. 3, pp. 1-27, 2014.

[9] S. I. Malik, M. Shakir, A. Eldow and M. W. Ashfaque, “Promoting
Algorithmic Thinking in an Introductory Programming Course,”
International Journal of Emerging Technologies in Learning, vol. 14, no.
1, 2019.

[10] J. Hromkovic, T. Kohn, D. Komm and G. Serafini, “Algorithmic
thinking from the start,” Bulletin of EATCS, vol. 1, no. 121, 2017.

[11] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of
computational thinking through programming: What is next for K-12?,”
Computers in Human Behavior, vol. 41, pp. 51-61, 2014.

[12] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33-35, 2006.

[13] J. M. Wing, “Computational thinking: What and why. The Link,” News
from the School of Computer Science at Carnegie Mellon University,
2011.

[14] C. Chen, P. Haduong, K. Brennan, G. Sonnert and P. Sadler, “The
effects of first programming language on college students’ computing
attitude and achievement: a comparison of graphical and textual
languages,” Computer Science Education, vol. 29, no. 1, pp. 23-48,
2019.

[15] P. Kinnunen and L. Malmi, “Why students drop out CS1 course?,” in
Proceedings of the second international workshop on Computing
education research, pp. 97-108, 2006.

[16] A. Settle, A. Vihavainen and J. Sorva, “Three views on motivation and
programming,” in Proceedings of the 2014 conference on Innovation &
technology in computer science education, pp. 321-322, 2014.

[17] S. Iqbal Malik and J. Coldwell-Neilson, “Impact of a new teaching and
learning approach in an introductory programming course,” Journal of
Educational Computing Research, vol. 55, no. 6, pp. 789-819, 2017.

[18] O. Solarte Pabón and L. E. Machuca Villegas, “Fostering Motivation
and Improving Student Performance in an Introductory Programming
Course: An Integrated Teaching Approach,” Revista EIA, vol. 16, no.
31, pp. 65-76, 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

200 | P a g e

www.ijacsa.thesai.org

[19] F. Alegre, J. Underwoood, J. Moreno and M. Alegre, “Introduction to
Computational Thinking: a new high school curriculum using
CodeWorld,” in Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pp. 992-998, 2020.

[20] M. Kovalchuk, A. Voievoda and E. Prozor, “Algorithmic Thinking as
the Meaningful Component of Cognitive Competencies of the Future
Engineer,” Universal Journal of Educational Research, vol. 8 (11B), pp.
6248-6255, 2020.

[21] P. Curzon, M. Dorling, T. Ng, C. Selby and J. Woollard, “Developing
computational thinking in the classroom: a framework,” Computing at
School, 2014.

[22] M. Romero, A. Lepage and B. Lille, “Computational thinking
development through creative programming in higher education,”
International Journal of Educational Technology in Higher Education,
vol. 14, no. 1, pp. 1-15, 2017.

[23] J. A. Qualls, M. M. Grant and L. B. Sherrell, “CS1 students'
understanding of computational thinking concepts,” Journal of
Computing Sciences in Colleges, vol. 26, no. 5, pp. 62-71, 2011.

[24] J. Kramer, “Is abstraction the key to computing?,” Communications of
the ACM, vol. 50, no. 4, pp. 36-42, 2007.

[25] M. Zapata-Ros, “Pensamiento computacional: Una nueva alfabetización
digital,” Revista de Educación a Distancia (RED), vol. 46, no. 4, 2015.

[26] M. Kölling, N. C. Brown and A. Altadmri, “Frame-based editing: Easing
the transition from blocks to text-based programming,” in Proceedings
of the Workshop in Primary and Secondary Computing Education, pp.
29-38, 2015.

[27] J. Hromkovič, T. Kohn, D. Komm and G. Serafini, “Combining the
power of python with the simplicity of logo for a sustainable computer
science education,” in International Conference on Informatics in

Schools: Situation, Evolution, and Perspectives, Springer, Cham, pp.
155-166, 2016.

[28] N. Parlante. (2017). CodingBat code practice [Online]. Available:
https://codingbat.com/python

[29] M. Román-González, J. C. Pérez-González, J. Moreno-León and G.
Robles, “Can computational talent be detected? Predictive validity of the
Computational Thinking Test,” International Journal of Child-Computer
Interaction, vol. 18, pp. 47-58, 2018.

[30] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” in Proceedings of
the 2012 annual meeting of the American Educational Research
Association, 2012.

[31] F. Luo, P. D. Antonenko and E. C. Davis, “Exploring the evolution of
two girls’ conceptions and practices in computational thinking in
science,” Computers & Education, vol. 146, pp. 103759, 2020.

[32] L. Laura-Ochoa and N. Bedregal-Alpaca, “Análisis de entornos de
programación para el desarrollo de habilidades del pensamiento
computacional y enseñanza de programación a principiantes,” Revista
Ibérica de Sistemas e Tecnologias de Informaçao, no. E43, pp. 533-548,
2021.

[33] V. Cornejo-Aparicio, S. Flores-Silva, N. Bedregal-Alpaca and D.
Tupacyupanqui-Jaén, “Capstone courses under the PBL methodology
approach, for engineering,” 2019 IEEE World Conference on
Engineering Education (EDUNINE), 2019, DOI:
10.1109/EDUNINE.2019.8875803.

[34] N. Bedregal-Alpaca, V. Cornejo-Aparicio, A. Padron-Alvarez and E.
Castañeda-Huaman, “Design of cooperative activities in teaching-
learning university subjects: Elaboration of a proposal,” International
Journal of Advanced Computer Science and Applications, vol. 11, no. 4,
2020, DOI: 10.14569/IJACSA.2020.0110445.

