(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

An Efficient Feature Selection Approach for
Intrusion Detection System using Decision Tree

Abhijit Das'
Research Scholar, Dept. of CSE

Affiliated to VTU, Shivamogga, India

Abstract—The intrusion detection system has been widely
studied and deployed by researchers for providing better security
to computer networks. The increasing volume of attacks, com-
bined with the rapid improvement of machine learning (ML)
has made the collaboration of intrusion detection techniques
with machine learning and deep learnings are a popular subject
and a feasible approach for cyber threat protection. Machine
learning usually involves the training process using huge sample
data. Since the huge input data may cause a negative effect on
the training and detection performance of the machine learning
model, feature selection becomes a crucial technique to rule out
the irrelevant and redundant features from the dataset. This
study applied a feature selection approach for intrusion detection
that incorporated state-of-the-art feature selection algorithms
with attack characteristic feature to produce an optimized set
of features for the machine learning algorithms, which was then
used to train the machine learning model. CSECIC- IDS2018
dataset, the most recent benchmark dataset with a wide attack
diversity and features have been used to create the efficient
feature subset. The result of the experiment was produced using
machine learning models with a decision tree classifier and
analyzed with respect to the accuracy, precision, recall, and f1
score.

Keywords—Intrusion detection; feature selections; decision tree;
machine learning; cyber security

I. INTRODUCTION

Nowadays, computer networks have been applied to every
aspect of people’s lives and daily production. People use
desktop computers, laptop computers, or other types of Internet
enabled devices to access public information that has been
published online. Different organizations, such as companies
and schools, build up networks to exchange information within
the organizations. Network security has become one of the
major concerns of most people and organizations when using
computers and other Internet-enabled devices to access online
resources and store valuable data [1].

IDSs are generally used as an effective tool to defend
network protection by identifying network attacks from ma-
licious users on the Internet. These techniques examine traffic
by analyzing the packet information at various layers of the
communication model [2], a method known as packet analysis.
The use of machine learning approaches to enhance IDS and
solve network threats has risen in recent years. More and
more researchers are beginning to employ machine learning
approaches to detect and classify abnormal activities by allow-
ing the method to learn various threats from example data [3].
Machine learning and deep learning techniques are becoming

Pramod?
Associate Professor, Dept. of ISE
PES Institute of Technology & Management PES Institute of Technology & Management
Affiliated to VTU, Shivamogga, India

Sunitha B S®
Associate Professor, Dept. of CSE
PESITM, Affiliated to VTU
Shivamogga, India

more sophisticated and used in various technological fields.
Additionally, machine learning, which is a subset of artificial
intelligence, has significant potential in cybersecurity.

The general process of machine learning could be straight-
forward and comprehensible, but it is never limited to what
will be presented in this research. When researchers apply
the machine learning approaches, they need to identify the
features of sample data that are summarized patterns ofthe
sample data in the packet of network traffic. For example,
IP address, protocol, port number, etc. The researchers use
features to train models, reach a higher identification rate and
accuracy, and then apply the trained machine learning models
to detect further and classify network attacks in network traffic.
However, when using machine learning to study different
problems in the same field, the features used for training
and testing may not necessarily be the same. For instance,
detecting DDoS attacks may require investigating different
packet information from detecting spam. Hence, solid domain
knowledge and choosing the right features play an important
role in machine learning.

Applying machine learning in network intrusion detection
is well studied. Many studies on machine learning in NIDS
are published each year. Weirdly, researchers seem to be eager
to experiment with various machine learning techniques for
detecting network intrusion. Yet, at the same time, many
investigators are stingy at explaining why they choose certain
features or use up all features in the dataset, except for some
researchers who are focusing on the feature engineering aspect
of machine learning.

After taking a deeper look at machine learning, it is easy to
notice that using a large number of non-representative features
could create the challenging problem for creating an effective
and accurate ML model. Feeding a large amount of data will
create millions of possibilities for a machine learning model,
making it hard to distinguish the attack patterns during the
monitoring process [4]. On the other hand, the redundant
or irrelevant feature is one of the most critical factors that
force excessive training and classification time [5]. However,
the importance of feature selection is often neglected or
underrepresented by some researchers [6]. Attribute selection
plays an essential role in creating the machine learning model
for classifying or predicting purposes. Each kind of network
attack has specific attack patterns that could be discovered
in the data sorted in different features [7]. In many types of
research about machine learning and deep learning in network
security, the significance of feature selection solutions has

www.ijacsa.thesai.org

646 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

been emphasized repeatedly. Applying the advanced feature
selection approaches could significantly improve network in-
trusion detection systems; Cai et al. [8] found that effective
attribute selection outcomes might enhance learning precision,
decrease training time, and clarify results. A machine learning
strategy that relies on interconnected essential features can cut
down on the number of iterations of an experiment [9]. Over-
fitting and model generalisation can be reduced by finding the
best feature subset, which can assist reduce the number of
features utilised for training machine learning models [10]. It
is also much faster to process and train models with fewer
data when fewer characteristics are fed into them [11]. The
classification accuracy of an ML model can be improved by
removing irrelevant features using feature selection techniques
[12].

This work aims to design a new feature selection ap-
proach to enhance the machine learning models in network
intrusion detection by creating the optimal subset of features.
By finishing this study, multiple deliverables would be pre-
sented as follows. The importance of different features in
network intrusion detection would be identified based on the
characteristics of each kind of network attack. The optimal
combinations of features for each network attack in the study
would be identified by comparing the detection rate of different
combinations. As a part of this work, data analysis will be
carried out to demonstrate how the ML model’s performance
was improved utilising the best possible set of features.

Research Question:

e s it possible for a machine learning model to produce
better predictions for network intrusion detection us-
ing a hybrid method that combines feature selection
techniques with attack characteristic features?

II. RELATED WORK

It is possible to choose the most closely related features
from a dataset without using machine learning techniques
using a filter approach of feature selection [13]. Test scores
from various statistical methodologies are all that is needed
to determine the relationship between attributes. Linear or
non-linear associations can exist between any of these numer-
ous features. Many popular statistical procedures, including
correlation coefficients and Chi-square tests, as well as the
ANOVA test, are used. According to the statistical techniques,
the attributes are ranked according to their correlation or joint
distribution. In general, the more closely two features are cor-
related, the more closely they are linked; conversely, the less
closely two features are correlated, the less closely these two
features are related. Since the filter method is not dependent
on any other complicated mining or validating methods, it is
a simple implementation that effectively eliminates extraneous
features.

The filter method of feature selection is commonly used
in the data preprocessing stage. The machine learning model
has not been applied yet with the sample data of the selected
features that are decided in the feature selection stage. This
characteristic creates another important advantage of the filter
method, which makes building a machine learning model much
faster. The features were only selected once using the filter
method to create the subset of highly related features. Since

Vol. 13, No. 2, 2022

the data dimension is reduced dramatically before the data is
fed into the machine learning algorithm, it is less prone to
over-fitting [14].

The wrapper feature selection method shows a significant
difference from the filter method. The wrapper method evalu-
ates the goodness of the features by considering the prediction
results through the machine learning models [15]. The wrapper
method’s commonly used machine learning algorithms includ-
ing SVM, DT, BN, k-means, RF, etc. To assess the accuracy
and precision of every group of extracted features, such as the
rate at which estimates are correct or incorrect, the machine
learning model’s training procedure must be repeated many
times.

When using the wrapper technique, all possible combi-
nations of features are tested to determine which set has
the best accuracy and error rates. Over-fitting might slow
down and complicate the wrapping process. In addition, the
wrapper technique is less transitive because of the changes
in ML concepts [16]. To ensure that the chosen features are
compatible with the newly learned learning algorithm, it should
be done again if the ML algorithm is modified after the
learning process has concluded.

There are three major techniques in the wrapper feature
selection method: forward feature selection, backward feature
elimination, and Bi-directional elimination. Forward feature
selection initiates selecting process when there is no feature
in the feature subset, and a new feature that could best
improve the prediction results of the machine learning model
is added into the feature subset in each selecting iteration
until the result cannot be improved anymore [17]. The fea-
tures selected by this method represent the best subset of
features that could achieve the highest accuracy rate during
the classification. Backward feature selection is completely
opposite to the forward selection, which starts the selecting
process with all of the features in the dataset and removes
one feature in every iteration that makes the largest decrease
in the model’s accuracy. The reducing process would repeat
until the accuracy could not be further improved or all of the
features have been exhausted [18]. Bi-directional elimination
can be seemed as combining the forward selection with the
backward elimination. This method first sets thresholds of
significance level for the forward selection as well as the
backward elimination. Then the forward selection is applied
by adding one feature and examining the significance level of
the feature in each selection round. After the forward selection
has been finished, the backward elimination will be performed
by removing the feature with a higher significance level than
the elimination threshold in each reducing round. These two
methods will be repeated until the optimal feature subset is
found [19].

The Embedded Method of attribute Preference overcomes
the disadvantages of filter and wrapper methods [20]. Because
it is integrated into the learning process rather than being sepa-
rate, the embedded approach makes it possible to pick features
during the training process of ML algorithms and decreases
data volumes internally. On the other hand, the embedded
method is less likely to require many computing resources. The
embedded technique has a better overall detection rate than the
filter method because it interacts with the machine learning
algorithms instead of relying purely on the rank of features.

www.ijacsa.thesai.org

647 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

For example, LASSO is a regression technique, while Decision
Tree(DT) and Random Forest (RF) are examples of tree-based
algorithms [21]. The embedded method optimizes the objective
functions with the regularization penalty terms and measures
the feature importance [22]. L1 regularization used by LASSO
regression penalizes the weight of less important features
to zero. The features that have the least coefficient will be
eliminated automatically for achieving better detection results.
The tree-based algorithms examine the feature importance. The
features are permuted based on the importance score, and the
most important feature will keep close to the tree’s root.

Dataset is a key component of machine learning and is used
to train the machine learning algorithms. The dataset contains
all the information that machine learning may use to recognize
and classify the patterns of the objective, for example, the
network activities for intrusion detection. Dataset is composed
of various features, and each represents a piece of data that
indicates some information about the objective. Some of these
features are directly extracted from the raw data, called basic
features; for example, the IPs, port numbers and TCP flags are
originally contained in the network packet. There are also a
lot of features in the dataset that are the statistical information
created by analyzing the raw data [23]. This kind of feature
is called the derived feature. The researchers manually create
these statistical features to describe the objective’s characteris-
tics better. Onut and Ghorbani divided the derived features into
two major groups: single connection dependent and multiple
connection dependent [24].

The single connection dependent derived features are cre-
ated using the flow information from a single connection.
The functionality of the single connection dependent features
is to verify whether the current connection has malicious
intent or not. The single connection dependent derived features
could be used to detect the bursty and stealthy attacks based
on the packet data within a certain time interval and the
whole lifetime of a single connection. The examples of the
single connection dependent derived feature include number of
packets, packet length, number of TCP flags per packet, etc.
The multiple connection dependent derived features are used
to represent the relationships between multiple connections.
These features are mostly used to detect any kind of network
attack launched through multiple network connections, such as
worm attacks, DDoS attacks, etc. In machine learning research
in intrusion detection, some derived features are created to
detect various network attacks better.

Najafabadi et al. introduced three derived features that
present the packet information extracted from the network flow
following the IPFIX standard to provide better detection of the
brute-force attacks: the number of packets, packet size, initial
flags, and session flags [25].

e The number of packets describes how many packets
are captured in the flow. Since the attackers need to
frequently guess the password of the users’ accounts
until they obtain the correct one, the packet number
of brute force attacks would be much larger than that
of normal login activities.

e Packet size describes the total size of the packets in
the flow. On the reasoning of the small size of network

Vol. 13, No. 2, 2022

flow for the failed logins, the normal login activities
would have apparently larger byte size.

e Flow flags describe the flags of all packets seen in
the flow. This feature can recognize the attack traffic
containing the complete set of TCP flags, including
FIN, SYN, PSH, and ACK flags, which is not normal
for the common TCP connections with only SYN and
ACK flags.

Constructed features mentioned above were applied in 5-
Nearest Neighbor, C4.5 Decision Trees, and Naive Bayes
algorithms to predict SSH brute force attacks by Najafabadi et
al. The results showed that the constructed feature significantly
improved the performance of weak algorithms like Naive
Bayes and achieved 99% accuracy using 5-Nearest Neighbor
and C4.5 Decision Trees.

The botnet attack can be detected using the derived features
extracted from the network traffic mentioned in the last section.
Since the bots need to contact the command and control
server to obtain instructions for further malicious activities,
TCP connections are required between bots and the command
and control server. And this kind of TCP connection shows a
periodic pattern according to the observations by Wang et al.
[26]. Under this situation, the interval time between request
and response flow could be an important feature. On the other
hand, Wang et al. found that the TCP connections between
bots and C&C server usually follow the periodical DNS query
from bots to C&C server. Therefore, the information extracted
from the DNS query can be used as an effective feature to
detect botnet attacks. Three derived features based on the DNS
query were introduced: interval time of DNS queries, the total
number of DNS responses and the failed DNS responses [26].
As mentioned above, Jin et al. constructed similar features
to predict the botnet attack using Adaboost, C4.5 Decision
Trees, and Naive Bayes algorithms. The result showed that
using contracted features, Adaboost and C4.5 Decision Trees
classifiers achieved over 90% for precision, recall, f1, and ROC
area, and Naive Bayes reached over 70% for all scores as well
[27], which proved that the constructed features were critical
for detecting botnet attack.

In order to pick up the web attacks more efficiently, eight
derived features were introduced by Qin et al. using the
information extracted from the webserver logs: diffReqPercent,
stutas200Percent, avgBytePerRequest, urlLevelRate, maxFre-
quency, FrequencyTimes, requestTimeDistrubution, and avgln-
terval [28]. Each of these features can be computed using the
statistical information based on the webserver records [29],
including the total number of requests, different requests, and
successful requests, and the total length of requests from the
same user within a certain time interval. After applying the
constructed features in Naive Bayes, Radial Basis Function
Network and C4.5 decision tree, Qin et al. achieved accuracy
and detection rate for more than 98% and false positive rate
for lower than 2%.

The port scanning attacks take advantage of the TCP, UDP,
and ICMP responses to detect the accessible open ports of
any hosts existing in the network. These scanning attacks
usually get involved in the flows either to various ports in the
single host or the same port in the multiple hosts. However,
the network event associated with these protocols can also

www.ijacsa.thesai.org

648 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

be used to identify the port scanning attacks. Ring et al.
created two derived features that target different kinds of
port scanning attacks: ICMP-Error count and RST count [30].
Decision trees and Support Sector Machine were used to test
the performance of constructed features. The results indicated
that both classifiers reached 100% detection rate and 10% false
alarm using the constructed features.

III. METHODOLOGY

Hypotheses for this study were as follows:

e Hy: The proposed feature selection approach of com-
bining feature selection algorithms and attack char-
acteristic features does not improve the detection per-
formance when compared with the detection approach
using all features in the given dataset.

e H,: The proposed feature selection approach of com-
bining feature selection algorithms and attack charac-
teristic features improves the detection performance
when compared with the detection approach using all
features in the given dataset.

This study focused on Feature formation and feature se-
lection in machine learning (ML) for identifying network
threats. The study required a grasp of the ML process and
development approach and mainly focused on investigating the
suggested solution’s effectiveness. The following is a step-by-
step breakdown of the research process.

1) Understand the functionality and process of machine
learning.

2) Study and analyze the current feature selection ap-
proaches for network intrusion detection.

3) Set up machine learning model.

4) Design a new feature selection approach and apply
the proposed approach to obtain optimal feature sub-
set.

5) Generate findings of the tests, analyze and document
the performance of the proposed solution.

The machine learning model contained three major stages:
preprocessing data, training model, and classifying target data.
The detailed activities in each stage are depicted in Fig. 1.

1) Preprocessing data aimed to organize the raw training
data in an acceptable data structure and convert the
dataset into the proper format permitted by the ma-
chine learning models. Data preprocessing involves
handling null values, categorical variables, standard-
ization, one-hot encoding, and multicollinearity [31].

2) Training machine learning model allowed it to fit with
the training data and tune model parameters for clas-
sification needs. This stage repeatedly adjusted the
hyperparameters of the machine learning algorithm
to find the function that best described the data.

3) Classifying target data was to apply the trained ma-
chine learning model to perform detection function-
ality on the test data that had never been fed into the
model before.

The proposed approach of feature selection was divided
into six steps shown in Fig. 2. Firstly, the CSE-CIC-IDS2018

Vol. 13, No. 2, 2022

Input Training Dataset

Build Machine Leaming Model
Spiit Training Data

| Testing Set |

How is the metric?

Good

Output Prediction

Fig. 1. Machine Learning Workflow

dataset with raw features as input. Secondly, attack character-
istic features that might indicate the attack patterns were added
into the dataset. Thirdly, all data was preprocessed to make
sure all features were processible by the machine learning
model. Fourthly, all features were scaled to make the data
normalized in magnitude. Fifthly, all features were calculated
through multiple feature selection algorithms for filtering out
the majority of irrelevant features. The final step was to output
the attribute set to train the ML model and produce prediction
results.

Input Raw| Features

Join Attack Characteristic Features

|

Data Praprossesing

|

Feature Scaling

Apply Feature Selection Algerithms

Output Selected Feature Subset

Fig. 2. Proposed Solution Process

The CSE-CIC-IDS2018 dataset contained benign back-
ground traffic and malicious traffic based on seven kinds
of network attacks, including brute-force attack, Heartbleed

www.ijacsa.thesai.org

649 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE I. CONFUSION MATRIX

Positive Prediction
True Positive (TP)
False Positive (FP)

Negative Prediction
False Negative (FN)
True Negative (TN)

Positive Condition
Negative Condition

attack, botnet attack, DoS attack, DDoS attack, web attacks,
and infiltration attack. The attacks studied in this work were
brute-force, botnet, web, and infiltration attacks. The dataset
included seven features extracted from the raw data flow, for
example, protocol, timestamp, IP address, etc.

This work evaluated the prediction results of different
experiments using the test scores produced from the confusion
matrix. The confusion matrix is a two-dimensional matrix that
represents the correlation of true conditions and predictive
results shown in Table I.

TP describes the number of abnormal samples being ac-
curately classified. TN defines the number of normal samples
being accurately classified. FP specifies the number of normal
samples being falsely classified as abnormal samples. FN spec-
ifies the number of abnormal samples being falsely classified
as normal samples. Various test scores were calculated using
the confusion matrix in this work: Accuracy, Precision, Recall,
and F1 Score.

Accuracy = TP+TN (D

YT TPYTNt FP+FN

TP
Precision = —————— 2
rectsion TP+ PP 2)
TP

Recall = m (3)
FlScore — 2 % Recall * Precision @)

Recall + Precision

IV. EXPERIMENTS

The experimental environment was implemented on
JupyterLab hosting on a Jupyter Docker container that con-
tained various Jupyter applications and interactive computing
tools. All experiments were conducted on the server having
2.93 GHz 6 cores Intel Xeon X5670 CPU with 96 GB RAM
for the physical device.

In this work, the selected machine learning classifier was
a decision tree that continuously splits the data according to
the defined parameters. The decision tree contains three major
components: Nodes, Branch, and Leaves. The node represents
a test for the data of a certain feature. The branch contains
the result of a node and connects to the next node or leaf.
The leaf is the final node of a tree that provides the prediction
corresponding to the label of the sample data. The decision
tree algorithm was specified with some parameters that helped
to optimize the performance.

The decision tree employed the Gini impurity to evaluate
the quality of data splitting. Gini impurity calculated the prob-
ability of a sample being randomly misclassified regarding the
distribution of different labels. The algorithm also controlled
the data selection to use different random values for each run of
the classification by setting random_state to none. The decision
tree classifier was set to use the best splitter that split the data

Vol. 13, No. 2, 2022

on the most relevant feature instead of randomly shuffling the
feature. Other hyperparameters of the selected architecture are
shown in Table II.

TABLE II. SAMPLE HYPERPARAMETERS OF DECISION TREE ALGORITHM

Hyperparameter Value
Criterion gini
Random_state None
Splitter Best
Class_weight None
Max_depth None
Max_feature None
Max_leaf_nodes None
Min_impurity_decrease 0.0
Min_impurity_split None
Min_samples_leaf 1
Min_samples_split 2
Min_weight_fraction_leaf 0.0
Presort False

The work involved three major stages: Preprocessing data,
Training model, and Classifying target data. However, in order
to present the technical details of model construction, when
writing the code using Python programming language, the
model was expended into six phases: Data Loading & Presen-
tation, Data preprocessing, Feature Scaling, Feature Selection,
Building the model, and Prediction & Evaluation. Table III
summarizes the functions of all stages.

TABLE III. MODELLING STAGES AND DESCRIPTIONS

Stage Description

This stage was to import the CSE-CIC-IDS2018
dataset and provide the sample view and statistical
summary of the dataset.

This stage was to laundry the CSE-CIC-IDS2018
dataset.

This stage was to split train & test set and
normalize the data of the CSE-CIC-IDS2018
dataset.

This stage was to use the feature selection
algorithms to produce a subset of features.

This stage was to build the decision tree classifier.
This stage was to predict the network attacks and
evaluate the results of experiments.

Data Loading & Presentation

Data Preprocessing

Feature Scaling

Feature Selection

Building the model

Prediction & Evaluation

A. Data Loading

The Data Loading & Presentation stage was to import the
proper Python libraries and the CSE-CIC-IDS2018 dataset and
provide the dataset’s sample view and statistical summary. The
CSE-CIC-IDS2018 intrusion detection dataset was released
by the Communications Security Establishment (CSE). The
updated version is structurally similar to CICIDS2017 and has
a class imbalance as well. As a result, the dataset for CSE-CIC-
IDS2018 contains 16,233,002 instances drawn from 10 days’
worth of network traffic, as opposed to the smaller network
used for CSE-CIC-IDS2018. Attack traffic accounts for about
17% of all occurrences. CSE-CIC-IDS2018 represents seven
different types of network traffic. Ten CSV files containing
the data are available for download from the cloud. There
are 79 independent features in nine files and 83 independent
features in the remaining nine files. Due to the scope of the
project, network attacks related to Dos and DDOS weren’t
considered and used in the project. Therefore, the first step
of Data Loading & Presentation stage was to remove the .csv

www.ijacsa.thesai.org

650 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

files containing data of Dos and DDOS attack from the dataset.
All other csv files were required to import as a data-frame, a
two-dimensional data structure containing labeled axes. Data-
frame of the dataset was essential in order to convert the .csv
file into Numpy array format containing all numerical values
of dataset for further training the machine learning model.

B. Data Preprocessing

Laundering the CSE-CIC-2018 dataset and creating train
and test sets were the objectives of this step. It was necessary
to pre-process the dataset before feeding it to the machine
learning model so that all values fit into the proper data
type and were readable. The CSE-CIC-IDS2018 Dataset was
cleaned using the following steps:

e Remove insignificant features.

e C(Create a standard data type for the data.

e Remove rows containing “Infinity” and “NaN” value.
e Reduce the long decimal digits of the float numbers.

e Rename attack labels.

C. Feature Scaling

The CSE-CIC-IDS2018 dataset was normalized and split
into a train set and a test set at this stage. In order to create a
train and test set for the CSE-CIC-IDS2018 dataset, a random
percentage of the dataset had to be divided into two sets.
The test set was a set of data that was never used in the
train set and was employed to produce the prediction and
evaluate the final machine learning model. In the project,
the train and test sets were 80% and 20% of the processed
CSE-CIC-IDS2018 datasets. Since some float numbers had
extremely long digits after decimal, in order to avoid the
memory issue with these long digits during the computing
process, the number of digits after decimal was reduced to
1 for all float numbers. Label column contained label values
for all instances. Labels were divided into eight categories:
seven attack labels, mentioned in Data Loading section, and a
benign label. However, string value couldn’t be processed by
machine learning model. Under this situation, all seven label
values were renamed with numeric values from 0O to 7. Label
column was taken up from the data-frame and replaced the
label values with numbers respectively using labeldf.replace()
function, then new Label column was put back to the data-
frame.

This stage was to split the train set & test set and normalize
the data of the CSE-CIC-IDS2018 dataset. After finishing the
data laundry for the CSE-CIC-IDS2018 dataset, the next step
was to randomly create a train set and test set by separating the
dataset with a certain percentage. The train set was used to help
the machine learning algorithms fit the parameters that best
described the sample data. The test set was a set of data that
was never used in the train set and was employed to produce
the prediction and evaluate the final machine learning model.
In the project, the train set and test sets were 80% and 20%
of the processed CSE-CIC-IDS2018 dataset, respectively. The
data frame was separated into x and y. x was assigned as a
data frame of all features, and y was a series of labels in the
original data frame. Then x and y were split into train set

Vol. 13, No. 2, 2022

and test set respectively using train_test_split() function. The
parameter test_size defined the proportion of the data-frame
and series assigned to the test set, and the rest of the data-
frame and series became the train set. Since the train & test
set for x data frame were still containing Label column that
was duplicated in the y series, the Label column was dropped
from the train & test set for x data-frame using commands
xTrain[:,:-1] and xTest[:,:-1]. The CSE-CIC-IDS2018 dataset
contained features that highly vary in magnitudes, units, and
range; for example, some features counted the number of
data packets, some counted the seconds of data flow, some
had huge numbers, some had negative numbers. However,
some machine learning models were highly sensitive to feature
scaling due to the optimization techniques and calculating
mechanisms. Therefore, the feature scaling played a significant
role to keep the machine learning model training properly.
MinMaxScaler was used to normalize the train & test set in the
project. The preprocessing module provided standardization,
normalization, transformation functions that converted datasets
into suitable representations for machine learning models. Pre-
processing. MinMaxScaler(), one of the data scalers provided
by the preprocessing module, translated values of each feature
of the train set and test set into the range between 0 and 1.

D. Feature Selection

The feature selection techniques extracted highly relevant
features. The project applied two feature selection techniques,
ANOVA F-test & RFE. ANOVA F-test & RFE have been
imported with f classif and RFE functions from sklearn li-
brary. A floating-point error was handled by ignoring zero and
invalid floating-point operation division. SelectPercentile func-
tion, called selector, passed the f_classif function and defined
the highest scoring percentage of features to 10%. The returned
values of a selector, x_f_train, were the numbers of selected
instances and features from the train set. Since RFE required a
machine learning classifier to evaluate the feature importance,
the decision tree classifier was created first and named with
clf. n_features_to_select parameter, the number of features
selected from the train set, was set to 5, corresponding to the
number of features that could reach the best accuracy based on
feature ranking from the RFECV function. x_rfe_train variable
was the returned values of selected instances and features.

E. Building the Model

This stage was to build the decision tree classifier. Machine
learning model was the key component of the project. Thanks
to sklearn library, the decision tree classifier was directly called
from the sklearn.tree module without complex and tedious
coding process. The function calling decision tree classifier
was DecisionTreeClassifier() and named clf_all. Fit() function
fed the train set and corresponding labels into the machine
learning model for training.

F. Prediction and Evaluation

This stage was to predict the network attacks using test
data and evaluate the machine learning model along with
the proposed feature selection method. The machine learning
model was built and trained using train set, the model was
ready to produce the final prediction based on the test set.
predict() function provided by sklearn library was passed to

www.ijacsa.thesai.org

651 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

trained machine learning model, clf_all, and predicted the label
value for all samples in the test set, xTest. The predicted
output returned by predict() function was stored into the new
variable called Y_all_pred. Various test scores were calcu-
lated with cross validation strategy. make_scorer module made
scorers based on the performance metric. Multiple scoring
functions, including accuracy, precision_score, recall_score,
and f1_score, were imported to compute corresponding scores.
Cross validation was employed to avoid the potential impact of
small samples for some targets, for example, there were only
8 instances of SQL Injection in the test set. cross_validate
function split the dataset into four smaller sets with same
label distribution. Among four equal-sized sets, three sets
were used to train the model and the remaining one was
used to calculate the performance metrics. A customized func-
tion, average_score_on_cross_val_classification, was defined
to evaluate the machine learning model using cross_validate
function and return the absolute mean value for all four scores.

V. RESULTS AND DISCUSSION

This section introduces the results of the study. Dataset
presentation section was provided to describe the dimension of
the CSE-CIC-IDS2018 dataset and sample view of the dataset.
Feature construction section introduced the features that were
constructed using the data provided in the original dataset.
Feature selection section described the feature selection meth-
ods used in the project and listed the selected features. Model
evaluation explained the performance metrics based on the
different feature selection methods.

A. Feature Construction

Feature construction was completed by using CICFlowMe-
ter, a feature extractor that extracted information from the
bidirectional flows. CICFlowMeter provided functions to cre-
ate time-related features from Pcap files of both forward and
backward flows. In the original Pcap files, seven raw features
presented the sequence of the data flows and all sorts of packet
information. Seven raw features included FlowID, Timestamp,
SourcelP, DestinationIP, SourcePort, DestinationPort, and Pro-
tocol. However, SourcelP and DestinationIP were removed due
to the possibility of data leaks during the model training and
the difficulty of feature encoding. Using the feature construc-
tion of CICFlowMeter extra 76 features were identified for
various network threats like traffic rate, message size, duration
among messages, TCP flags, header size and fragment length,
preliminary window, active time and waiting time in forward
and reversed streams, respectively. Some samples of derived
features and descriptions were shown in Table IV.

B. Dataset Presentation

After loading the CSE-CIC-IDS2018 dataset, Executing
df.shape function presented the dimension of the imported
dataset. The output showed that the created data frame con-
tained 5138535 instances and 80 columns, which included 79
features and one label column. The statistical summary of
the CSE-CIC-IDS2018 dataset included the count of values,
unique values, top values, and frequency of occurrence in each
column, as shown in Fig. 3.

Vol. 13, No. 2, 2022

TABLE IV. SAMPLES OF DERIVED FEATURES

Feature Name Description

Flow Byte/s Flow rate in bytes per second (bps)

Flow Pkts/s Flow rate in packets per second

Flow IT Mean Inter-packet interval mean time

Flow IT Max The flow’s longest possible interval between packets

Flow IT Min The shortest possible interval between two packets in a flow
Fwd IT Min The min amount of time between forward flow packets.
Fwd IT Max The max amount of time between forward flow packets.
Fwd IT Mean Packet forwarding averaging time

Fwd IT Total Between-packet time in the forward flow

Bwd IT Min Between-packet intervals in the reversed flow

Bwd IT Max Between-packet intervals in a reversal flow

Bwd IT Mean reverse flow packet-to-packet delay

Bwd IT Total In reversed flow, the total amount of time between each packet.
FIN Pkts The number of FIN packets in the stream

SYN Pkts A flow’s number of SYN packets

RST Pkts There are a certain number of RST packets in the flow.
PSH Pkts A flow’s number of PSH packets

ACK Pkts The flow’s ACK packet count

URG Pkts Quantity inflow of URG packets

CWR Pkts How many packets of CWR are in the stream

ECE Pkts Data packets per second (DPP)

Fwd Sgmt Size Avg Dimensions of a typical forward flow PDU segment

Bwd Sgmt Size Avg Dimensions of the PDU segments in the reversed flow

Fwd Byte Bk Avg The forward flow of bytes has an average bulk.

Fwd Pkt Bk Avg In the forward flow, the average number of packets.

Bwd Byte Bk Avg In a reversed flow, the bulk of the average bytes

Bwd Pkt Bk Avg In the reversed flow, the average number of packets per second.

800000

685105
700000

100000
[

Benign

Train set

™ Test set

685105
171193

Label Distributionn of Train Set and Test Set

171193

228960

154306 150256

128361 32278

I 57231 39048 37330
485126 181 49 79 8
| -

[[
sotmet FTP- SSH- | ion Bruteforce Bruteforce SQL
o€t BrutForce BruteForce MMM \eb XSS Injection
154306 150256 128361 485 181 79

57231 39048 37330 32278 126 49 8

228960

Fig. 3. Label Distributionn of Train Set and Test Set

In the data preprocessing and scaling process, timestamp

information was removed from the dataset due to the insignif-
icance for model training; all remaining data was converted to
float datatype; all instances that contained Infinity and NaN
values were dropped from the dataset; long decimal digits
were reduced to one decimal digit for saving training time
and memory; the attack labels were renamed with numbers as
shown in Table V.

TABLE V. LABEL NAMES AND CORRESPONDING NUMBERS

Label Number
Benign 0
Bot 1
FTP-BruteForce 2
SSH-Bruteforce 3
Infiltration 4
Brute Force -Web 5
Brute Force -XSS 6
SQL Injection 7

Then training and testing were created using the dataset.
The training set has been created with 1,347,733 instances
and 78 features, and the test set had 337,263 instances with

www.ijacsa.thesai.org

652 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

78 features. The train and test sets’ label distribution shows
a huge amount of benign traffic in the CSE-CIC- IDS2018
dataset. Compared with benign traffic, the number of attack
traffic was relatively small. Lack of balance between different
kinds of network attacks and benign traffic became the biggest
weakness of the CSE-CIC-IDS2018 dataset.

C. Feature Selection

ANOVA F-test and Recursive attribute removal were used
to choose features for this study. Using only the test results, the
ANOVA F-test was used to determine whether each attribute
connected to the label. An ML technique, such as a decision
tree classifier in this instance, was employed as a wrapper se-
lection approach to exclude features based on the significance
of each feature to prediction results.

ANOVA F-test feature selection tested if each feature had
any impact on classifying the attack categories. With one-way
ANOVA, the p-value was computed to verify the likelihood
that an attacker group could be accurately labelled based
solely on the results of every feature. P-values larger than
0.05 indicated a stronger relationship with a specific attack
category. All features were ranked in descending order based
on the p-values. As this work decided to select the top 10%
of the ranked features, the first eight features were selected
as the feature subset. Table VI showed eight features selected
by ANOVA F-test. The eight chosen features by ANOVA F-
test were all constructed features, proving that the constructed
features had a better statistical relationship with the attack
categories than raw features.

TABLE VI. SELECTED FEATURES BY ANOV F-TEST

Label Index Feature Name

16 Flow Pkts/s

37 Fwd Pkts/s

38 Bwd Pkts/s

46 RST Pkts

49 URG Pkts

51 ECE Pkts

66 Init Fwd Win Byts
69 Fwd Sgmt Size Min

Recursive Feature Elimination created the feature subset by
evaluating the feature importance through the machine learning
estimator. Training the decision tree predictor with the most
attributes was necessary to determine each feature’s impor-
tance. Due to the sample splitting mechanism, the decision
tree algorithm introduced a built-in function, such as Gini
Impurity, for calculating the feature importance in terms of the
misclassification rate. The feature with lower Gini Impurity
was preferred and significant because the misclassification
rate of this feature was lower. Once this was done, the most
insignificant feature was eliminated from the present extracted
features. Five features were needed to complete the iterative
training process and remove candidates. Table VII lists the
top five features that were eliminated using Recursive Feature
Elimination (RFE). The five features selected by Recursive
Feature Elimination showed the low misclassification rate
during the training process of the decision tree model.

D. Model Evaluation

This work calculated the confusion matrix’s test scores with
various experiments’ cross-verification procedure. The ML

Vol. 13, No. 2, 2022

TABLE VII. SELECTED FEATURES BY RECURSIVE FEATURE

ELIMINATION
Label Index Feature Name
0 Dst Port
26 Bwd IT Tot
28 Bwd IT Std
38 Bwd Pkts/s
69 Fwd Sgmt Size Min

model’s positive sample classification accuracy was evaluated
using the precision score. The capacity to correctly identify all
positive samples was referred to as a recall. In order to
calculate the F1 score, the weighted average of the precision
and recall scores was taken into account.

This section discusses the classification report of the ma-
chine learning model in four comparison experiments. The
classification report presented the precision, recall, and f1 score
for each kind of network attack and benign traffic individually
on the top: the macro average and weight average of test scores
and overall accuracy on the bottom. There were 8 numbers
from O to 7 on the top left of the report. Number O was the
benign traffic, and numbers 1 to 7 represented seven network
attacks, respectively.

Fig. 4 showed the performance metrics of the decision tree
model that used 7 raw features to classify each kind of network
attack and benign traffic with a cross-validation strategy.

precision recall fl-scoxe suppoxrt

0 Q.83 Q.92 0.87 Dal1502

1 0.21 0.01 0,03 5T221

2 0. 00 0. 00 Q.00 38616

3 0. 00 0. 00 Q.00 37614

4 0.03 0.04 0,03 32547

s} 0,00 0. 00 0. 00 128

s} Q.04 Q.04 Q.04 =1e]

T Q.00 o.1z2 [g ele) 1T

accur acy O, 77 10276595
mAacro avg 0. 21 0. 14 .12 1027695
weighted awvg 0. 74 0. 77 o.73 1027695

Fig. 4. Classification Report using 7 Raw Features

Fig. 5 showed the performance metrics of the decision tree
model that used all raw features and constructed features to
classify each kind of network attack and benign traffic with a
cross-validation strategy.

precision recall fl—score support

o} 0. 94 0. Ta 0,54 255965

1 1.00 0,99 0,99 57231

2 1.00 1.00 1.00 39048

a3 1.00 0. 50 0.G7T T33O0

4 0,05 0. 28 0,08 32278

g 0,83 0. 40 0. 54 1z6

=} [sFsin} 0,94 .01 L]

T 0. 00 0. 00 [sle s} =1
accuracy 0. Ta 1022039
macro awvg . al 0,61 0. 52 1022039
weighted avg 0,92 0. 78 0,23 1022039

Fig. 5. The Classification Report using All Raw and Constructed Features

Fig. 6 showed the performance metrics of the decision tree
model that used the ANOVA F-test to obtain the feature subset
from all raw and constructed features and classified each kind

www.ijacsa.thesai.org

653 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

of network attack and benign traffic with a cross-validation
strategy.

precision recall fl-score support

u] 0. 98 1,00 0,98 355269

1 0,959 0.aT 0,98 57231

2 1.00 1.00 1.00 32043

3 1.00 1.00 1.00 37330

4 0. 35 0,03 0,08 32273

5 0.8% oL 27 0. 41 126

4] 0.75 0,31 0. 43 49

T 0. 00 0,00 0,00]
accuracy 09T 1022039
macro avg 0. T4 0,87 0,61 1022039
weighted awg 0.95 0.aT 0,95 1022039

Fig. 6. The Classification Report using ANOVA F-Test

Fig. 7 showed the performance metrics of the decision
tree model that used Recursive Feature Elimination to obtain
the feature subset from all raw and constructed features and
classified each kind of network attack and benign traffic with
cross-validation strategy.

precision recall fl-—score support

e} 0. aT Jepgs s] Jegs tC] SE59AD

1 1. 00 1. 00 1. 00 57231

2 1. 00 1. 00 1. 00 o048

3 1. 00 1. 00 1. 00 37330

4 0. 24 o 10 .14 32278

5 0. 28 0. 53 L 2= 126

s} [og=l3] .47 Q.a3 45

T 0.0T .12 .09 =3

ACCUTY AcTy 0. 98 1022039
macro avg .72 .63 Qo.aT 1022039
weizhted aveg 0,25 Jeg=lq] 0,25 1022039

Fig. 7. The Classification Report using RFE

In Fig. 8, the overall test scores of the decision tree model
using constructed features and feature selection techniques
were much better than using raw features. Especially combing
feature selection and constructed features reached more than
95% on all test scores. But using raw features only got lower
than 80% for all test scores.

Average of Accuracy, Precision, Recall, and F1 Score

M Raw Features M Constructed Features Added M ANOVA F-test RFE

0.97 0.96 0.92 0.950.95 0.97 0.96

0.83
0.770.76 074 I 0.770.76 073 I

Test_acc uracy

0.950.95

Test_pre cision Test_recall Test_f1

Fig. 8. Weighted Average of Accuracy, Precision, Recall, and F1 Score for
Four Experiments

Vol. 13, No. 2, 2022

This part provided a comparison of the precision, recall,
and f1 scores for predicting different kinds of network attacks
in four experiments. By looking at Fig. 9, Fig. 10, and Fig. 11,
the decision tree model that used ANOVA F-test and Recursive
Feature Elimination to obtain the feature subset presented good
performance in detecting botnet attack, FTP-BruteFrce, and
SSH-BruteForce attack. The precision, recall, and fl score
of detecting botnet attack, FTP-BruteFrce attack, and SSH-
BruteForce attack when using feature selection techniques and
constructed features reached more than 97%, which were way
better than the test scores using raw features.

Botnet Attack
Recursive Feature Elimination (RFE)

o —

Constructed
Features Added

Raw Features

mTestfl mTest_recall mTest_precision

Fig. 9. Test Scores of Four Experiments on Botnet Attack

FTP- Brute Force

RFE

Constructed
Features Added

Raw Features

o
o
e
o
N
o
w
)
IS
o
@
o
Y
o
N
o
3
o
©
-

mTest_fl mTest_recall M Test_precision

Fig. 10. Test Scores of Four Experiments on FTP-BruteForce

SSH-Brute Force

Constructed
Features Added

1

Raw Features
mTest_fl mTest_recall M Test_precision
Fig. 11. Test Scores of Four Experiments on SSH-BruteForce
However, when detecting infiltration attack, web attack,

and SQL injection, the precision, recall, and f1 score did not
increase dramatically with feature selection and constructed

www.ijacsa.thesai.org

654 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

features shown in Fig. 12, Fig. 13, and Fig. 14. But still,
the test scores using feature selection and constructed features
were slightly better than using raw features.

Infiltration
RFE

ANOVA F-test

Constructed

—

I

|

I
Features Added —

Raw Features

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Test_fl mTest_recall M Test_precision

Fig. 12. Test Scores of Four Experiments on Infiltration Attack

Web Attack

RFE

ANOVA F-test

Constructed
Features Added

Raw Features

o

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Test_fl M Test_recall MTest_precision

Fig. 13. Test Scores of Four Experiments on Web Attack

SQL Injection
RFE N
|

ANOVA F-test

Constructed
Features Added

Raw Features |

0 01 02 03 04 05 06 07 0.8 0.9 1

Test_fl mTest_recall mTest_precision

Fig. 14. Test Scores of Four Experiments on SQL Injection

Training Time

m Training Time

ree [29057
anovar-test [20415
327.253
e
Features Added
Raw Features [2083

Fig. 15. Training Time of Four Experiments

Vol. 13, No. 2, 2022

In Fig. 15, adding constructed features to raw features
dramatically increased the training time and took over 327
seconds to train the decision tree model. More data was added
to the dataset, requiring the decision tree model to spend more
time processing them.

Testing Time

W Testing Time

wre | o7
Constructed
reatures ndded NN : 316

Fig. 16. Testing Time of Four Experiments

However, after using ANOVA F-test and Recursive Feature
Elimination, the training time was reduced to around 29
seconds, even lower than the time used for training with
raw features. In Fig. 16, the testing time presented a similar
situation as the training time shown in Fig. 15. The com-
bination of constructed features and raw features made the
decision tree model spend much more time to produce the
prediction result than only using raw features or employing
two feature selection techniques. However, the testing time
of using feature selection techniques was slightly longer than
using raw features.

VI. CONCLUSION

Feature selection and derived features were combined in
this work to improve ML model performance in NIDS. A char-
acteristic attack feature was constructed using CICFlowMeter,
and a feature subset was created using ANOVA F-test and
Recursive Feature Elimination to achieve the goal. Using the
CSE-CIC-IDS2018 dataset from the Canadian Institute for
Cybersecurity and Communications Security Establishment,
the project used a decision tree machine learning model to
detect network threats. Python was used on Jupyter Notebook
to create the machine learning model and the testing envi-
ronment. Evidence suggests that the combination of feature
selection techniques and derived features can improve pre-
diction precision accuracy recall F1 score and the decision
tree model’s prediction accuracy and precision. The CSE-
CIC-IDS2018 dataset used in the project was the most recent
benchmark intrusion detection dataset. The dataset provided a
large number of samples for various kinds of popular network
attacks in the Internet, including Brute Force, Web attack, Infil-
tration, and Botnet attack. However, the only weakness of the
CSE-CIC-IDS2018 dataset was that the sample distribution of
network attacks was not quite balanced, which may influence
the machine learning model’s performance to some degree. In
order to reduce the impact of imbalanced samples, the project
employed the cross-validation technique to split the dataset into
multiple folds that contained the same distribution of samples
from different classes.

www.ijacsa.thesai.org

655 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

More samples for different kinds of network attacks will be
collected to enrich and balance the current CSE-CIC-IDS2018
dataset in future work. Since this work only tested ANOVA
F-test and RFE, in the future additional feature selection
techniques will be used to investigate new combinations for
better network intrusion detection predictions.

REFERENCES

[11 Y. Aleksieva, H. Valchanov, and V. Aleksieva, “An approach for host
based botnet detection system,” 2019 16th Conference on Electrical
Machines, Drives and Power Systems (ELMA), 2019.

[2] Khraisat, A., Gondal, 1., Vamplew, P. et al. Survey of intrusion detection
systems: techniques, datasets and challenges. Cybersecur 2, 20 (2019).
https://doi.org/10.1186/s42400-019-0038-7

[3] Othman, S.M., Ba-Alwi, EM., Alsohybe, N.T. et al. Intrusion detection

model using machine learning algorithm on Big Data environment. J Big
Data 5, 34 (2018). https://doi.org/10.1186/s40537-018-0145-4

[4] Ebrahimi, H., Majidzadeh, K., Soleimanian Gharehchopogh, F. (2022).
Integration of deep learning model and feature selection for multi-
label classification. International Journal of Nonlinear Analysis and
Applications, 13(1), 2871-2883. doi: 10.22075/ijnaa.2021.25379.2998

[S] Osanaiye, Opeyemi & Choo, Kim-Kwang Raymond & Dlodlo, Mqghele
E.. (2016). Analysing Feature Selection and Classification Techniques
for DDoS Detection in Cloud.

[6] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly
detection,” Machine Learning, vol. 101, no. 1-3, pp. 59-84, Apr. 2014.

[71 S.-W.Lin, K.-C. Ying, C.-Y. Lee, and Z.-J. Lee, “An intelligent algorithm
with feature selection and decision rules applied to anomaly intrusion
detection,” Applied Soft Computing, vol. 12, no. 10, pp. 3285-3290,
2012.

[8] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine
learning: A new perspective,” Neurocomputing, vol. 300, pp. 70-79,
2018.

[9] Chen, RC., Dewi, C., Huang, SW. et al. Selecting critical features for
data classification based on machine learning methods. J Big Data 7, 52
(2020). https://doi.org/10.1186/s40537-020-00327-4

[10] Zhang, Jian, Qidi Liang, Rui Jiang, and Xi Li. 2019. A Fea-
ture Analysis Based Identifying Scheme Using GBDT for DDoS
with Multiple Attack Vectors” Applied Sciences 9, no. 21: 4633.
https://doi.org/10.3390/app9214633

[11] J.-H. Woo, J.-Y. Song, and Y.-J. Choi, “Performance Enhancement
of Deep Neural Network Using Feature Selection and Preprocessing
for Intrusion Detection,” 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), 2019.

[12] Y.-L. Wan, J.-C. Chang, R.-J. Chen, and S.-J. Wang, “Feature-Selection-
Based Ransomware Detection with Machine Learning of Data Analysis,”
2018 3rd International Conference on Computer and Communication
Systems (ICCCS), 2018.

[13] P-S. Tang, X.-L. Tang, Z.-Y. Tao, and J.-P. Li, “Research on feature
selection algorithm based on mutual information and genetic algorithm,”

2014 11th International Computer Conference on Wavelet Actiev Media
Technology and Information Processing (ICCWAMTIP), 2014.

Vol. 13, No. 2, 2022

[14] G. Manikandan, E. Susi, and S. Abirami, “Feature Selection on High
Dimensional Data Using Wrapper Based Subset Selection,” 2017 Second
International Conference on Recent Trends and Challenges in Computa-
tional Models (ICRTCCM), 2017.

[15] M. S. Kumar, J. Ben-Othman, K. Srinivasagan, and G. U. Krishnan,
“Artificial Intelligence Managed Network Defense System against Port
Scanning Outbreaks,” 2019 International Conference on Vision Towards
Emerging Trends in Communication and Networking (VITECoN), 2019.

[16] Y.Zhou, G. Cheng, S. Jiang, and M. Dai, ‘Building an efficient intrusion
detection system based on feature selection and ensemble classifier’,
Comput. Networks, vol. 174, 2020.

[17] AHUIJA, RAVINDER, and SC SHARMA. "Exploiting Machine Learn-
ing and Feature Selection Algorithms to Predict Instructor Performance
in Higher Education.” Journal of Information Science & Engineering
37.5 (2021).

[18] S. Cateni, V. Colla, and M. Vannucci, “A Hybrid Feature Selection
Method for Classification Purposes,” 2014 European Modelling Sympo-
sium, 2014.

[19] G. Smith, “Step away from stepwise,” Journal of Big Data, vol. 5, no.
1, 2018.

[20] B. Sahu, S. Dehuri, and A. Jagadev, “A Study on the Relevance of Fea-
ture Selection Methods in Microarray Data,” The Open Bioinformatics
Journal, vol. 11, no. 1, pp. 117-139, 2018.

[21] L. Ladha and T. Deepa, “Feature selection methods and algorithms,”
International journal on computer science and engineering, 3(5), 1787-
1797, 2011.

[22] J. Peltonen, “Lecture 2: Feature selection,” Dimensionality Reduction
and Visualization, 2014. [PowerPoint slides]. [Accessed: 28-Nov-2019].

[23] Q. Zhou and D. Pezaros, “Evaluation of Machine Learning Classi-
fiers for Zero-Day Intrusion Detection—An Analysis on CIC-AWS-2018
dataset,” arXiv preprint arXiv:1905.03685, 2019.

[24] I.-V. Onut and A. Ghorbani, “Toward A Feature Classification Scheme
For Network Intrusion Detection,” 4th Annual Communication Networks
and Services Research Conference (CNSR06), 2007.

[25] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R.
Zuech, “Machine Learning for Detecting Brute Force Attacks at the
Network Level,” 2014 IEEE International Conference on Bioinformatics
and Bioengineering, 2014.

[26] K. Wang, C.-Y. Huang, S.-J. Lin, and Y.-D. Lin, “A fuzzy pattern-based
filtering algorithm for botnet detection,” Computer Networks, vol. 55, no.
15, pp. 3275-3286, 2011.

[27] B. Setiawan, S. Djanali, and T. Ahmad, ‘Increasing accuracy and
completeness of intrusion detection model using fusion of normalization,
feature selection method and support vector machine’, Int. J. Intell. Eng.
Syst., vol. 12, no. 4, pp. 378-389, 2019.

[28] Q. Liao, H. Li, S. Kang, and C. Liu, “Feature extraction and construction
of application layer DDoS attack based on user behavior,” Proceedings
of the 33rd Chinese Control Conference, 2014.

[29] Xu, X. (2006). Adaptive Intrusion Detection Based on Machine Learn-
ing : Feature Extraction , Classifier Construction and Sequential Pattern
Prediction.

[30] M. Ring, D. Landes, and A. Hotho, “Detection of slow port scans in
flow-based network traffic,” Plos One, vol. 13, no. 9, 2018.

[31] S. B. Kotsiantis, D. Kanellopoulos and P. E. Pintelas, “Data preprocess-

ing for supervised leaning,” International Journal of Computer Science,
1(2), 111-117, 2006.

www.ijacsa.thesai.org

656 |Page

