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Abstract—This article proposes a path planning strategy for
mobile robots based on image processing, the visibility graphs
technique, and genetic algorithms as searching/optimization tool.
This proposal pretends to improve the overall execution time of
the path planning strategy against other ones that use visibility
graphs with other searching algorithms. The global algorithm
starts from a binary image of the robot environment, where the
obstacles are represented in white over a black background. After
that four keypoints are calculated for each obstacle by applying
some image processing algorithms and geometric measurements.
Based on the obtained keypoints, a visibility graph is generated,
connecting all of these along with the starting point and the
ending point, as well as avoiding collisions with the obstacles
taking into account a safety distance calculated by means of
using an image dilation operation. Finally, a genetic algorithm is
used to optimize a valid path from the start to the end passing
through the navigation network created by the visibility graph.
This implementation was developed using Python programming
language and some modules for working with image processing
ang genetic algorithms. After several tests, the proposed strategy
shows execution times similar to other tested algorithms, which
validates its use on applications with a limited number of ob-
stacles presented in the environment and low-medium resolution
images.
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I. INTRODUCTION

Today more than ever, robotics is part of the daily life
in most of the world specially in big cities where the au-
tomation and smart stuff is everywhere. Mobile robots area
has been widely researched not only in its mechanical design
and locomotion type but in its motion planning [1], [2] in
applications such as movement in indoor environments [3],
obstacle avoidance [4], navigation in complex mazes [5],
path planning [6], [7], and some times using open source
robotics software [8]. Researching areas like UAVs (Unmanned
Aerial Vehicles) and self-driving or autonomous vehicles have
maintained the interest on one of the most important issues for
mobile robots, the path planning. In this area, one of the most
used algorithm has been the visibility graphs [9] supported
by image processing algorithms [10]. These visibility graphs
generates a high dense network of possible paths through
the some navigation keypoints obtained from the obstacles
image that is related with the navigation scene to solve by
the mobile robot. This path network includes also both the
starting point and the ending point, then a valid and short
path has to be found from the start to the end passing through
some segments of the connection network, for that reason it

is necessary to apply a decision or optimization algorithm
[11] to choose the best path inside on that network. A lot
of different optimization algorithms has been used for the
path planning issue such as ant colony optimization [12], [13],
particle swarm for mobile robots [14], [15], [16], [17], chaotic
particle swarm [18] particle swarm for manipulators [19], brain
storm optimization [20], Fuzzy-Wind Driven algorithm [21],
rapidly-exploring trees [22], gray wolf algorithm [23] among
others.

The Genetic Algorithms GAs are searching and optimiza-
tion methods based on the natural selection process and the
genetic operations involved in it, these ones have been used
for solving problems in a lot of different engineering areas
including robotics and of course path planning [24], [25], [26]
and other variations such as the Taxi carpooling algorithm [27].

Therefore, this research aims to propose a path planning
strategy combining both the visibility graphs method using im-
age processing algorithms and genetic algorithms to optimize
and obtain the best path, improving the overall execution time
respect other related works. All of this strategy is proposed to
be solved by means of using free software in this case all of
the algorithms will be implemented on Python language using
modules such as: scikit-image and geneticalgorithm2.

The paper is organized as follows: Section 2 presents
the methodology proposed to find the optimal path for mo-
bile robots using Genetic Algorithms (GAs), describing all
processes to identify the obstacles image by capturing the
image of navigating environment; going through the keypoints
obtaining, then generating visibility graph, and subsequently
selecting path optimization using GAs. Section 3 presents the
results of implementing the path planning strategy in Python
3 language and testing in different navigation environments
to evaluate overall execution time. Finally, Section 4 presents
the conclusions about this research’s main ideas, including
possible future jobs.

II. METHODOLOGY

The path planning strategy for mobile robots proposed in
this article is based on image capture of the navigating envi-
ronment in which the robot is involved [28], [29], where the
obstacles are perfectly differentiated from the void room. First
step is the calculation of some keypoints for each obstacle in
the scene in order to reduce the amount of information to work
with by the planning algorithm. After that, all the possible
paths from the start to the end are calculated, all of them
passing through the previously detected keypoints, producing a
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Fig. 1. General Algorithm Pipeline.

highly dense path network. Finally, the optimization algorithm
[30] is applied to the path network in order to obtain the
shortest path. The complete process can be sumarized through
the flow chart shown in Fig. 1, where it starts from a binary
image of the environment (a black background and white
obstacles), then some keypoints by each obstacle are calculated,
after that a visibility graph is generated and finally only one
path is selected. In the next sections, each step of the process
is explained in detail.

A. Obstacles Image

The proposed strategy starts with a Black & White image
of the scene with the obstacles [31], this binary image has a
black background and the obstacles are represented in white as
the example shown in Fig. 2. This image can be obtained from
a camera located at the top of the robot environment and after
turned into binary by means of applying an image threshold
operation.

Fig. 2. Starting Scene Binary Image.

B. Keypoints Obtaining

The keypoints obtaining step is supported by some digital
image algorithms, first the binary image of the obstacles is
dilated in order to expand the obstacles border, applying
the correspondent image morphology operation. After, the
main two axis and the centroid of each dilated obstacle are

calculated, this is done labeling and measuring each separated
region in the binary image (obstacles). Finally, four keypoints
per obstacle are calculated.

1) Image Dilation: In this proposal, the navigation key-
points are based on the obstacles borders, but this takes into
account a safe distance between these ones and the robot [32].
That distance is calculated from to the maximum radius of
the robot according to the eq. 1 and correspons to the dilation
radius rd.

rd = brm + ∆rc (1)

Where rm is the maximum radius of the robot and ∆r is
a radius tolerance defined at 10% in this case. Finally, rd has
to be an integer and it is represented in pixel units.

Once the dilation radius rd is obtained, the morphology
dilation operation is performed on the obstacles image by
means of applying a 2D convolution between the original
binary image and a square shape as wide as rd. The result is
shown in Fig. 3, where the obstacles are the same as the binary
image (see Fig. 2), but their area is expanded because of the
dilation operation. This operation allows assuming obstacles
with major areas to avoid future collisions due to the maximum
radius of the mobile robot.

Fig. 3. Dilated Obstacles Image.

2) Obstacle keypoints Computing: After dilating the obsta-
cles image, each obstacle is labeling and measured in order to
find its centroid and its two main axis, from this data a ∆x
and a ∆y are calculated for each axis according to eq. 2.

∀i ∈ I :

 ∆xi = cos(θ) ·
(
li
2

)
∆yi = sin(θ) ·

(
li
2

) (2)

Where li is the length of each main axis i of the obstacles
axis set I and θ the orientation of the major axis detected. Fi-
nally from these deltas, the keypoints are calculated according
to the eq. 3.

∀i ∈ I, ∀j ∈ J :

{
xij = x0 ±∆xi

yij = y0 ±∆yi
(3)
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Where j is each of the calculated points set J for each
main axis set I and (x0, y0) is the centroid of each obstacle.
The cardinality of the sets I and J is |I| = |J | = 2, so for each
obstacle two main axis are calculated, and for each of them
two points are generated, for a total of 4 generated keypoints
by obstacle, as shown in Fig. 4.

Fig. 4. Obstacle keypoints Computing.

The Fig. 4 shows schematically the dilation process. Hav-
ing an diamond-shaped obstacle (shown in gray) in the original
image, the external rounded shape (in white) represents the
same obstacle after the image dilation process. The main axis
are represented by dashed lines, (x0, y0) is the centroid and the
(xij , yij) are the obtained keypoints. The obtained keypoints
along with the original obstacles are shown in Fig. 5, where
the starting point is at the lower-left corner and the ending
point is at the right border.

Fig. 5. Navigable keypoints Image.

C. Visibility Graph Generation

After generating all of the navigating keypoints including
the starter and ending points, the visibility graph [33] is
generated (see Fig. 6) connecting all of these points (drawing
lines on the image) and after avoiding the crossing with the
obstacles as shown in Fig. 7.

The collision avoidance between these lines and the ob-
stacles is calculated by means of applying binary image

Fig. 6. Visibility Graph.

Fig. 7. Visibility Graph (Avoiding Collisions).

operations, specifically a binary XOR operation (exclusive
disjunction) between the dilated obstacles image and a copy
of the same image with the specific line drawn in black. If
there is a collision, a black segment line will appear over an
obstacle, that means that the two images will be different. Both
images have to be totally equals (pixel by pixel) for validating
the line, so each resultant pixel has to accomplish the eq. 4,

∀i ∈ I, ∀j ∈ J : Aij = Bij = False (4)

Where I and J for this equation, are the sets of all valid
indices in both dimensions of the dilated obstacles image A
and the image B which has the dilated obstacles plus the drawn
line.

D. Path Optimization-Selection

For selecting the shortest possible path in the generated
visibility graph, it is possible to use a lot of different selection
or optimization algorithms such as the A∗ algorithm [34]. In
this proposal, Genetic Algorithms (GAs) are used as optimiza-
tion tool [35] in order to find the shortest (and then the most
efficient) path in the dense navigating network generated by
the visibility graph.
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1) Target Function: Once defined the complete set of
keypoints P including the start ps and the end pe, it is
necessary to define the target function to optimize f(P ), this
depends on the cumulative distance of each segment pip(i+1)

from ps to pe, that accomplishes with the eq. 4. For the target
function definition, it is necessary to define the solution set
X as shown in eq. 5, where each x represents an index for
reading the keypoints set P , so the set X detemine the order of
a subset PX ⊆ P which is a possible solution (a short path).

X = {x0, x1, x2 . . . xn} (5)

The number of indices of the solution set X corresponds to
the number of objects in the scene, plus the inital and ending
points thus n = n-obstacles + 2. The number of elements of
the set X is less or equal of the number of elements of the
subset PX , so |PX | ≤ |X|, This occurs because a Pxi

different
from Pxn equals the ending point Pe, that is meant the path
reaches the final in less steps than the maximum allowed n, so
it is necessary to determine the real number of steps m. This
last is possible applying the eq. 6.

∀i ∈ {0, 1, 2 . . . n} : pxi = pe =⇒ m = i (6)

Once the steps m have been computed, the optimization
target function is defined from the solution set X as shown in
eq. 7.

f(X) =

m∑
i=0

|−−−−−−→pxip(xi+1)| (7)

Where |−−−−−−→pxi
p(xi+1)| is the distance of a segment between

two sequential keypoints. This target function is subject to
the first element of Pk were the starting point ps, then it is
generating the optimization restriction shown in eq. 8.

px0
= ps (8)

Additionally, as were described in the visibility graph
section, the target function also has an obstacle collision
restriction which can be implemented applying the eq. 4

2) Genetic Algorithm Implementation: The genetic algo-
rithm proposed in this article for optimizing the visibility
graph is setup as follows: there is no limit for the maximum
number of iterations, the number of iterations without any
improvement in the target function (fitness function) is set in
20, the crossover and mutation type era defined as uniform,
the selection type is roulette, a 100 individuals population is
defined, the rest of parameters are shown in Table I.

The fitness function or target function to minimize by the
genetic algorithm is implemented according to the eq. 7 and
specifying the restrictions (see eq. 4 and eq. 8), generation
a penalty when one of them is not accomplished, that is
meant f(P ) is carried to a maximum value f(P )max which
corresponds to the total perimeter of the image A, then
f(P )max = Axmax

∗ 2 +Aymax
∗ 2.

TABLE I. GENETIC ALGORITHM PARAMETERS

Parameter value
maximum iteration number None

population size 100
mutation probability 0.1

elitism ratio 0.01
crossover probability 0.5

parents portion 0.3
crossover type uniform
mutation type uniform by center
selection type roulette

max. iteration without improvement 20
dimension same number of obstacles

variable type integer
function timeout 10s

On the other hand the genome is built from the set X ,
taking into account that ∀i ∈ {0, 1, 2 . . . n} : xi ∈ E, the
genome is simply generated in order as shown in Table II,
being each gene an integer variable. No other variable different
to the xi is necessary to be appended to the genome.

TABLE II. GENOME ORDER.

gen0 gen1 gen2 gen3 . . . genn−1

x0 x1 x2 x3 . . . xn−1

III. RESULTS

All of the proposed path planning strategy was imple-
mented in Python 3 language on a simple office laptop (whose
features are described in Table III) running a GNU/Linux
distribution. In total 10 tests were done over different nav-
igation environments, all of them with the 6 obstacles as
shown in most of figures. In average only the genetic algorithm
execution time was in the interval of (65, 94)s with an average
value of 81.3s which is comparable with other previously
tested algorithms such as A∗ which showed over the same
conditions an average execution time of 83s.

TABLE III. TESTING PC FEATURES.

CPU AMD Athlon Gold 3150U @ 2.400GHz
cores 2 hardware (4 subprocess)
GPU AMD ATI 03:00.0 Picasso
RAM 12 GB

main drive SSD
OS Ubuntu 20.04.3 LTS x86 64

The genetic algorithm took in average 51.5 generations
(iterations) to reach an average f(X) = 1115, the Fig. 8 shows
a plot of one of the tests done, where the best target function in
each generation is plotted. This specific example, reaches the
convergence value in 44 generations. For the specific algorithm
setup used, never this one reaches the maximum number of
iterations (200), always this stops by reaching the maximum
number of iterations without improvement the fitness function
(20), that is meant the algorithm rapidly reaches a minimum
but this is not necesary the global (see Fig. 9).

In order to find the global minimum a new test was
done, this time with no limits of number of generations and
generations without improvement. As a result this last test gave
an execution time of 21min 33s, almost 16 times more than
the original tests, and this one reaches a f(X) = 1027.7
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Fig. 8. Target Function Minimizing with a Limit of 20 Generations without
Improvements.

Fig. 9. Obtained Final Path Example.

which represents an improvement of 7.83%, obtained after
829 generations. The minimizing plot of this second test is
shown in Fig. 10, where it is possible to graphically realize
that the target function value has practically no changes from
the generation number 110. The final path generated by this
last test is shown in Fig. 11.

On the other hand, the image processing operations in
charge of generating the collision restriction, spend around of
the 43% of the total execution time of the genetic algorithm,
mainly due to their use of pixel-to-pixel image comparisons
which have a high computational cost. This execution time,
can be exponentially increased by a linear increasing in the
image dimensions.

IV. CONCLUSION

The proposed strategy of path planning based on visibility
graphs and genetic algorithms, gave as a result execution times
similar to other previously tested algorithms, in cases of simple
environments such as the ones with a low amount of obstacles.
According to the optimization parameters and environment
images used, the genetic algorithm finds a valid solution with

Fig. 10. Target Function Minimizing without a Limit of Generations.

Fig. 11. Obtained Final Path, the Second Example.

workable execution times. If the resolution of the environment
input image or the number of obstacles increases, this proposed
strategy will reach high execution times which will make it
difficult to apply it on a real time robotics navigation task.
This last could happen also is the application needs that the
genetic algorithm finds the global minimum.

This proposal implements a safety distance between the
obstacles and the mobile robot, this distance is based on an
image dilation operation, this technique can limit the possible
paths in the visibility graph as shown in Fig. 7 where a
connection line is missing for the obstacle in the upper-
left corner, as well as obstacles with concave shape could
generate issues due to the methodology used for calculating
the keypoints.

As future work, it is proposed to generate and automatic
image resizing (without information losing) in order to reduce
its dimensions and therefore the computing time involved in
the image operations within the target function to be solved
by the genetic algorithm. Another future work proposal is to
develop a path planning strategy that uses directly the genetic
algorithm over all the navigating free space of the image, so
that the solution set will be not an index set but a set of (x, y)
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direct points on the image. This last proposal, could take better
advantage of the searching features of the genetic algorithms.
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