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Abstract—In this study, an Intrusion Detection System (IDS)
is designed based on Machine Learning classifiers, and its
performance is evaluated for the set of attacks entailed in the
UNSW- NB15 dataset. UNSW- NB15 dataset contains 2,540,226
realistic network data instances and 49 features. Most research
uses a representative sample of this dataset with present training
and testing subsets, which includes 257,673 records in total. The
dataset was submitted to visual data analysis to discover poten-
tial reasons or flaws which likely challenge Machine Learning
classifiers. Pre-processing strategies are necessary before this
data can be used for data-driven prototype development for
IDS because of the class representation imbalance with pattern
counts and feature overlap. The method used for pre-processing
is implemented by min-max scaling in the normalization phase,
followed by applying Elastic Net and Sequential Feature Selection
(SFS) algorithms. This work employed ensemble methods using
three base classifiers, namely Balanced Bagging, XGBoost, and
RF-HDDT, augmented to address the imbalance issue. Parameters
of Balanced Bagging and XGBoost are tuned for the imbalanced
data, and the Hellinger distance metric supplements random
Forest to address the limitations of the default distance metric.
Two new algorithms are proposed to address the class overlap
issue in the dataset and applied during training. These two
algorithms are leveraged to help improve the performance on the
testing dataset by affecting the final classification decision made
by three base classifiers as part of the ensemble classifier, which
employs a majority vote combiner. The performance evaluation of
the proposed method for binary and multi-category classification
was evaluated using standard metrics, including those generated
from the confusion matrix, and compared to other studies
using the same dataset. The proposed design outperforms those
reported in the literature by a significant margin for binary and
multi-category classification cases.

Keywords—Machine learning; ensemble method; intrusion de-
tection system; UNSW-NB15 datasets

I. INTRODUCTION

Cybercrime has increased dramatically due to the rapid
development of technology and the broad distributed use of
internet networks around the world. If 2019 has taught us
anything, it’s that no firm, no matter how big or little, is
immune to a cyberattack. Cyber-attacks have become more
sophisticated, difficult to detect, more targeted than ever be-
fore. Security must be constantly upgraded as a result. It is
vital to network security to have a network intrusion detection
system (NIDS) in place, as it alerts the right authorities when
an incursion is detected. It is undeniable that we are becoming
increasingly dependent on Internet every passing day due to
human creativity and innovation. At the same time, the world

of cybercrime has been populated with the criminals looking
for a perfect crime such as stealing confidential information,
data, funds or causing harm to target computing infrastructure.
They explore possible avenues through the cyberspace and
formulate different strategies called cyberattacks, to gain unau-
thorized access to the computing systems. These strategies (aka
attacks) may be highlighted as follows: Distributed Denial-
of-Service (DDoS), Man-In-The-Middle (MITM), Password-
Based Attacks like Brute Force, Dictionary, Shoulder Surf-
ing, Phishing, Malware like Virus, Trojan, Worm, Rootkit,
Ransomware, Spyware, Botnet, Key Logger, Adware, SQL
Injection, Cross-Site Scripting (XSS), Eavesdropping, Social
Engineering [1]. The attackers leverage the attacks to get
access to system resources and either destroy them or collect
valuable information.

To reduce cyber threats or recover from damages caused by
cyberattacks, the organizations assess the cyber risks. Any un-
certainties related to the data resources and computer devices
that threatens the confidentiality, availability and integrity of
the information or information systems are identified as cyber
risks [2]. Confidentiality represents the system resources pro-
tected from unauthorized access. While integrity preserves any
piece of information from unauthorized changes, availability
guarantees that the authorized users can always gain access to
the required data resources [3]. According to study the most
commonly reported cyberattack is Ransomware, it is predicted
that a Ransomware attack may affect a business every 11
minutes and the concomitant damage reach $20 billion. The
total loss caused by cybercrimes are also projected to rise by
$6 trillion by 2022 [4, 5].

With the help of Intrusion detection system, malicious net-
work traffic and device activity standard security system might
not be able to see can be found and blocked. IDS is extremely
successful in detecting, identifying, and monitoring threats, to
put it more exactly. It is very important for keeping computer
systems safe from threats that could harm their availability,
integrity, or secrecy [6]. Traditional methods use a predefined
database of known attacks and signature patterns to evaluate
network packets. The user couldn’t use the system because
of the possibility of a new zero-day that isn’t represented
by any of the signatures detected in the database [7]. When
it comes to detecting zero-day attacks, existing IDS systems
have been found to be ineffective [8]. Because of this, it
may be concluded that no matter how precise an intrusion
detection (ID) technology is, malevolent attempts can degrade
IDS stability. The main contributions of this work include:
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• The development of a novel ensemble-based classi-
fication model for detecting intrusions that uses data
from the UNSW-NB15 dataset.

• A cross-comparison of several methods for selecting
features has been done.

• The suggested IDS has been tested to see how well it
performs for binary and multi-class classification

II. RELATED WORK

An ML classifier’s accuracy can be improved by picking
features that can represent incursion patterns. Multiple clas-
sifiers can reduce false positives and produce more accurate
classification results than a single classifier, according to the
research [9].

Kumar et al. [10] developed the unified intrusion detection
system (UIDS) by generating the new training and test subsets
out of UNSW-NB15. They utilized the k-means clustering
algorithm to increase the attack sensitivity as the k-means
clustering algorithm was able to identify the similarities be-
tween different attack classes. In each cluster, the number of
records in some type of attack classes was more than the
rest. The authors randomly picked 65% of the records of
the dominating class categories to form a training dataset.
The remaining 35% of the instances were used to build the
test set. They also used information gain algorithm for the
feature selection phase. 13 features out 47 were selected due
to the improvement of accuracy scores by C5, Chi-Squared
Automatic Inference Detection (CHAID), Classification and
Regression Tree (CART) is also known as Decision Tree
(DT) and Quick Unbiased Efficient Statistical Tree (QUEST)
algorithms. These algorithms were used to form the proposed
UIDS model. Their study reported 77.87% and 79.12% for the
average sensitivity and F-measure, respectively. It also offered
3.80% false alarm rate for Normal instances and 86.15% attack
sensitivity.

The authors in [11] implemented MLP as an anomaly
detection system for binary classification. They employed RFE
along with the Random Forest classifier for the purpose of
dimensionality reduction. This method selected the top four
informative features. The MLP-based IDS scored 85% for
sensitivity and 89% for accuracy on the test subset of UNSW-
NB15: 15% of the attack traces and 2% of the normal records
were misclassified.

Bayu et al. [12] applied Gradient Boosted Machine (GBM)
on three datasets including UNSW-NB15. No feature selection
technique was implemented. All 47 features were kept for
training and testing phases. The results showed that GBM
outperformed four other algorithms, namely RF, Deep Neural
Network (DNN), SVM and CART, with the average accuracy
value of 93.64% and missed alarm rate of 0.0206 where GBM
performance was evaluated on NSL-KDD, UNSW-NB15 and
GPRS datasets. While running GBM on UNSW-NB15 alone
provided 95.08% accuracy and 2.97% false alarm rate using
10-fold cross-validation and the accuracy of 91.31% and false
alarm rate of 8.60% using the Hold-Out method on the original
UNSW-NB15 train and test subsets.

In [13], nominal features were converted to numerical and
then the Min-Max normalization method was utilized to scale

down the values to the range of 0 to 1. They used 5-fold cross-
validation without resampling to generate the test and training
subsets. They calculated the average of the sensitivity, false
alarm rate and accuracy of 5 folds. The authors utilized SVM
by taking advantage of hyper clique property of hypergraph to
improve the performance of SVM. This optimization technique
implemented the feature selection as well. The SVM algorithm
was trained with the entire 47 features and then the results
were compared with the case when SVM was trained with the
optimal number of feature subsets. The optimal feature subset
is not reported. However, the number of optimal features is
in the range of 30 to 35. They concluded that the feature
selection had significant influence on the proposed model
which delivered 98.47% sensitivity and 2.18% false alarm
rate. However, 94.11% accuracy and 2.18% false alarm rate
suggests a relatively large value for the missed alarm rate,
which is not reported.

ML and DL are used to develop various IDS systems.
Due to the enormous dimensionality of the data, improving
IDS efficiency and classification prediction requires feature
selection from the complete dataset. Chaouki et al. [14]
employed genetic algorithm and logistic regression methods to
choose the optimal collection of attributes for NIDS. They used
KDD99 and UNSW-NB15 datasets for analysis. The primary
purpose of their work was to locate the subset of features with
the highest classification accuracy and the smallest number of
features. RF, C4.5 and NB Tree are used in the classification
stage to evaluate the performance of the generated features.
Their results show an accuracy of 99.81% for the KDD99 and
81.42% for the UNSW-NB15 dataset. The results conclude that
the UNSW-NB15 dataset is more complicated than the KDD99
dataset. In order to enhance the classification accuracy for
the UNSW-NB15 IDS datasets, we must thus attempt various
methodologies.

Tian et al. [15] addressed the issues of overfitting and inad-
equate classification accuracy. They proposed a model based
on DBN by using probabilistic mass function encoding and
the Min-Max normalisation technique. The proposed method
achieves 96.17% and 86.49% accuracy on the NSL-KDD and
UNSW-NB15 public datasets. They did not explore the class
overlap problem of the UNSW-NB15 dataset, and the selection
of DBN values was challenging to acquire without experi-
mentation. It was challenging to choose the best parameter
impacting detection accuracy.

The efficient classification of network traffic has been
hampered by repetitive and unnecessary data attributes and
this problem can be solved by feature selection method to
recognize the most important elements. M. S. Abirami et al.
[16] proposed Least Square Support Vector Machine (LSSVM-
IDS) feature selection methods for IDS. With a 95% accuracy
rate, this LSSVM system has correctly predicted the output
95% of the time. Ensemble learning was applied to the UNSW-
NB15 dataset using a stacking classifier approach. They used
logistic regression as a meta-classifier to integrate RF, SVM,
and NB algorithms, and they reached a 95% accuracy rate.
When selecting features, the author should have utilised an
embedded process that might have improved accuracy. There
is no mention of the problem of overlapping classes follow-
ing feature selection. The class overlap problem, embedded
methodology, and feature selection can further improve the
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proposed model’s accuracy.

A dynamically scalable ML-based NIDS was proposed by
Soulaiman et al. [17] to solve the imbalanced class problem
using SMOTE. The author has not mentioned the class overlap
problem in the UNSW-NB15 datasets, decreasing the attack
prediction accuracy in real-time.

In [18], the authors proposed the ensemble extreme learn-
ing machine (ELM) along with one-vs-all method to generate
multi-class classification model. The proposed algorithm is
a combination of a single hidden layer feedforward neural
network and a softmax layer to make a multi-class prediction
out of an ensemble of single output which was 0 or 1.
This algorithm scored 95.66% average accuracy. Also, the
authors implemented ExtraTree classifier in order to reduce the
dimensionality of feature space. Accordingly, 21 features were
selected. In the final stage, weighted extreme learning machine
(WELM) was implemented and the accuracy of each attack
type increased but still need more improvment. The training
was done on 80% of the original training set and the remaining
20% was used for validation to avoid overfitting. The entire
UNSW-NB15 test subset was utilized for the test phase.

D. Papamartzivanos et al. [19] combined the decision tree
and genetic algorithm to generate classification rules and called
their model Dendron. Wrapper technique was used for feature
selection, which resulted in 23 being selected as informative
features. The authors reported the sensitivity of 97.39% for
Normal records and the average false alarm rate of 2.61%. In
this study, 10% of the instances for each of the 9 classes were
considered for building the training set and the remaining 90%
was kept for the test set. To address the imbalance problem
of multi-class classification in UNSW-NB15, 50% of Worms
attack class records were included in the training subset and
remaining 50% was kept to test the model.

The integrated rule-based model in [20] is trained to
detect five class types to avoid overlapping. These rules were
generated from four tree-structured classification algorithms,
C5, CHAID, CART and QUEST. Training and test sets were
built by eliminating some instances from the original training
and testing subsets using k-means clustering. These instances
belong to Analysis, Backdoor, Fuzzers, Shellcode and Worms
attack types. These attack types suffer from overlapping prob-
lem and their presence may cause poor results. For the feature
selection phase, the genetic algorithm was used and 22 features
were picked accordingly. They reported good accuracy and
sensitivity values for the Normal records. However, the average
accuracy and sensitivity are 93.94% and 65.21%, respectively.

III. PROPOSED METHODOLOGY

A. Data Preprocessing

Data preprocessing transforms raw data into an appropriate
framework or format before processing using a learning algo-
rithm. These techniques significantly impact Machine Learning
(ML) and Deep Learning (DL). This section explains these
strategies and how they help to maximize the proposed en-
semble model’s performance.

Data Cleaning: It removes duplicate or irrelevant entries or
features from the dataset. The UNSW-NB15 has no duplicate
characteristics or records. However, all 49 functionalities are

not required to be used. IP address and port number all work
together to identify a computer’s infrastructure. Other charac-
teristics, such as record start time and record last time, may
not have a great deal of use either. Because of overfitting, the
Machine Learning (ML) model may not generalize correctly if
these attributes are retained. The attack cat feature was used
for multiclass classification, and the label was used for binary
class classification.

Data Transformation: Nominal features make up three
of the 41 features that aren’t targeted. Nominal features have
transformed into integers to make ML models and scalers eas-
ier. The label encoder is used to convert the nominal features
to numerical features. All the features have transformed to the
same range of values using scalers, which helps most learning
algorithms weigh in the entire features equally. The nearest
shrunken centroid has been measured for each attack class. The
Euclidean and Mahalanobis distance was used to measure the
distance between the attack class centroids. The transformation
algorithm which maximizes the intra-cluster distances has
been identified and used to address the overlapping problem.
According to the finding, the min-max scaler increases the
distance of the centroids of four attack classes (Backdoor, DoS,
Generic, and Reconnaissance) away from the Normal class
centroid more than other methods like Normalization, Robust
Scaler, Standardization, Quantile and Power transformation.
Consequently, min-max scalar has been employed in this study.

Feature Selection: Fourteen different feature selection
algorithms were implemented on the dataset to extract the
informative as well as representative features. Chi-squared,
Information gain (tree-based feature selection), CFS, ReliefF,
and mRMR, are employed among filter-based feature selectors;
genetic algorithm, Recursive Feature Elimination (RFE), and
Sequential Feature Selection (forward selection and backward
elimination) are picked as wrapper methods; and Lasso and
Elastic Net are chosen among embedded feature selectors. The
effect of feature selection algorithms on the classifier perfor-
mance was assessed and evaluated using ensemble algorithms
including Random Forest, Bagging, Balanced Bagging (BB),
AdaBoost, XGBoost, Gradient Tree, Extremely Randomized
Trees (ERT), Easy Ensemble (EE) and many other algorithms
such as naı̈ve Bayes, SVM and MLP Neural Network using
Back Propagation (BP) optimization algorithm. Performance
evaluation of classifiers on the dataset, which was preprocessed
with the set of feature selection algorithms, indicated that
the two best feature selection algorithms are Elastic Net and
Sequential Forward Selection (SFS) running in conjunction
with Random Forest, Bagging and XGBoost classifiers. The
Elastic Net feature selection algorithm combined with the
Balanced Bagging machine learning classifier and the SFS
feature selector with the Random Forest classifier and XGboost
performed the best among all possible combinations tested
when considering the F1-score as the metric. In conjunction
with the Balanced Bagging classifier, the Elastic Net feature
selector performed the best for 24 features from the datasets. In
conjunction with the Random Forest classifier, the SFS feature
selection algorithm performed the best for 8 features that form
a proper subset of 24 features.
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TABLE I. MISSED ALARM RATE VALUES FOR THE SET OF 11 CLASSIFIERS

Classes SVM NB Bagging NN RF ERT AdaBoost GT BB XGBoost EE
Analysis 1.00 1.00 0.99 1.00 0.86 1.00 0.87 1.00 0.77 0.87 0.86
Backdoor 1.00 1.00 0.93 0.98 0.76 0.95 0.93 0.95 0.59 0.64 0.60
DoS 0.90 0.99 0.88 0.98 0.87 0.87 0.99 0.93 0.81 0.83 0.99
Exploits 0.90 0.97 0.21 0.82 0.21 0.28 0.70 0.09 0.42 0.04 0.99
Fuzzers 0.94 0.63 0.42 0.89 0.39 0.42 0.93 0.55 0.32 0.29 0.75
Generic 0.51 0.03 0.03 0.03 0.03 0.03 0.42 0.03 0.04 0.02 0.42
Normal 0.04 0.65 0.24 0.24 0.21 0.23 0.86 0.34 0.34 0.39 0.70
Recon 0.65 0.71 0.19 1.00 0.17 0.22 0.17 0.21 0.17 0.18 0.99
Shellcode 0.96 0.98 0.31 1.00 0.30 0.52 0.92 0.60 0.06 0.12 0.81
Worms 1.00 0.95 0.86 1.00 0.04 0.86 1.00 0.56 0.09 0.43 0.88

B. Classifier Development Methodology

This research uses the training and testing subsamples
existing on the UNSW website. There are 175,341 records
in training and 82,332 records in testing data subsets. Each
of which contains the records belonging to 9 different at-
tack classes consisting of Analysis, Backdoor, DoS, Exploits,
Fuzzers, Generic, Reconnaissance, Shellcode, Worms, and the
Normal class. Exploits, Generic and Normal instances make
up a large portion of subsamples at 16%, 22% and 38%
of the overall records in the training subset, respectively. In
extreme cases, Worms attack instances form a mere 0.06% of
training and test sets. Since the number of records of majority
classes significantly outnumber the records of minority classes,
there exists a severe class imbalance problem.The overlapping
problem is present in these datasets between the Normal class
and some attack classes. This work develops a design to
address these problems and an ensemble classifier to identify
the threats as normal or attacks.

The model has been implemented by numerous machine
learning classifiers such as SVM, naı̈ve Bayes (NB), multi-
layer perceptron (MLP) neural network (NN), Bagging, Ran-
dom Forest (RF), Extremely Randomized Trees (ERT), Ad-
aBoost, Gradient Tree (GT), Balanced Bagging (BB), XG-
Boost, and Easy Ensemble (EE) on the dataset for the case
where the classifier algorithms employed all of the original
features without implementing data normalization methods.
The results are shown in Table I in terms of missed alarm rate
(MAR) which is one of the, if not, most critical performance
metrics for intrusion detection context. Table I shows that
Balanced Bagging, XGBoost and Random Forest lead in their
performances for this dataset with respect to the MAR metric.
Consequently, these three classifiers will be employed in the
design of an ensemble classifier.

The model also employ the Hellinger distance criterion [21]
along with the Random Forest classifier to improve the quality
of split. Decision Trees are easy to code, interpretable, fast, and
nonlinear. However, they suffer from overfitting, axis-parallel
splitting and skewness sensitivity. The overfitting problem is
mitigated by tree pruning, while axis-parallel splitting can
be addressed by building a forest of orthogonal and oblique
decision trees. Skewness sensitivity of decision trees arises due
to utilizing some popular splitting criteria including informa-
tion gain and Gini measure. Hellinger distance measure can
address this problem due to its skew insensitivity property. For
instance, suppose that the model have two classes and Random
Forest is applied on the training subset with 175,341 records.
Also, in this scenario, the model have 1% of the entire data in

class ‘A’ and the remaining records are in class ‘B’. In the case
that Random Forest splits the data on the feature ‘rate’ using
a test or threshold value of 200,000, one splitting scenario for
such an imbalanced dataset could be as presented in Fig. 1.

A: 1753 (1%) 
B: 173588 (99%) 

‘rate’<200000 ‘rate’>200000 
(A+B) = 175,341 

A: 141 (0.08%) 
B: 171,976 (99.92%) 

A: 1612 (50%) 
B: 1612 (50%) 

 

 

 

 

 

 

 

 

 

            (A+B) = 172,117 

 
 

(A+B) = 3224

Fig. 1. An Example to Illustrate Hellinger Distance Metric Utility

In fact, regardless of balanced or imbalanced property of
a dataset, the best split is made for binary classification when
the entire data points in class ‘A’ are placed in the left node
and all data points in class ‘B’ are placed in the right node.
If that is the case, the perfect score for Entropy and Hellinger
distance would be 1.0 and

√
2, respectively. In this example,

which is a reasonably good but not a perfect split, the scores
measured by Entropy and Hellinger are tabulated in table II.

TABLE II. ENTROPY AND HELLINGER DISTANCE SCORE
MEASUREMENTS

Entropy Hellinger
Perfect Score 1.0

√
2 ≃ 1.41

Evaluated Score 0.015 1.29

According to score, Hellinger distance takes this split into
account to form the final prediction. In contrast, given the
Entropy formula as

E = −
n∑

c=1

pc log2 pc (1)

and the IG formula as

Gain = E(parent)− WL

Wparent
EL − WR

Wparent
ER (2)

The split in Fig. 1 does not appear to be “desirable”. In
equations (1), pi is the probability distribution associated with
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class c, and c={1,2,...,n}. Information gain(IG) in equation (2)
is the difference of Entropy in parent node (Eparent) from the
Entropy of its left (EL) and right (ER) child where wL is the
number of data points in the left node, wR is the number of
data points in the right node, and wparent is the number of
data points in the parent node.

For this split, it looks very probable that a record coming
into the right node will be misclassified. This misclassification
probability is 3224

175341 (2% of the entire data), while 98% of
the data will be most probably classified correctly if they find
their way into the left node. Accordingly, it can be considered
as a good split. However, the information gained by Entropy
measurement indicates that this split is a very bad one since
the score is 1.5% of the perfect score shown in Table II. All
the while, the Hellinger distance metric values this split by
assigning it 91.49% of the perfect or maximum achievable
score. Hellinger distance metric thus addressed, for the most
part, the problem of skewness sensitivity if utilized by a
decision tree classifier and will likely improve the performance
of such an algorithm.

C. Training Methodology

The training set is split into two subsets: one subset, aka
training subset, is used to train the classifier and the second
subset, aka validation subset, is used to calculate its error
rate to determine the convergence or stopping point. The
training set is split into two subsets using stratified sampling:
90% of the training set is extracted in order to train the
proposed model and the remaining 10% is kept to calculate
the model’s error. Each stratum is formed by ten different
classes following a frequency distribution. In other words, the
samples are picked randomly from each attack class as well as
Normal records.Next, the training subset is processed with the
Elastic Net feature selection algorithm. This algorithm selects
24 features out of 40 before the training subset is used to train
the Balanced Bagging and XGBoost classifiers. Concurrently,
the SFS algorithm selects 8 informative features out of 24 that
were already selected among the original 40 by the Elastic Net.
The output of SFS, which are 8 features, is used to train the
Random Forest classifier. The classifier development schematic
diagram has shown in Fig. 2.

Each classifier generates a matrix consisting of probability
scores. Entries in this matrix are computed by dividing the
number of votes for each class by the number of decision
trees in each model. For instance, if the model had 30 decision
trees in Random Forest and 20 of them vote for normal class
on a new sample, the probability of Normal class is 0.67
(20/30). The first seven rows of the matrix produced by the
Balanced Bagging is shown in Table III. It consists of 10
columns, representing 10 (9 attack plus Normal) classes, and
N rows, where N designates the number of data samples in
the validation subset. Since the validation subset has 35,068
records representing 10% of the training set, each model
generates a probability matrix consisting of 35,068 rows. Both
the probability matrix and the confusion matrix produced by
XGBoost and Balanced Bagging classifiers are used as the
inputs of Algorithm #1. This algorithm is employed to process
the XGBoost and Balanced Bagging outputs to compute the
errors caused by class overlap issue associated with the dataset.

Fig. 2. Classifier Development Schematic Diagram

The output of Algorithm #1 is a nested list in Fig. 3 that
consists of 10 items representing all the existing attack classes
along with the Normal class which constitute the Level-1.
Each item in Level-1 points to 9 sub-items in Level-2 as well.
The corresponding sub-items in Level-2 for each item will
not hold the item itself in Level-1. For each sub-item in the
Level-2 of the nested list, there is a corresponding two-element
list in Level-3. To make it more clear, it can consider this
sole nested list as two two- dimensional arrays with the same
dimensionality as the confusion matrix (10 by 10) storing mean
and standard deviation. In other words, one matrix could hold
the mean and another would hold the standard deviation values.
Each row and column represents nine different attack classes
along with the Normal class with the same order, similar to the
rows and columns of the confusion matrix. These arrays store
zeros along their main diagonal. The reason for that is that
the aim of Algorithm #1 along with Algorithm #2 is to find
the prediction errors or the errors existing in the membership
scores. Since the main diagonal is holding true positives in
confusion matrix, there is no error to calculate. That is why
in the nested list, these entries are eliminated automatically.

Investigating the confusion matrix using Algorithm #1,
if class A is misclassified x different times as class B, this
algorithm iterates x times to calculate the difference between
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Figure 5-3 Illustration of partial output by Algorithm #1 
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Generic 
Normal 
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0 
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Fig. 3. Illustration of Partial Output by Algorithm #1

TABLE III. FIRST SEVEN ROWS OF A PROBABILITY SCORE MATRIX
GENERATED BY BALANCED BAGGING CLASSIFIER
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the probability score of class B and class A as well as class
B and the eight remaining classes. If the former difference is
smaller than the latter, this difference value (between class B
and class A) is stored in a temporary variable (array D) for
further calculation. Otherwise, the value is discarded. In the
next step, the mean and standard deviation of the stored values
are calculated and kept in arrays M and SD, respectively. These
two values are placed in the third level of the nested list, which
is an output of Algorithm #1, where the class A is the element
of the first level of the list and class B is the element of the
second level of the list.

To clarify how Algorithm #1 works, its application has
been trace step by step next. The first row of Table IV(a)
represents a confusion matrix for the Analysis attack and
Table IV(b) represents the probability scores generated by
the Balanced Bagging classifier in a two-dimensional array or

matrix form after it is trained and its performance evaluated
on the validation subset. Values of these matrices are held by
CM and PS, two-dimensional array variables in the Algorithm
#1, respectively. Initially, DL, OLM and OLSD are empty lists
and eventually holding values for distances, output for mean
values, and output for standard deviation values, respectively.
AL is another list that initially contains the Normal and all the
attack classes.

Algorithm 1 – Compute Means and Standard Deviations

Require: Mean-Standard-Deviation(CM, PS)
in:
two-dimensional array CM10×10 holding the confusion
matrix and two-dimensional array PSn×10 holding the mem-
bership scores, n = the number of samples of validation
subset
out:
two-dimensional array OLM10×10 initialized with zero
two-dimensional array OLSD10×10 initialized with zero
local:
empty array DL representing the minimum value of the
membership scores difference and empty variable SD repre-
senting the computed Standard Deviation value and empty
variable µ representing the computed Mean value and empty
variable D representing the value obtained by subtracting the
membership
scores constant:
array AL = {Analysis, Backdoor, DoS, Exploits, Fuzzers,

Generic, Normal, Recon, Shellcode, Worms}
1: for all x ∈ AL do ▷ AL is an ordered list
2: for all y ∈ ( AL - x) do
3: if CMx,y > 0 then
4: j � 0
5: for i � 1 . . . CMx,y do
6: D � PSi,y - PSi,y ▷ where x is misclassified as y
7: for all z ∈ (AL - (x, y)) do
8: DT � PSi,y - PSi,z
9: if DT < D then
10: count � 1
11: end if
12: end for
13: if count = 0 then
14: DLj � D
15 j � j + 1
16: end if
17: end for
18: sum � 0
19: for h � 1 . . . length(DL) do
20: sum � sum + DLh
21: end for
22: µ � SUM

N

23: SD �
√

1
N

∑N
i=1(DLi − µ)2

24: OLMx,y � µ
25: OLSDx,y � SD
26: end if
27: end for
28: end for
29: return OLM, OLSD
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TABLE IV. (A) CONFUSION MATRIX AND (B) FIRST TWO ROWS OF
PROBABILITY SCORES MATRIX.
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Fig. 4. An Example to Show how Algorithm 1 Calculates the Prediction
Error Range

TABLE V. (A) THE CONFUSION MATRIX, (B) MEAN AND STANDARD
DEVIATION ARRAYS THROUGH ALGORITHM #1 AND (C) MEAN AND

STANDARD DEVIATION ARRAYS THROUGH ALGORITHM #2
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Analysis 501 124 0 0 46 0 3 3 0 0
(a)

Analysis Mean 0.08 0 0 0.09 0 0.04 1.3 0 0
SD 0.02 0 0 0.02 0 0.03 0.1 0 0

(b)

Analysis Mean 0.08 0 0 0 0 0 1.3 0 0
SD 0.02 0 0 0 0 0 0.1 0 0

(c)

Fig. 4 shows that the Fuzzers, Backdoor, and Normal
overlap. In this figure, Fuzzers represents a range of value
between 0.09 -0.02= 0.07 and 0.09+0.02=0.11, Backdoor has a
range of values between 0.08 -0.02= 0.06 and 0.08 +0.02= 0.1,
and Normal is associated with a range of values between 0.04 -
0.03= 0.01 and 0.04+ 0.03= 0.07 where Analysis is incorrectly
predicted as Fuzzers, Backdoor, and Normal, respectively.
These values are taken from Table V(b) and after finding
the overlaps, Table V(c) would be the final Mean and SD
values generated for all the classes in preparation for the test
phase. In Table V(c) the Mean and SD values for Recon
remains unchanged since its error range is from 1.3-0.1= 1.2 to
1.3+0.1=1.4 and does not have any overlap with other ranges.
Since Fuzzers, Backdoor, and Normal ranges overlap as well

as the greater number of Analysis records are misclassified
as Backdoor, Mean and SD values calculated for Backdoor
remain unaltered and the Mean and SD values associated with
Fuzzers and Normal are changed to zero. The process of
finding the range overlaps and addressing them takes place
for all of 10 classesThis procedure gives us a list of Means
and SDs that is shown in Fig. 3. The list is eventually utilized
in the test phase to minimize the prediction errors caused by
data overlap.

D. Testing Methodology

In this phase, Mean and SD values computed by Algorithm
#1 and revised after finding the overlaps are used to reduce the
errors made by XGBoost and Balanced Bagging classifiers
in identifying unseen samples. Due to data overlap issue
associated with UNSW-NB15, classifiers may tend to predict
class membership for certain new samples incorrectly. A new
sample mimicking the behavior of data points belonging to
another attack class is most likely to be misclassified. The
probability scores matrix generated by the classifiers for a new
sample in class ‘A’ contains error if this sample is incorrectly
classified as class ‘B’. In this case, the probability matrix score
for class ‘A’ is lower than that of class ‘B’, while it must be
just the opposite. The model consider the difference between
the probability scores for classes ‘A’ and ‘B’ as error.

Algorithm 2 Membership Score Modification

Require: Membership-Score-Modification(PS, OLM, OLSD)
in: two-dimensional array PSn×10 holding the member-
ship scores, n = the number of samples of test subset
two-dimensional array OLM10×10 two-dimensional array
OLSD10×10
out: two-dimensional array PSn×10 holding the (modified)

membership scores, n = the number of samples of test subset
1: for i � 1 . . . n do
2: max � 0 ▷ holding zero in max to find the

maximum membership score from line 3 to 8
3: for j � 1 . . . 10 do
4: if PSi,j > max then
5: max � PSi,j
6: index max � j
7: end if
8: end for
9: min � 1010 ▷ holding a very big constant value in
min to find the minimum values obtaining from line 10
to 15
10: for j � 1 . . . 10 do
11. if ((max-PSi,j) < min) and (index max ̸= j) then
12. min � max - PSi,j
13: index min � j
14: end if
15: end for
16. if(min≥(OLMindex min,index max - OLSDindex min,index max))

and (min≤(OLMindex min,index max+OLSDindex min,index max))
then

17: PSi,index min � (PSi,index min + OLMindex min,index max)
18: end if
19: end for
20: return PS
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To reduce this error, Algorithm #2 has been applied on
the probability score matrices generated through XGBoost and
Balanced Bagging classifiers.

Since only the test set is utilized to evaluate the perfor-
mance of our model, it is definitely unknown to the model.
So, the model does not know the real target variable and it
cannot calculate the errors using ground truth. This algorithm
is designed to go through the membership scores generated
by XGBoost and Balanced Bagging classifiers for the test
subset in order to calculate the errors regardless of real target
variables. The following steps discuss the functionality of
Algorithm #2:

Using the revised mean and standard deviation values
obtained by implementing Algorithm #1, Algorithm #2 is able
to realize and correct the errors in the probability matrices
where the errors arise from data overlap. Although, errors
are not zeroed out using this algorithm, they may be reduced
appreciably. The modified membership scores were used along
with the membership scores obtained by the augmented Ran-
dom Forest in the testing phase to make the final prediction
using the majority vote. Using this method, the most voted
prediction wins and taken as a final prediction. In other words,
if more than two classifiers cast a vote for a particular class,
the class will gain the final vote.

IV. EXPERIMENT AND RESULT ANALYSIS

An Intel Core i7 processor with 16 GB of RAM and Python
with TensorFlow was used to create the proposed system.
Before getting into the results, it is necessary to provide some
background information on the UNSW-NB15 dataset. This
dataset has been selected because of its advantages over older
standard datasets. The lack of current cyberattacks types in the
KDD98, KDDCUP99, and NSLKDD datasets and insufficient
normal traffic and an unbalanced distribution of classes in
the training and testing sets cause the datasets to suffer. The
UNSW-NB15 benchmark dataset, explicitly designed for IDS
design, has been presented to address these issues.

A. Experimental Results Evaluation

The confusion matrix is used to calculate performance
measures for classifiers. The confusion matrix is used to cal-
culate True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). TP, TN, FP, and FN denote
records that are correctly identified as positives, negatives, or
incorrectly identified as positives. The most standard measures
include sensitivity, specificity, false positive, false negative,
precision, and accuracy [22]. Abnormalities in a dataset must
be taken into account while evaluating it. Due to the im-
balanced datasets, accuracy is not appropriate. Insufficient
datasets can use F-measure. This study aims to evaluate
accuracy using the same parameter as previous studies has
shown in equation (3). Accuracy is identified as the ratio of
the correct classifications to the total number of samples and
defined by the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity or Detection Rate (DR), shown in equation
(4), corresponds to the proportion of true positives to all

positives. It measures the probability of a sample being actually
positive from all positive data points. Specificity indicates the
proportion of false positives to all negatives. It measures the
probability of a sample being actually positive from all data
points that are predicted to be positive. They are used when
the only positive or negative matter.

Sensitivity =
TP

TP + FN
(4)

False Positive Rate (FPR) or False Alarm Rate (FAR)
represents the ratio of incorrect positive predictions to the
overall number of negatives. At the same time, the Precision
measures the probability of samples classified as positives for
actually being positive. These two metrics are defined as shown
in equation (5) and (6).

FPR =
FP

FP + TN
(5)

Precision =
TP

TP + FP
(6)

False Negative Rate (FNR) or Missed Alarm Rate, as
shown in equation (7), indicates the ratio of incorrect negative
predictions to the total number of positives. The evaluation
metrics used in this study are based on the parts of the
confusion matrix.

FNR =
FN

FN + TP
(7)

F-measure is the harmonic mean of Sensitivity and Preci-
sion and is given by equation (8).

F −Measure =
2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(8)

B. Binary Classification

Table VI shows that 790 attack records are misclassified
among the entire 45,332 attack records. It means that less
than 2% of the overall attacks are misclassified as non-attack
or Normal which leads to 0.017 missed alarm rate. In other
words, the sensitivity for the attack class is 98.26%. On the
other hand, 1022 of 37,000 Normal records are incorrectly
classified as attacks which indicates less than 3% false alarm
rate. Several evaluation metric values are shown in Table VII
in order to comprehensively assess the performance of the
proposed classifier design.

TABLE VI. CONFUSION MATRIX ON TEST DATA SUBSET FOR BINARY
CLASSIFICATION

PredictedActual Normal Attack
Normal 35978 1022
Attack 790 44542

TABLE VII. PERFORMANCE EVALUATION OF THE PROPOSED MODEL
FOR BINARY CLASSIFICATION

Metrics
Class Type

Sen
(%)

Spe
(%) FPR FNR Precision

(%)
F-measure

(%)
Normal 97.24 98.26 0.017 0.028 97.85 97.75
Attack 98.26 97.24 0.028 0.017 97.76 98.01
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The main objective of any intrusion detection system (IDS)
is to identify the pattern of the network traffic that may imply a
suspicious activity. Accordingly, the performance of proposed
IDS on UNSW-NB15 data is competitive in comparison with
the other studies reported in the literature as shown in Table
VIII. Two columns are dedicated to present the performance of
the proposed classifier design. The first column indicates the
average of calculated metrics in Table VII for both the attack
and Normal records. On the other hand, the second column
shows the values of performance metrics associated with the
attack class in Table VII, which suggests that the performance
of the proposed classifier design.

TABLE VIII. COMPARISON OF THE PROPOSED CLASSIFIER DESIGN WITH
FOUR OTHERS CITED (NR INDICATES NOT REPORTED)

Metrics
Proposed
Design
(Avg)

Proposed
Design

[10]
(Avg) [11] [12] [13] [14] [15] [16]

Sensitivity 97.75 98.26 79.12 85 NR 98.47 NR NR NR
FNR
(%)

2.25 1.74 NR 15 NR NR NR NR NR

FPR (%) 2.25 2.76 NR 2 8.6 2.18 NR 5.56 NR
Precision

(%) 97.81 97.76 NR 99 NR NR NR NR 96

F-measure
(%) 97.88 98.01 77.87 91 NR NR NR NR 95

Accuracy
(%) 97.8 97.8 NR 89 91.31 94.11 81.42 86.49 95

C. Multiclass Classification

In this research, the performance of different estimators
were evaluated separately by implementing them on the refined
dataset. The results are shown in Table I. This study combined
the first three estimators produced satisfactory performances
to form an ensemble method along with Elastic Net and Se-
quential Forward Selection while Min-Max scaler had already
implemented on the refined dataset. The results of the model
evaluation is shown in Table IX in terms of confusion matrix.
Although the outcome of the ensemble method has effectively
improved the performance of each classifier contributed in the
method, the model still suffered from generating large number
of false negatives. In order to cover this issue, the study pro-
posed two algorithms utilizing the basic statistic methods such
as mean and standard deviation. Comparing Table IX with the
performance of the proposed model depicted in detail for the
multi-class case in Table X, represents the significant improves
in most classes, such as Normal class to shrink the number of
false negatives. This improvement verifies the effectiveness of
Algorithm #1 and Algorithm #2. Although the study observe
the increasing number of false negatives in some elements
in confusion matrix, such as Fuzzers incorrectly classified as
Backdoor, when the proposed algorithms implemented on the
final decision, they are mostly seen between two attack class
rather than an attack class and Normal records. On the other
words, false negatives in one attack class may be increase due
to the attack class to attack class misclassification. In Table X,
the share of attack records which are incorrectly categorized as
Normal traces is 4.14% for the 28% overall missed alarm rate.
The remaining 23.86% missed alarm rate is associated with
misclassification among attack classes which is not equally as
problematic for network transactions. Although, 4.14% missed
alarm rate for attack records alone could be detrimental for an
intrusion detection system, our design achieves better results

in comparison with the classifiers in other studies as shown in
Table XI. Normal traces are also misclassified as Shellcode,
Fuzzers and Analysis which suggests approximately 3% false
alarm rate and 97.24% sensitivity.

TABLE IX. CONFUSION MATRIX SHOWING THE PERFORMANCE OF THE
ENSEMBLE METHOD
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TABLE X. CONFUSION MATRIX SHOWING THE PERFORMANCE OF THE
PROPOSED DESIGN
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This is because these attack types mimic the behavior of
Normal records [20, 23, 24]. This is the main reason that
some attacks are also incorrectly predicted as Normal activity.
In the associated confusion matrix, it can see that 19.20%
of Analysis, 6.69% of Backdoor, 4.35% of DoS, 3.04% of
Exploits, 0.33% of Generic, 0.88% of Reconnaissance, 2.38%
of Shellcode, and 4.55% of Worms attack records are confused
with Normal records.

Performance comparison of the proposed model with those
studies reported in the literature is presented in Table XII
and Table XIII. Many of the relevant performance metrics
including the missed alarm rate, which is one of the most
critical ones, are not reported in these studies by others. Con-
sequently, performance comparison is done only for accuracy
and sensitivity as these are the only metrics commonly reported
in the cited studies.

Fig. 5 depicts the performance of the model in comparison
with two models, Integrated and Dendron [18,19] that are
proposed recently in terms of the F-measure. The proposed
model in this study outperforms the other two given the
F-measure values. The main reason is that the imbalance
and overlapping problems in our model are addressed. This
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TABLE XI. PERFORMANCE OF THE PROPOSED DESIGN FOR
MULTI-CLASS CASE

Metric
Class

Accuracy Sensitivity Specifity FPR FNR Precision F-
measure

Class0 95.56 48.30 95.95 0.041 0.51 0.15 64.25
Class1 96.89 69.47 97.09 0.029 0.31 0.84 80.99
Class2 96.27 27.15 99.89 0.001 0.73 0.42 42.70
Class3 95.98 76.46 99.03 0.009 0.24 0.84 86.29
Class4 96.78 72.25 98.73 0.012 0.28 0.77 83.44
Class5 99.12 96.15 100.0 0.000 0.28 1.00 98.04
Class6 97.81 97.24 98.26 0.017 0.02 0.97 97.75
Class7 95.39 84.87 95.86 0.041 0.15 0.61 90.03
Class8 99.31 94.71 98.33 0.017 0.05 0.34 96.49
Class9 99.73 81.82 99.74 0.003 0.18 0.24 89.90

CLASS0: ANALYSIS CLASS1: BACKDOOR CLASS2: DOS CLASS3:
EXPLOITS CLASS4: FUZZERS CLASS5: GENERIC CLASS6: NORMAL
CLASS7: RECONNAISSANCE CLASS8: SHELLCODE CLASS9: WORMS

TABLE XII. THE ACCURACY OF PROPOSED MODEL VS. THE ACCURACY
OF DIFFERENT MODELS (NR: NOT REPORTED)
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Analysis 95.56 99.44 99.26 99.3 NR -3.88
Backdoor 96.89 99.06 99.11 97.93 NR -2.22

Dos 96.27 96.14 94.9 95.71 94.52 0.11
Exploits 95.98 93.91 90.12 93.58 89.72 2.07
Fuzzers 96.78 96.52 91.47 95.04 NR 1.74
Generic 99.12 98.34 98.23 98.7 87.7 0.26
Normal 97.81 98.16 93.54 94.59 98.64 -0.3

Reconnaissance 95.39 98.74 95.33 96.18 99.1 -3.71
Shellcode 99.31 99.22 99.4 98.33 NR -0.09

Worms 99.73 97.28 99.92 99.78 NR -0.14

TABLE XIII. THE SENSITIVITY OF PROPOSED MODEL VS. THE
SENSITIVITY OF DIFFERENT MODELS (NR: NOT REPORTED)

Attack Type Sensitivity
Sensitivity

[19]
Sensitivity

[20] Difference
Analysis 48.30 20.45 NR +27.85
Backdoor 69.47 67.32 NR +02.15

Dos 27.15 14.29 5.0 +12.86
Exploits 76.46 76.22 54.64 +00.24
Fuzzers 72.25 64.42 NR +07.83
Generic 96.15 81.37 96.72 -00.57
Normal 97.24 97.39 98.00 -00.76

Reconnaissance 84.87 46.04 71.70 +13.17
Shellcode 94.71 36.39 NR +58.32

Worms 81.82 18.37 NR +63.45

work have a combination of ensemble methods to handle the
imbalance and if-then-else rules to mitigate the adverse effects
of overlapping issue and using Hellinger distance criterion to
choose the best split considering the imbalance problem.

V. CONCLUSION

This study presents design and performance evaluation
of an intrusion detection (and identification) system using
machine learning for the UNSW-NB15 dataset. The study
evaluated the performance of classifier design which employs
three ensemble classifiers and two proposed algorithms where
the later is developed for minimizing the errors due to one of
the two issues inherent to the UNSW-NB15 dataset, namely the
class overlap and class imbalance. To deal with the imbalanced
data, this work utilized the Balanced Bagging and the XGBoost
ensemble classifiers which offer a set of hyper-parameters that,
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Fig. 5. F-measure Comparison

through judicious adjustments of the same, help contribute
to improved performance in the presence of the imbalanced
data. To address the class overlap issue, the study proposed
two algorithms and utilized them to process and modify the
classification outputs from the Balanced Bagging and the
XGBoost ensembles. Outputs of three ensemble classifiers,
namely Random Forest, Balanced Bagging and XGBoost, were
provided as inputs to a combiner that implemented majority
voting to determine the final class membership of an input
data record under test. The performances of the classifiers are
assessed by employing six different normalization methods on
the modified UNSW-NB15. The results showed that min-max
scaler enhanced the performance of the classifiers in terms of
accuracy. Min-max scaler as a normalization method helped
increase the distances between the data points of two different
attack classes reducing the degree of class overlap. Application
of the combination of preprocessing, feature selectors, tree-
based ensemble classifiers, and the proposed algorithms for
this design resulted in superior performance when compared
to seven other classifiers, reported in the recent literature,
implemented on the UNSW-NB15 dataset for both multi-class
and binary classification cases. Performance of the proposed
model was compared with both the binary classifiers and multi-
class classifiers cited in the literature. In the binary class
classification case, this model could classify more than 98% of
the attack classes correctly. The model also performed highly
for the classification of Normal records with more than 97%.

In comparison with other studies reported in the current
literature on the UNSW-NB15 dataset, this model achieved
impressive results. It addresses two major issues that a dataset
may suffer from, overlap and imbalance. The study employed
Balanced Bagging and XGBoost offering a range of hyperpa-
rameters in order to address the dataset imbalance. Also, the
study utilized the Hellinger distance for the Random Forest for
the same reason. The study further proposed two new post-
processing algorithms for the outputs of training models to
minimize the errors caused by the large number of impure
nodes generted during the training phase due to the data
overlap issue. In future this work plan to use Hellinger distance
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as split criterion for both Balanced Bagging and XGBoost
to enhance the performance of this model. The future works
are also aimed at utilizing the proposed algorithms, known as
Algorithm #1 and Algorithm #2, along with Random Forest.
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