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Abstract—A Chronic Kidney Disease (CKD) monitoring 

system was proposed for early detection of cardiovascular disease 

(CVD) and anemia using Fuzzy Logic. To determine the heart 

rate and blood oxygen saturation, the proposed model was 

simulated using MATLAB and Simulink to handle ECG and 

PPG inputs. The Pan-Tompkins method was used to determine 

the heart rate, while the Takuo Aoyagi algorithm was used to 

assess blood oxygen saturation levels. The findings show that the 

ECG recorded using the CKD model has all of the characteristics 

of a typical ECG wave cycle, but with reduced signal degradation 

in the 0.8–1.3mV region. The heart rate signal processing yielded 

findings between 78 and 83 beats per minute is within the range 

of the supplied heart rate. Takuo Aoyagi's pulse oximeter 

simulation generated the same findings. For real-time 

verification, the proposed model was implemented in hardware 

using ESP8266 32-bit microcontroller with IoT integration via 

Wireless Fidelity for data storage and monitoring. In comparison 

with the Fuzzy Logic simulation done on MATLAB and 

Simulink, the CKD monitoring device has 100% accuracy in 

patient status detection. The CKD monitoring system has an 

overall accuracy of 99% in comparison with a commercial 

fingertip pulse oximeter. 

Keywords—Anemia; cardiovascular disease (CVD); fuzzy logic; 

healthcare; internet of things 

I. INTRODUCTION 

Healthcare monitoring systems or e-Health systems are 
devices that use a wireless sensor network (WSN) to observe 
severe or chronic diseases in humans [1] In this era, there are 
many smart watches out in the market that claim to track the 
condition of the body accurately. However, these smartwatches 
could not be used to diagnose a medical condition. It can only 
give alerts on an abnormal vital sign [2]. In this case, we have 
to use a proper medical device to monitor the vital signs. Some 
examples of medical devices are heart rate monitors (HRM), 
pulse oximeters, electrocardiogram (ECG), blood pressure 
monitors, thermometer, etc. Monitoring vital signs play an 
important role in healthcare monitoring systems. The vital 
signs of patients in intensive care unit (ICU) are also observed 
using healthcare monitoring systems [3]. Chronic disease 
patients require constant monitoring. In 2005, chronic disease 
fatality rates increased, with a total death count of more than 58 
million people worldwide [4]. According to a recent study 
from Malaysia's National Renal Registry, for ten year's there 
has been an increase in new dialysis patients from 4,606 to 

8,431 from 2008 to 2018 [5]. 

As a result, healthcare monitoring systems serve an 
important role in monitoring patients' vital signs and early 
detection of prevailing diseases. However, the high cost of 
equipment has been one of the drawbacks of a healthcare 
monitoring system. Treatment and monitoring chronic diseases 
cost a lot of money in both low-income and high-income 
nations urging the need for low-cost healthcare solutions [6]. 
Diseases that are caused by chronic diseases may be avoided if 
patients' vitals are monitored. Chronic Kidney Disease (CKD) 
is reported to outnumber other chronic illnesses including 
cardiovascular disease (CVD) and anemia in this scenario [7]. 
Due to insufficient erythropoietin hormones in CKD patients, 
previous studies reveal that the prevalence of CVD [8] and 
anemia [9] are very significant. Monitoring the 
electrocardiogram (ECG), heart rate, and blood oxygen 
saturation level        can help in early prevention. 
Contaminants in ECG signals are commonly divided into the 
following groups. Power line interference, electrode pop or 
contact noise, patient–electrode motion artefacts, 
electromyographic (EMG) noise, and baseline wandering are 
all examples of these problems [10]. These pollutants cause 
ECG readings to be inaccurate, making it harder to diagnose 
the heart's activity. 

The integration of an Artificial Intelligence in a healthcare 
monitoring device will improve the decision-making process. 
Fuzzy Logic is known to be a form of artificial intelligence 
where the approach to computing is based on "degrees of truth" 
rather than the usual "true or false". This allows human-like 
reasoning to take place to identify pathologies in a person. 

The design of a sensor interface controller for early 
detection of anemia and CVD in CKD patients with the aid of 
artificial intelligence is the focus of this article. The 
implementation of Internet of Things (IoT) will further 
enhance the device with transmitting and storing data via 
Cloud Computing. ECG signal generation, heart rate detection, 
    and patient condition are all done with MATLAB and 
Simulink. For early diagnosis of CVD and anemias, a Fuzzy 
Logic Interface (FIS) is implemented. The Fuzzy Logic 
Toolbox graphical user interface (GUI) from MATLAB is used 
to simulate the FIS. The suggested method is implemented in 
hardware using ESP8266 microcontroller for real-time 
verification. 

*Corresponding Author. 
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II. PPG SIGNAL AND ECG SIGNAL FOR      AND HEART 

RATE DETECTION 

Pulse oximeter sensors generate photoplethysmogram 
(PPG) signals, which have both an AC and DC component, as 
seen in Fig. 1. The AC component refers to the Pulsatile 
Arterial Blood Absorption, which describes how light is 
absorbed by blood circulating through arteries [11]. 

The     is determined using an equation pioneered in the 
1970s by Takuo Aoyagi [12]. Aoyagi tweaked Wood's plot of 
red and infrared light haemoglobin density to design a 
    sensor that can detect the necessity for artificial 
ventilation [13]. The     is determined by sensing light 
attenuation through a haemoglobin absorptive medium. The 
Beer-Law, Lambert's which connects the concentration of a 
solute in a solvent to the absorption of light passing through the 
solution [14], is used to do this. Equation (1) represents the 
relationship between the concentration of the solute and the 
absorption of light. 

                              (1) 

Where       is the intensity of transmitted light,      is the 
intensity of incident light,   is the wavelength of light,   is the 
extinction coefficient of solute,   is the concentration of solute 
and finally   is the length of path that the incident light travels 
through. 

The      is estimated using red (visible) light and the 
infrared light (IR) where both lights contain AC and DC 
component using equations (2) and (3). 

  
           

         
              (2) 

                         (3) 

Where, R is the AC to DC ratio of the red light divided by 
the AC to DC ratio of the infrared (IR).       is the pulsating 
AC component of the red light.      is the pulsating AC 
component of the infrared light.       is the DC component of 
the red light and      is the DC component of the infrared 
light. The normal range of      levels is 96% – 100%. 

Fig. 2 shows the relationship between the amplitude of red 
light (R) and infrared light (IR) to the      and red light to 
infrared light ratio (R/IR) [15]. When the amplitude of both the 
red and infrared light is the same it gives an R/IR ratio of 1.0 
which produces an      of 85%. Where else, -3.4 R/IR ratio 
produces an      of 0% and 0.43 R/IR produces an      of 
100%. These amplitude ratio of red light to infrared light are 
used to model the simulation blocks. 

The purpose of an ECG machine is to collect electrical 
signals from the heart's activity. The information about the 
heart's activity will be presented in a waveform pattern by the 
ECG machine. Cardiologists use 12 lead ECG as the gold 
standard instrument to monitor the heart functions to detect the 
changes from normal heart rhythm. Findings such as 
abnormalities from visual inspections of the ECG waveforms 
will be the basis for necessary further heart examinations such 
as angiograms. The regular cycle of the ECG waveform 
representing the heart's activity is shown in Fig. 3. The P wave 
indicates atrial contractions to transfer blood into the ventricle, 

the QRS complex indicates ventricular contraction, and the T 
wave represents ventricular repolarization [16]. 

Instead of utilizing the PPG data from the pulse oximeter 
sensor, the ECG signals from the ECG sensor were used to 
determine the heart rate. The R peak is the point on the ECG 
signal with the highest amplitude that could be clearly 
identified. The QRS complex has been filtered off in earlier 
research to make it easier to detect R peaks [17]. Because the 
R-R interval is clearly distinguishable in the ECG signal, the R 
peaks may be utilized to window it. The R-R interval, as 
illustrated in Fig. 3, can be used to determine a person's heart 
rate. The heart rate (HR) in beats per minute (BPM) is 
calculated using the number of R peaks recorded in one minute 
[18]. Equation (4) can be used to calculate heart rate. 

   
            

                
             (4) 

The R-R peaks is measured using millisecond, hence 
millisecond is applied. As a result, one minute will be divided 
between R-R peaks. If the R-R intervals are 800ms, for 
example, (60,000ms/min)(800)ms = 75 BPM. 

 

Fig. 1. Signal Components of PPG Signal [11]. 

 

Fig. 2. Relationship between the Amplitude of R and IR to the      and R to 

IR Ratio [15]. 

 

Fig. 3. Regular ECG Wave Cycle and R-R Peaks [10]. 
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III. DESIGN AND DEVELOPMENT 

In order to measure and monitor the vital signs of CKD 
patients, the design, development, and simulation of the CKD 
monitoring system are done using MATLAB and Simulink. 
Fig. 4 shows the proposed CKD monitoring system integrated 
with IoT. The system consists of seven components which are 
patient, smart sensors, device, connectivity, cloud platform, 
application, and user. The first component is the patient who 
will be monitored. Smart sensors consist of a pulse oximeter 
sensor and an ECG sensor. The third component is device also 
known as „thing‟. The brain to the system is the 
microcontroller which will process signals from the smart 
sensors. The outputs are sent to the fuzzy logic interface for 
decision-making on the patient‟s conditions. The results will 
then be displayed locally on an OLED screen. The fourth 
component is connectivity via Wireless Fidelity (Wi-Fi). The 
Wi-Fi will be used to link the device to the fifth component of 
the system which is the cloud platform. The cloud platform 
consists of the cloud computing and cloud storage. Data from 
the device will be stored in the cloud as well as sent to the sixth 
component, application. The application consists of 
smartphones and the web. This system will allow users to view 
the results using smartphones and web browsing. The last 
component of the framework is the user. The user consists of 
caretakers as well as healthcare professionals. This system 
allows healthcare professionals to personally monitor the 
patient all the time. The patient‟s data will be stored on the 
cloud for easier access to the patient‟s history. 

Simulations have been done on MATLAB and Simulink 
for signal processing of PPG signals and ECG signals. The 
PPG signals were processed to obtain the blood oxygen level 
readings while the ECG signals were processed to obtain the 
filtered ECG and heart rate reading. 

The monitoring system consists of algorithms and 
techniques to determine the heart rate and      levels. Fig. 5 
shows the proposed CKD monitoring system to monitor the 
condition of CKD patients. The model consists of signals 
generated as inputs imitating the pulse oximeter sensor and the 
ECG sensor. The model also has a subsystem block as a 
microprocessor that contains the algorithms for measuring 
heart rate and     . Finally, scopes and displays are set as 
outputs to display the results. 

The ECG signal block contains 5 presets of ECG signals 
which generate different heart rates when selected. The presets 
are named very low, low, normal, high, and very high that 
generate 45 bpm, 60bpm, 78 - 83bpm, 160bpm, and 220 bpm 
respectively. Before being shown on the ECG signal scope, the 
produced signals will go via a sample rate converter to match 
the output sample rate [19]. The sample rate converter has a 
tolerance of 0.01 and a sample output rate of 200Hz. The Pan-
Tompkins method, which includes a Band pass Filter, 
Differentiator Filter, Moving Average Window, and QRS Peak 
Detection [20], will be used to estimate heart rate from ECG 
data. The sample rate converter block is used to match the 
source sampling rate to the output sampling rate [21]–[23]. A 
198Hz two-sided bandwidth of interest was used to transform 
the sample rate. A Band pass Filter, Differentiator Filter, 
Moving Average Window, QRS Peak Detection, and Unbuffer 

make up the ECG signal processing [24]. The ECG signal 
processor's role is to filter the ECG signal so that the patient's 
heart rate may be determined. The band pass filter [25]–[28] is 
a mixture of a high-pass and a low-pass filter. The band pass 
filter eliminates noise from muscle movements, breathing 
fluctuation, and baseline wander. The band pass filter in this 
model is set to correct any attenuation of the QRS complex and 
eliminate artifacts from the heart's motion. Equation (5) shows 
the transfer function of a second-order low-pass filter with a 
high cutoff frequency of around 11Hz. 

     
        

        
              (5) 

The transfer function of a high-pass filter with a low cutoff 
frequency of nearly 5Hz is shown in Equation (6). 

     
 

 

  
           

 

  
    

                 (6) 

A full-band differentiator filter is used by the differentiator 
filter to isolate all of the frequency components in the input 
signal [24]–[26]. An equiripple Finite Impulse Response (FIR) 
filter architecture is used to construct this block. This block's 
filter order is set to 51, and the maximal passband ripple is left 
at preset. The Pan-Tompkins algorithm's differentiator filter is 
based on equation (7), with a 2 sample output signal delay. 

     
 

  
                           (7) 

A 'Discrete FIR Filter' is used to construct the moving 
average window block. This block has been used to transfer the 
data that has been obtained one by one. This block primarily 
determines the window size. Equation (8) represents the result 
of the Pan-Tompkins algorithm, where N is the window width, 
which varies depending on the size of samples. 

      
 

 
                          

                     (8) 

 

Fig. 4. Proposed CKD Monitoring System Integrated with IoT. 

 

Fig. 5. Block Diagram of Proposed CKD Monitoring System. 
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To identify R peaks and estimate the patient's heart rate, the 
QRS peak detection block is used. The R peaks and the ECG 
signal threshold can be used to estimate the patient's heart rate. 
The threshold and R peaks' parameters threshold are first 
declared. The R peak amplitudes are programmed to detect a 
range of 0.055–0.075mV with a width of more than 10.01ms. 
Any signal that does not fall within the specified range will be 
ignored and deemed noise. The threshold is calculated using 
the average noise peak and the mean estimations of average R 
peaks with 8 samples. The R-R peaks will be analyzed to 
measure the heart rate using the identified R peaks. The 
following equation (9) and (10) was used in the Pan-Tompkins 
algorithm to detect R peaks. 

                   
 

 
     

 

 
                (9) 

         
 

 
                 (10) 

Where      is the total peak.        is the signal peak 
threshold.        is the signal peak running estimate. 
         is the noise peak threshold. 

The      was measured using Equation (2). The PPG 
signals from a pulse oximeter consist of an AC and DC 
component from Infrared LED and a Red LED [29]. In total 
there are four sources of signals produced. The generated 
signals are represented by the source generator AC RLED, AC 
IRLED, DC IRLED, and DC RLED. The AC signals are built 
using a Repeating Signal Generator. A repeating series of 
integers provided in a table of time-value pairs is produced as 
the output. Time values should be growing consistently. The 
amplitudes of the AC IRLED and AC RLED were set at 
different points to result in a difference in the R value 
generated [30]. The R value determines the estimation of the 
     levels of the patient. The DC IRLED and DC RLED 
were generated using a pulse generator which will generate DC 
signals at different amplitudes. The inputs were connected to a 

MATLAB function block which is coded using Equation (1) 
and Equation (2) [31], [32]. The results of the R value and 
     on a display block. The simulation was done with 
different inputs applied to the source generator. The outputs 
were then recorded to verify the function of the simulation 
model. 

The Fuzzy Logic Interface System (FIS) is used to predict 
the deterioration of vital signs for early detection of 
abnormalities in the patient‟s body by using heart rate and 
     as the parameters. The Fuzzy Logic Toolbox™ graphical 
user interface (GUI) from MATLAB is used to run the 
simulation. The toolbox includes the Fuzzy Logic Designer, 
Membership Function Editor, Fuzzy Rules, Rule Viewer and 
the Surface Viewer. 

IV. SIMULATION RESULTS 

The Simulation provides results of the ECG, heart rate, and 
the     . In comparison with a typical ECG theoretical cycle 
wave, the ECG generated demonstrates the patient's normal 
sinus with a resting heart rate range of 78 and 83 BPM. The 
heart rate at the input was set between 78 and 83 beats per 
minute, and as shown in Fig. 6, the heart rate is 82 beats per 
minute. Confirming that the Pan-Tompkins algorithm used to 
estimate the HR in this simulation is acceptable. 

Fig. 7 displays the pre-recorded ECG signals that were used 
to synthesize the ECG signals. In comparison with a regular 
ECG theoretical cycle wave, the ECG signal clearly 
demonstrates the patient's normal sinus with a resting heart rate 
of 78–83 BPM. The amplitude of the signals is indicated on the 
y-axis in mV, and the time is indicated on the y-axis in 
seconds. The P, R, and T waves have peak amplitudes of 0.79 
– 0.88mV, 1.01 – 1.28mV, and 0.95 – 1.05mV, sequentially. 
The T wave has a larger peak amplitude than the P wave, as 
predicted. 

 

Fig. 6. Simulink Model of CKD Monitoring System. 
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Fig. 7. Pre-recorded ECG Signal Generation. 

The ECG waveforms are shown in Fig. 8 at different 
phases of digital signal processing for R peak identification. In 
comparison to the Pan-Tompkins algorithm theoretical 
findings, the results are similar at every stage. The amplitude in 
mV is indicated on the y-axis, while the time in seconds is 
indicated on the x-axis. The output of the ECG signals after 
being filtered using a band pass filter is shown in Fig. 8(a). Fig. 
7 shows that the peak amplitudes of the P, T, and U waves are 
relatively low than those of the signals in Fig. 8. (a). Using a 
low-pass and high-pass filter method, the band pass filter has 
filtered out the high and low signals, leading the P, T, and U 
waves to have a reduced amplitude. Fig. 8(b) displays the 
result of the next phase, which involves filtering ECG signals 
using a differentiator filter. The QRS complex has a larger 
amplitude than the P, T, and U waves, which have a smaller 
amplitude. The amplitude of the R peak has declined from 
0.3mV to 0.12mV. On the other hand, the amplitudes of the P, 
T, and U peaks are in the range of 0.01–0.04mV. In Fig. 8(a), 
it's clearly seen that this filter has also eliminated the negative 
numbers. The output of the moving average filter can be seen 
in Fig. 8(c). The moving average window generates a signal 
that contains information about the QRS complex's slope and 
breadth. The last stage in signal processing for R peak 
detection is shown in Fig. 8(d). After applying the adaptive 
thresholds, the processed data display a stream of pulses 
indicating the positions of the QRS complexes. At the same 
time, the P, T, and U are totally filtered out by the moving 
average window. The amplitude of these pulses is between 
0.05 and 0.07 millivolts. 

Fig. 6 illustrates the Simulink model in action when the 
ECG source is set to 78–83 BPM. As a result, the heart rate 
shown on the “Display” Simulink block is 82 BPM, 
demonstrating the validity of the Pan-Tompkins algorithm used 
in this simulation. Fig. 8(d) shows the R peaks that were used 
to compute the heart rate. A second is equal to 60Hz, hence if 
more than one R peak is observed in a second, the signals have 
a frequency greater than 60Hz. Fig. 8(d) shows that within a 
minute more than one R peak is recorded. This indicates that 
the heart rate of this ECG signal is more than 60 beats per 
minute. As a result, the Simulink block appears to be capable 
of processing the ECG data in order to retrieve the R peaks and 
heart rate. Or else, the Simulink model is obliged to have an 
inaccuracy if a heart rate range of 78 – 83 BPM was not 
presented. 

The inputs of the AC RLED and AC IRLED are 
manipulated to obtain different      readings. Table I shows 
the relationship between the inputs, R value, and the      
reading. The relationship between the R value and the     . 
The R to IR ratio was manipulated by changing the values of 
the AC RLED and the AC IRLED inputs. When the AC RLED 
has a higher value than the AC IRLED the R to IR ratio is high 
causing the      value to be low, vice versa when the AC 

IRLED has a higher value than the AC RLED. These results 
are similar to the pulse oximeter design study by Jubran (1996) 
and prove the validity of the simulation model in different 
     levels in the patient‟s body. 

 

Fig. 8. Phases in Digital Signal Processing and QRS Peak Detection a. 

Bandpass Filter Output. b. Differentiator Filter Output. c. Moving Average 

Window Output. d. QRS Peak Detection Output. 

TABLE I. R TO IR RATIO AND ITS RELATIONSHIP TO      ESTIMATION 

AC RLED AC IRLED R to R Ratio      Estimation 

2.0 6.0 0.33 101.67 

2.0 5.0 0.40 100.00 

2.0 4.0 0.50 97.50 

2.0 3.0 0.67 93.33 

2.0 2.0 1.00 85.00 

3.0 2.0 1.50 72.50 

4.0 2.0 2.00 60.00 

5.0 2.0 2.50 47.50 

6.0 2.0 3.00 35.00 

7.0 2.0 3.50 22.50 

8.0 2.0 4.00 10.00 

9.0 2.0 4.50 -2.50 
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V. ABNORMALITIES DETECTION USING FUZZY LOGIC 

A Mamdani fuzzy logic-based detection system is designed 
as shown in Fig. 9. The system receives two inputs that are 
heart rate and      readings and provides one output which is 
the patient‟s condition. MATLAB software is used to build the 
fuzzy logic system. Next, the Membership Function Editor is 
used to determine the shape for each membership function that 
is associated with the declared variables. The “trapmf” 
Membership Function that provides the trapezoidal-shaped 
relationship between a crisp variable and its corresponding 
fuzzy values was used. Fig. 10 and 11 show the declared 
membership function for the inputs. The heart rate has 5 
membership functions while the      has 3 membership 
functions. Fig. 12 shows the patient condition membership 
functions which determine the condition of the patients to be 
normal, abnormal, or critical. The centroid defuzzification 
method is done by using a closed-form of membership 
functions. This method returns the crisp value that corresponds 
to the fuzzy set's center of area. Following the declaration of 
membership functions for the inputs and output, the fuzzy rule-
base is used to establish a specific set of output functions 
depending on certain specified inputs, as determined by 
medical specialists using ground truth base in Table II [33]–
[35]. Fig. 13 shows the rules set up in the Rule Editor. In total, 
15 rules are resulting in 3 possible outcomes depending on the 
parameter of inputs. The outcome of the patient‟s condition is 
normal when the vital signs namely heart rate and      are in 
the range of 70 – 100 BPM and 96 – 100%, respectively. 

TABLE II. GROUND TRUTH PARAMETERS USED FOR FUZZY RULEBASE 

Parameters Range Interpretation 

Heart rate 

0 – 50 
50 – 70 

70 – 100 

100 – 160 
160 – 230 

Critically Low 
Bradycardia 

Normal 

Tachycardia 
Critically High 

     

30 – 70 

70 – 95 

96 – 100 

Critically Low 

Low 

Normal 

 

Fig. 9. The Designed Fuzzy Logic. 

 

Fig. 10. Heart Rate Membership Function. 

 

Fig. 11.       Membership Function. 

 

Fig. 12. Patient Condition. 

 

Fig. 13. Fuzzy Logic IF-THEN Rule base Membership Function. 

The result of the fuzzy logic system can be simulated in 
MATLAB using the Rule Viewer as shown in Fig. 14. The 
Rule Viewer can be used to identify whether the expected 
parameters are obtained for the given inputs. The stability of 
the system and the accuracy can be estimated with the help of 
the diagram. For example in the simulation done in Fig. 6, the 
heart rate is set at 82 BPM and the      is set at 100% and the 
output shows the patient is in normal condition. The fuzzy 
logic system was tested in all possible outcomes to verify the 
stability and accuracy of the rules. The Surface Viewer is 
utilized to see how one of the output is affected by one or more 
inputs. It constructs and plots a system output surface map, as 
illustrated in Fig. 15. With a successful simulation, the Fuzzy 
Logic variables, parameters, membership functions, and rules 
were coded into ESP8266 32-bit microcontroller to make a 
smart CKD monitoring system. 

 

Fig. 14. Rule Viewer. 
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Fig. 15. Surface Viewer. 

The Fuzzy Logic Controller was interfaced in the Simulink 
model to simulate the function. Table III shows the results 
from the tested parameters. The condition of the patient is 
displayed as “Normal” when the heart rate and      are only 
in the normal range. 

Table IV shows the previous studies conducted by other 
researchers to monitor vital parameters in the past few years. 

The comparisons were focused on the types of microcontrollers 
used, the presence of simulation, the parameters that were 
measured, the inclusion of an abnormalities detection method, 
and the accuracy of the device. Many of the studies utilizing 
the Arduino microcontroller had high accuracy. In this study, 
Fuzzy Logic will be used for the early detection of anemia and 
CVD in CKD patients. The results of the simulation, hardware 
and a typical medical device were compared to prove the 
accuracy of the simulation and hardware developed. 

TABLE III. RESULTS FROM FUZZY LOGIC CONTROLLER SIMULATION 

Heart rate (BPM)      (%) Condition 

60 – 85 96 – 100 Normal 

86 – 130 96 – 100 Abnormal 

131 – 200 96 – 100 Critical 

30 – 60 96 – 100 Abnormal 

60 – 85 70 – 95 Abnormal 

60 – 85 30 – 69 Critical 

TABLE IV. RELATED RESEARCHES ON HEALTHCARE MONITORING SYSTEMS 

Ref Microcontroller Simulation Parameters 
Abnormalities 

Detection Method 
IoT Implementations Accuracy 

[36] Arduino UNO None 

 Heart rate 
      

 Temperature 

None Cloud and Andriod App 98% 

[37] ATMega328p 
Fluke ProSim 8 Vital 

Sign Simulator 

 ECG 
 Heart rate 
      

 Temperature 

Coding on Arduino Cloud 99% 

[38] Arduino Nano None  ECG Cloud Andriod App - 

[39] 
8-bit Atmel 
Microcontroller 

None 
 Heart rate 
     

None Bluetooth to PC - 

Authors ESP8266 32-bit 
MATLAB and  
Simulink 

 ECG 
 Heart rate 
      

Fuzzy Logic Cloud 99% 

VI. HARDWARE IMPLEMENTATIONS 

The successful simulation of the CKD monitoring system 
will be implemented into hardware for real-time verification. 
The hardware consists of a MAX30105 Pulse Oximeter, 
AD8232 ECG Sensor, and AD8232 ECG electrodes as the 
inputs. The Arduino based ESP8266 32-bit was used as the 
microcomputer and the OLED screen was used as the output to 
display the results. The Arduino based ESP8266 board has a 
built-in Wi-Fi feature that does not need an external Wi-Fi 
module making this system to be compact. The built-in Wi-Fi 
module has an IEEE 802.11 b/g/n that uses various frequencies 
including, but not limited to, 2.4 GHz, 5 GHz, 6 GHz, and 60 
GHz frequency bands. In the case of noisy settings, the 
AD8232 has a signal conditioning block that can retrieve, 
enhance, and filter weak bio-potential signals. This implies that 
signal contamination from motion artifacts or remote electrode 
placement can be minimized. The AD8232 comes with 3-lead 
ECG electrodes that plug into a 3mm audio jack. The 
MAX30105 is an integrated particle-sensing module that can 

be used to produce PPG signals from the arterial pulse. The 
MAX30105 communicates through a standard     compatible 
interface. This makes it easier for the microcontroller to 
process information with a simple circuit. The module uses a 
red light with a wavelength of 680nm and infrared light with a 
wavelength of 880nm. It also comes with a built-in digital filter 
and an analog to digital (ADC) signal converter. 

Fig. 16 shows the wiring diagram of the CKD monitoring 
system. The MAX30105 Pulse Oximeter and the OLED Screen 
are interfaced via the     module at the A4 and A5 pins. The 
AD8232 ECG monitor is interfaced to the analog pin A0 of the 
ESP8266 while the Lo+ and Lo- of the ECG module are 
interfaced to digital pins D5 and D6 respectively. The AD8232 
ECG leads are connected to the 3mm audio jack of the 
AD8232 ECG module. The ESP8266 is powered using a 9V 
battery. The ESP8266 microcontroller is programmed using the 
Arduino‟s Integrated Development Environment (IDE) via C 
programming language. The libraries of the sensors, displays, 
and fuzzy logic systems were installed before programming. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

331 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 16. Wiring Diagram of the Implemented Hardware using ESP8266. 

The Arduino based ESP8266 microcontroller was 
programmed using the Arduino IDE. The program was written 
using C++ language. Fig. 17 shows the flowchart of the 
program that was coded into the ESP8266 microcontroller. The 
microcontroller initializes the libraries that will be used to run 
the program. The initialization includes the AD8232, 
MAX30105, SDD106 OLED, Fuzzy Logic, and Wi-Fi. Then, 
the connection to the internet will be attempted. With a 
successful internet connection, the Cloud Platform server will 
be done. Once connected the smart sensors will get the data 
from the patient. The ECG, heart rate, and      will be 
obtained by processing the ECG signals and PPG signals. The 
obtained data will be sent simultaneously to the Fuzzy Logic 
interface and displayed on the OLED screen. The results from 
the Fuzzy Logic will be displayed on the same OLED as well. 
Finally, all the obtained data will be sent to the cloud platform 
via a Wi-Fi connection. If the device is not turn off, it will 
repeat the loop by obtaining data from the smart sensors. 

The prototype of the CKD monitoring system hardware is 
shown in Fig. 18. The result of      estimation was compared 
to the value obtained by a commercial fingertip pulse oximeter 
as shown in Fig. 19 to validate the measurement. The 
developed CKD monitoring system was tested on a normal 
person. The ECG leads were placed on the chest during a 
supine position [40] according to Einthoven's triangle for ECG 
lead placement as shown in Fig. 20. 

The ECG leads are color coded where the green (left leg = 
LL) serves as the reference electrode, red, is for the left arm 
(LA), and yellow is for the right arm (RA). The RA and LA 
leads are placed below the right and left clavicle respectively. 
The LL lead is placed below the left rib bones. The ECG leads 
must not be placed on the bones to avoid obstructing the 
signals and it can cause noise. The left index finger is placed 
on the MAX 30105 pulse oximeter while the right index finger 
is put inside the commercial pulse oximeter. After a few 
seconds, the results were displayed. On the OLED panel, the 
ECG waveforms obtained by the AD8232 ECG sensor were 
vividly presented. In comparison to a typical ECG theoretical 
cycle wave, the ECG includes all of the elements of a regular 
sinus. Along with the output from the fuzzy logic controller, 
the heart rate and      were clearly shown. The condition of 
the patient is displayed as “Nor” as the heart rate and      
were in the normal range of 70 BPM and 98%, respectively. 

 

Fig. 17. Flowchart of the Microcontroller Program. 

 

Fig. 18. CKD Monitoring System Hardware. 

 

Fig. 19. Fingertip Pulse Oximeter. 
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Fig. 20. Einthoven‟s Triangle for ECG Lead Placement [40]. 

The cloud platform was set up using the Arduino Cloud 
IoT. The Arduino Cloud IoT is an application programming 
interface (API) that provides services for developers to 
configure, program, and connect to other devices. In this 
project, the ESP8266 microcontroller was connected to the 
internet via Wi-Fi to send the information to the server 
containing dashboards and storage. Fig. 21 shows the interface 
of the smartphone application. The first page of the application 
displays dashboard consisting of the patient‟s ID. When the 
patient ID is selected in the dashboard the second page opens. 
The second page displays the     , heart rate, and the 
patient‟s condition. The      and heart rate of the patient 
displays 97% and 69BPM respectively simultaneous to the 
results displayed in the local OLED screen. The same results 
can also be seen on the website and logged in to the cloud 
storage. 

Table V shows the results from comparing the developed 
CKD monitoring system to the commercial fingertip pulse 
oximeter. The heart rate has a deviation of 1 – 2 BPM while 
the      has a deviation of 1%. The fuzzy logic system 
programmed into the ESP8266 was compared to the results 
simulated in MATLAB and Simulink. The cloud application 
represents the readings obtained from the smartphone. Results 
show that there is no deviation in the outcome of the patient‟s 
condition, thus proving 100% accuracy of the CKD monitoring 
system IoT-based. The prototype CKD monitoring system has 
an overall accuracy of 99%. 

 

Fig. 21. IoT Smartphone Application Interface. 

TABLE V. ACCURACY OF THE DEVELOPED IOT BASED CKD 

MONITORING SYSTEM 

Parameters Accuracy Deviation 

Heart rate 99.2% 1 – 2 BPM 

     99.4% 1 % 

Fuzzy Logic 100% None 

Cloud Platform 100% None 

The proposed device has minor limitations that can be 
improved in future works. The biosensors, OLED display, and 
microcontroller are powered by a 9V battery that consumes a 
lot of power and prevents the device from being used for an 
extended period. Low powered biosensors and displays can be 
added or developed as an upgrade. 

VII. CONCLUSION 

A model of a simulation was designed to imitate the 
functionality of a low-cost monitoring system for early 
detection of CVD and anemia for CKD patients. The ECG 
signals produced in the simulation were similar to the 
theoretical cycle in the range of 0.8 – 1.3mV with different 
heart rate range settings. The simulation done on      to yield 
similar results to the Takuo Aoyagi algorithm. The hardware 
implementation verified the prototype CKD monitoring system 
in real-time by displaying the ECG, heart rate, and      along 
with the patient‟s condition with 99% accuracy when 
compared with a commercial fingertip pulse oximeter. The 
fuzzy logic coded into the ESP8266 32-bit microcontroller was 
accurate by 100% relative to the simulation done on MATLAB 
and Simulink. The suggested system contributes to the 
decrease of fatalities from chronic kidney disease patients by 
monitoring important parameters including ECG, HR, and 
     with the inclusion of decision making using Fuzzy Logic. 
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