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Abstract—Wifi Fingerprinting is a widely used method for
indoor positioning due to its proven accuracy. However, the offline
phase of the method requires collecting a large quantity of data
which costs a lot of time and effort. Furthermore, interior changes
in the environment can have impact on system accuracy. This
paper addresses the issue by proposing a new data collecting
procedure in the offline phase that only needs to collect some
data points (Wi-fi reference point). To have a sufficient amount
of data for the offline phase, we proposed a genetic algorithm and
machine learning model to generate labeled data from unlabeled
user data. The experiment was carried out using real Wi-fi data
collected from our testing site and the simulated motion data.
Results have shown that using the proposed method and only 8
Wi-fi reference points, labeled data can be generated from user’s
live data with a positioning error of 1.23 meters in the worst case
when motion error is 30%. In the online phase, we achieved a
positioning error of 1.89 meters when using the Support Vector
Machine model at 30% motion error.

Keywords—Wifi fingerprinting; indoor positioning; machine
learning; genetic algorithm

I. INTRODUCTION

As people spend more time indoors, many location-based
applications and services require to known user indoor loca-
tion. While the global positioning system (GPS) is a popular
positioning method, it can hardly be applied to indoor envi-
ronments because lacking in line of sight (LOS). Therefore,
many indoor positioning techniques have emerged and been
proposed in recent years.

An approach that many researchers have taken is to use
the network infrastructure like Wi-fi [1], [2], Bluetooth [3], [4],
Zigbee [5], Ultra-Wideband [6] to perform indoor localization.
Wi-fi is the most common because it is likely to be installed
in most public indoor places like malls, stations, airports and
nearly every smartphone is equipped with a Wi-fi transceiver
module. A popular method that utilizes Wi-fi signal is Wifi
Receive Signal Strength Indicator (RSSI) Fingerprinting [7],
[8], [9], [10]. The approach assumed that the RSSI measure-
ment from access points (APs) for every location is unique.
For that reason, RSSI measurements are recorded and stored
in a database called the radio map. Whenever a new RSSI
measurement is generated by the user, it will be matched to
the similar one in the database. One of the popular matching
algorithms is The Nearest Neighbors in Signal Space (NNSS)
[11], which calculates the distance of signal space between the
observed data and the recorded data. The step of constructing
the database is also known as the offline phase and the

matching step is known as the online phase. In the matching
step, machine learning can be also be used to take advantage
of the powerful pattern recognition ability to produce more
accurate results [10].

Another popular approach focus on exploiting the inertial
measuring units (IMU) because of their availability in mobile
devices and fast measurement update. A well-known method
that takes advantage of the IMU measurements is Pedestrian
Dead Reckoning (PDR) [12], [13], [14]. PDR extract step
event [15], step length [16] and heading angle [17] from
IMU raw measurements and output the location of the user.
The major benefit of this approach is that no infrastructure
needs to be installed. In addition, measurements are regularly
updated which enables real-time localization. However, the
initial position of the target is required to be predetermined in
PDR because PDR can not locate the current position of the
target without the knowledge of the target’s previous location
in the environment. Furthermore, IMU sensors are subjected to
noise, interference and disturbance thus produces accumulated
errors over time. For that reason, sensor fusion methods like
Kalman Filter [18] or Madgwick Filter [19] were employed to
counter the error but due to the complexity of those filters,
they raise the amount of computation to solve the indoor
localization problem.

Wi-fi Fingerprinting has advantages when it comes to
precision and deployment cost compared with other indoor
positioning schemes. However, it is worth mentioning the
drawbacks of the method. First, Wi-fi Fingerprinting method
performance is suffered from multipath, shadowing, and in-
terference in the environment [20]. Secondly, the number
of data points in the radio map can affect the positioning
accuracy. Therefore, in the offline phase of conventional Wi-fi
Fingerprinting, the coordinate system of the whole area needs
to be built, then numerous data points are marked to have
their RSSI measurements collected. This procedure consumes
a lot of time and effort. Additionally, changes like adding or
moving objects in the environment could make the radio map
no longer reliable and have to be reconstructed to maintain
accuracy. While the offline phase of the Fingerprinting method
poses difficulties in collecting data, the PDR method creates
a lot of data but they are unlabeled. Aiming to reduce the
amount of data needed to be collected in the offline phase
of the Wi-fi Fingerprinting method and taking advantage of
the results from the PDR method, this paper proposed a new
architecture for the offline phase of the Wi-fi Fingerprinting
method. From the results of PDR, a genetic algorithm is
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Fig. 1. Offline Phase Initialization Mode and Online Phase of the Proposed Method

implemented to combined with machine learning algorithms to
find labels (locations) for the user unlabeled Wifi RSSI data.
By creating more labeled data from user data, the proposed
method reduces the spent time and effort to collect labeled
data while still achieve good results.

Several approaches that used motion sensors and Wi-fi
signals for indoor positioning have been studied in the past.
Wi-fi SLAM proposed by Brian Ferris et al. in [21] take
advantage of a technique called Simultaneous Localization and
Mapping (SLAM), which is a popular navigation method in
an unknown environment. The authors used Gaussian Process
Latent Variable Model to find the location of unlabeled signal
strength data in the latent space and combine it with motion
data to rebuild the topological connectivity graph to perform
indoor localization. Naguib in [22] proposed an indoor posi-
tioning scheme that combines multi sources of information,
which are motion sensors and Wi-fi using a low-complexity
version of particle filter to increase accuracy. Constandache in
[23] utilized electronic compass and accelerometers in phones
to measure user speed and orientation. Then the recorded
data is matched against possible path signatures in the local
electronic map. The proposed method is different from others
because the user motion data are not used together with Wi-fi
to directly predict the user location but they are only utilized
in the offline phase to generate more labeled data for the
machine learning model. As the motion data is only utilized in
the offline phase, the proposed method does not contain any
heavy computation in the online phase, which enables real-
time localization.

The rest of the paper is arranged as follows. Section 2
presents the proposed system architecture and detail implemen-
tation of the genetic algorithm and machine learning models.
Section 3 presents the experimental design. Section 4 presents

the results and the discussion. The last section concludes the
paper with future direction.

II. THE PROPOSED SCHEME

Similar to the architecture of an indoor Wi-fi Fingerprinting
method, the system is divided into two-phase: the offline phase
and the online phase. In addition, there is central storage which
is responsible for saving collected data and trained machine
learning models.

In the offline phase, it is divided into two modes: the
initialization mode and the update mode. The initialization
mode is used on the first run of the system when the storage
is empty and it is illustrated in Fig. 1. First, a set of positions
is designated for Wi-fi RSSI measurements, this set is denoted
as Wi-fi Reference Points (WRP)s. Because the number of
collected WRPs is small, their locations should cover the whole
area. Then, for each WRP in the environment, the Wi-fi RSSI
signals are carefully measured from all the access points and
saved them to the central storage. The next step is letting
users with a device equipped with Wi-fi transceiver modules
and IMU sensors move around in the area. The raw motion
data and Wi-fi RSSI are recorded and saved to the storage.
When the system decided that it has collected enough user
data, it would start analyzing and creating machine learning
models. User raw motion data is separated from the user Wi-fi
RSSI and they are sent to the PDR block to output processed
motion data (step event, step length, and heading angle). Next,
the WRP data and user processed motion data are forwarded
into the block where a genetic algorithm and machine learning
model is implemented to estimate user positions. Details of
the implementation are presented in the later sections. Then,
the estimated positions are used as the labels for the user
Wi-fi RSSI data to form a new dataset. The new dataset is
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Fig. 2. Offline Phase Update Mode

combined with the WRP data to become the training dataset.
Next, machine learning models were used to fit the training
data then perform model tuning for better performance. The
optimized model is later saved to the central storage.

The online phase is mentioned first for better chronological
order. The online of the proposed system is used to estimate
the position of the user using the trained model from the offline
phase and it is illustrated in Fig. 1. First, user Wi-fi RSSI and
motion data are recorded while the user moves. Then, the Wi-fi
RSSI data are extracted from the user data and forwarded into
the trained machine learning model to output user location.
User data are saved to the central storage for further analysis
in the offline phase.

The offline phase update mode is presented in Fig. 2. It
is utilized when there are new user data collected during the
online phase and system operator want to analyze the potential
of this data to be used with the previous training dataset. First,
the WRP data and user data are loaded from the storage. Then
the user data is split into Wi-fi RSSI and raw motion data.
The raw motion data is forwarded to PDR to extract processed
motion data (step event, step length, and heading angle). Then,
the WRP and processed motion data are sent to the genetic
algorithm and machine learning block to create user positions
similar to the initialization mode. Next, the previous training
dataset is loaded from the central storage and compared with
the new one. If the new dataset satisfies the metric, then it will
be used as training data to generate a new model. Details of
the metric are described in the next section.

A. Implementation of Genetic Algorithm and Machine Learn-
ing Block

The input of this block is WRP data and user motion data,
the output is the estimated user position. WRP is defined as
(1):

WRPi = {(RSSI1i , ..., RSSI
j
i , ..., RSSI

M
i ), (xi, yi)} (1)

where i = 0 to NWRP and NWRP is the number of WRPs,
M is the number of Wi-fi AP, RSSIji is the RSSI measurement
from the jth AP of ith WRP, (xi, yi) is the coordinates of ith
WRP.

An assumption was made that a PDR algorithm was imple-
mented and it processed the raw motion data from IMU sensors
and output the step event, step length, and heading angle. Using
the output, the distance and the angle are calculated between
two consecutive Wi-fi RSSI measurement points. Then the user
Wi-fi RSSI data and the processed motion data is in the form
(2):

Ui = {(RSSI1i , ..., RSSI
j
i , ..., RSSI

M
i ), (αi, di)} (2)

Where i = 0 to NU , NU is the number of user data point,
αi is the angle formed by two vector

−−−−→
UiUi+1 and

−−−−−−→
Ui+1Ui+2

and di is euclidean distance between Ui and Ui+1

From the processed motion data
{(α1, d1), (α2, d2), ...(αNU

, dNU
)}, the user route shape

can easily be obtained. However, because of not knowing
the user’s starting point, it is not possible map the route to
the environment. As the starting point can be any position in
the area, if a searching algorithm is implemented to search
for every possible location, it would cost a lot of time and
computation resources. To tackle this, a genetic algorithm
was proposed.

Genetic algorithm (GA) was first introduced by John
Holland in 1960 in [24] and it has been applied as a method
to solve optimization and search problems. GA can be divided
into three main steps which are population initialization, fitness
evaluation [25] and applying genetic operations. The algorithm
repeats steps 2 and 3. For each repetition, a new generation
is created. The solution is obtained and the algorithm stops
when the fitness value has converged or GA has reached the
maximum number of generations. Based on the structure of
a standard GA, a version of GA was implemented to find
the user position in the 2-dimensional coordinate system from

www.ijacsa.thesai.org 671 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 2, 2022

processed motion data. The following are the details of the
implementation.

1) Population Initialization: First, the representation of
an individual (chromosome) in the population is considered.
Although searching for the user’s starting point is the goal,
the whole route also has to be considered because when
calculating the error, it is important to calculate for the whole
track. An array with each element consisting of two floating-
point numbers representing the coordinates of the user in
the environment is chosen and shown in (3). No encoding
method method like Binary Encoding was used because it
requires further computation for binary conversion and loss
of precision.

pi = {(x1, y1); (x2, y2); ...(xNU
, yNU

)} (3)

While randomly generating the initial population (first
generation), it is important to determine the population size.
The number varies in real cases because of factors like search
space, processing capability, and environmental constraints.
After trials, the population size is selected to be 100. Con-
straints were also put on the whole route that every point must
be inside the range [xmin, xmax], [ymin, ymax]. This range is
to prevent the generated track from not being too far off
the indoor area. To get a random track, the starting point is
randomly generated, then the rest of the track positions are
calculated using processed motion data mentioned earlier.

Algorithm 1 Proposed Genetic Algorithm

INPUT: WRP data, user motion data
OUTPUT: Estimated user positions

1: begin
2: Set NP , mutation rate εM , convergence condition E
3: i = 0
4: Initialize first population P (i)
5: Calculate fitness of P (i)
6: p = individual with highest fitness of P (i)
7: while E is not satisfied do
8: Create empty P (i+ 1)
9: Populate P (i+ 1) using selection operator on P (i)

10: Apply crossover operator on P (i+ 1)
11: Apply mutation operator on P (i+ 1)
12: Calculate fitness of P (i+ 1) using ML and WRP
13: p̃ = individual with highest fitness of P (i+ 1)
14: if (Fitness(p̃) > Fitness(p)) then
15: p = p̃
16: end if
17: Replace P (i) by P (i+ 1)
18: i = i+ 1
19: end while
20: Output best p
21: end

2) Fitness Evaluation: The fitness value of an individual
needs to show how well that individual perform compared to
others. After the initial population is generated, a method to
calculate the fitness of the user track by taking advantage of
machine learning models was proposed. It is known that if a
machine learning model was trained using accurate training

data, then the error on the testing data would be small. Using
this idea, the random track position is used as the label for the
user Wi-fi RSSI data as the training set and the testing set is
the WRP dataset. Let’s say that the model prediction is (4).

WRP = {(x1, y1), (x2, y2), ..., (xNU
, yNU

)} (4)

Then the positioning error between WRP and WRP is
calculated using (5):

E(WRP ) =

∑N(WRP )

i=1

√
(xi − xi)2 + (yi − yi)2
N(WRP )

(5)

The intuition that an individual which performs better
would have a higher fitness value is better for comprehension.
Therefore, the fitness value is computed using (6).

F (pi) =
1

E(WRPi)
(6)

where i = 1 to Np and Np is the population size, WRPi is
the predicted WRP using the ith individual in the population.

A simulation is carried out to prove that the fitness function
in (6) can show how close and accurate the randomly generated
track is compared to the real user track. Details are described
in the experiment section.

3) Genetic Operations: Three operators that need to imple-
ment are selection, crossover, and mutation. For the selection
operator, Roulette Selection was used. The probability of an
individual being selected for the next generation is calculated
using (7).

P(pi) =
F (pi)∑Np

j=1 F (pj)
(7)

The crossover operator was designed so that between two
individuals, the one with higher fitness would have more
contribution to the offspring. The amount of contribution is
evaluated using the metric called fitness weight. If individual
A pA = {xAi , yAi , i ∈ [1, NU ]} and individual B pB =
{xBi , yBi , i ∈ [1, NU ]} are selected as parents, then the fitness
weight of A and B is computed as in (8):

wA =
F (pA)

F (pA) + F (pB)
;wB =

F (pB)

F (pA) + F (pB)
(8)

If the offspring of A and B is denoted as C pC =
{xCi , yCi , i ∈ [1, NU ]} then the coordinates in C are calculated
using (9), (10):

xCi = wA ∗ xAi + wB ∗ xBi (9)

yCi = wA ∗ yAi + wB ∗ yBi (10)

For mutation, mutations in the population are created by
randomly created 2 values (dx, dy) which represent how far
the whole track will be shifted in a 2-dimensional area.
The mutation rate is chosen to be a small constant number
because it helps the algorithm to converge faster. Details of
the configuration are described in the experiment section. The
steps of the genetic algorithm is shown in Algorithm 1.
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Fig. 3. (a)Wi-Fi Reference Points marked as Red (b) User Route where
Black Marks Indicate Locations of RSSI Measurements

TABLE I. GENETIC ALGORITHM PARAMETERS

Parameter Value
Population size 100

Maximum number of generation NG 50
Coordinate boundary [−5, 15] meters

Mutation [dx, dy] boundary [−3, 3] meters
Mutation rate 0.001

Convergence condition Reaching NG

III. EXPERIMENTAL DESIGN

The experiment was carried out in the laboratory which
is a square area of 10 by 10 meters. The room has tables,
chairs, computers, and other networking devices. The Wi-fi
network is set up and 8 APs are placed around the room.
First, The offline phase was performed by designating 8 points
in the testing site as the WRP, their locations are illustrated
in Fig. 3(a) Then, at each WRP, the RSSI measurements from
8 APs are collected and saved to the central storage. Because
the processed motion data (heading angle and distance) were
applied from other research and to ease the implementation
of the experiment, the user motion data are simulated with
random Gaussian noise (noise ranges from 5% to 30%). Then
one person would follow the path of the simulated route. While
going, the RSSI measurements are collected at marked points
in Fig. 3b and saved the data to the central storage.

After acquiring all the necessary data, the next step is to
run the genetic algorithm. In the population initialization step,
the boundary constraints on generated coordinates are set to be
in the range of [−5, 15] (meter) in both axes. The constraints
prevent the generated coordinates from being too far off and
the negative range while creating a diverse population. Table
I shows details of genetic algorithm parameters.

The fitness function needs predictions from the machine
learning model to calculate fitness value. However, machine
learning models usually take time to train and predict. As the
result, it is not recommended to use too many models and
perform hyperparameter tuning in this situation. Two machine

TABLE II. SVR MODEL PARAMETERS

Parameter Value
Kernel Radial basis function (RBF) kernel

Regularization parameter 1.0
Epsilon-SVR 0.1

TABLE III. KNN MODEL PARAMETERS

Parameter Value
Number of neighbor 5

Weight function Uniform
Algorithm Select from Ball-Tree, KD-Tree and Brute force
Leaf size 30

Metric Minkowski
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Fig. 4. Testing Point in the Experiment Area

learning models that have been widely used in indoor position-
ing research were selected which are Support Vector Machine
Regression (SVR) and K-Nearest Neighbors Regressor (KNN).
Fixed hyper-parameters were selected for both model in Table
II and Table III with no tuning while calculating the fitness.

When GA outputs the estimated user position, those posi-
tions are mapped to the user Wi-fi RSSI data and combined
with the WRP to become training data. At this step, four
machine learning models were selected: SVR, KNN, Multi-
Layer Perceptron (MLP), and Random Forest (RF) to train
and perform optimization on hyper-parameters to achieve the
best possible results. The optimization method is Grid Search
which was implemented in the sci-kit learn library.

Finally, the performance of the trained models is tested by
collecting 27 random points with Wi-fi RSSI measurements as
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Fig. 5. Relationship between the Fitness Value and the Distance Error of 100
Random Tracks
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Fig. 6. Positioning Error of the Proposed Method and Conventional
Fingeprinting using 8 WRPs with respect to Different Amount of Motion

Error

illustrated in Fig. 4. Then the prediction error of each model
is calculated and compared.

IV. RESULTS AND DISCUSSION

A. Fitness Function Evaluation

In this part, the effectiveness of the fitness function on the
collected data is illustrated. Using the processed motion data,
the obtained route shape is similar to the one in Fig. 3(b).
Then, 100 initial points in the environment were randomly
generated. From those points, 100 user tracks were acquired.
Equation (6) was used to calculate the fitness value of each
track and (5) was used to measure the error of the randomly
generated track to the real one. The relationship between the
two values is shown in Fig. 5.

From Fig. 5 it is clear that when the fitness value is high,
the distance error of the randomly generated track and the
real track is low. This shows that the fitness function can
create value that reflects how close a random track is to the
real track. Looking closely at the top right of Fig. 5, it is
noticeable that the track with the highest fitness value is not
the one with the lowest positioning error. This shows that the
fitness function can not find the absolute best because when
the machine learning models were used to make a prediction,
it is important to also account for the error in the WRP testing
set. As it is impossible create an error-free dataset, the error
is unavoidable and the only way to counter it is to carefully
measure each point in the WRP dataset. Although the track
with the lowest positioning error may not be found, the track
with the highest fitness is guaranteed to be its neighbors, which
gives a reasonable estimation.

B. Offline Phase Results

The positioning error of the estimated user track coor-
dinates is computed using (5). The same machine learning
models with the same configurations as in Table II and Table
III were used in the conventional Fingerprinting method for
comparison. In conventional Fingerprinting, ML models were
trained on the WRP dataset, and then they were tested with the
user Wi-fi RSSI dataset. Fig. 6 illustrated positioning error in
relationship with different amounts of processed motion error

(from 0 % to 30 %) of our proposed method and conventional
Fingerprinting method.
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Fig. 7. Positioning Error of the Proposed Method and Conventional
Fingeprinting using 6 WRPs with respect to Different Amount of Motion
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Fig. 8. Positioning Error of the Proposed Method and Conventional
Fingeprinting using 4 WRPs with respect to Different Amount of Motion

Error

From Fig. 6, the proposed genetic algorithm had better
performance in both cases using the SVR and the KNN. With
traditional Fingerprinting, it does not use motion data so the
results are the same across the different amounts of motion
error. For Fingerprinting the positioning error of the SVR is
2.32 meters and the KNN is 2.45 meters, which had been
optimized by the Grid Search search algorithm. On the other
hand, GA relies on motion data so when processed motion
error rises, the positioning error of the proposed method also
increases. From 0% to 20% motion error, the positioning error
of the proposed method increased slightly from 1.05 meters
to 1.11 meters for the SVR model, which is only 5.7% of the
increased error. The same trend can be seen with the GA and
KNN model where it rises from 0.78 meters to 0.9 meters.
From 20% motion error onward, both GA models had a sharp
rise especially for SVR at 30% motion error and KNN at 25%
motion error. However, even at 30% motion error, the results
of GA are 1.67 meters for SVR and 1.23 meters for KNN,
which is still much better than the conventional Fingerprinting
method. For comparison, our GA with the unoptimized SVR
and KNN has positioning error 28% and 46% lower than that
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of the Fingerprinting with the optimized models. However, it is
worth noticing that although the SVR model is more complex
and is supposed to have better performance than the KNN
model, GA with KNN has better performance. As mentioned
earlier no hyperparameters tuning was performed inside GA so
both models may not be optimized and KNN initial parameter
may be better than SVR.

To analyze the impact of the number of WRPs on the
positioning error, the experiment was carried out with a
different number of WRP. Fig. 7 and Fig. 8 show the results
when applying the same method and configuration but with
6 and 4 Wi-fi Reference Points. When lowering the number
of WRPs, it is expected that the conventional Fingerprinting
method would have positioning error increased because of
the smaller training dataset. The situation can be observed in
both Fig. 7 and Fig. 8. The fingerprinting SVR at 6 WRPs
has a positioning error of 2.60 meters, which increases by
12% compared to the similar one at 8 WRPs. In the case
of Fingerprinting KNN, the positioning error is 2.62 meters,
which is close to the Fingerprinting SVR. The proposed GA
with SVR and KNN also depend on the WRP dataset to
calculate fitness so the performance is also affected. In Fig.
7, GA with KNN has a lower positioning error than GA with
SVR. Compared to the performance of GA with KNN using 8
WRPs, the one using 6 WRP is similar. On the other side, GA
with SVR using 6 WRPs has positioning error significantly
higher than the one using 8 WRPs. The difference between
the two cases ranges from 0.3 to 0.4 meters.

Looking at Fig. 8, the difference in positioning error while
using less WRP is even more noticeable. For all cases in
proposed GA and Fingerprinting, they all experienced a sharp
increase. Although GA with KNN using 4 WRPs still be able
to maintain its position to be the best solution, the positioning
error has seen rises ranging from 0.7 to 0.9 meters compared
to positioning error of the same one using 6 WRPs, which
makes the result become 1.6 meters at 0% motion error and
reach up to 2.1 meters at 30 % motion error. GA with SVR
using 4 WRPs comes behind KNN and the result is not too
far off, it has a positioning error of 1.92 meters at 0 % motion
error and gets up to 2.42 meters at 30 % motion error. In the
case of conventional Fingerprinting, KNN has the worst result
with a positioning error of 3.76 meters, which is 35 % higher
than the same version that uses 6 WRPs. Fingerprinting with
SVR using 4 WRPs achieves a result at 3.19 meters, which
is better than the one with KNN but poor compared to the
proposed GA with both models.

From the above observations of the conducted experiment,
the proposed GA achieves better results than the conventional
Fingerprinting approach. However, as the proposed GA uses
user-processed motion data to create labels for the user Wi-fi
RSSI data, motion error can greatly affect the estimated labels.
Another factor that also has a big impact on the proposed
GA performance is the number of collected WRPs. Although
using fewer WRPs means the degradation of the results, the
experiment had demonstrated that even with just 8 WRPs in a
10 by 10 meters area, the proposed GA was able to produce
accurate estimations.

After GA outputs the estimated user track position, the
track generated by the KNN model was selected because it
has the lowest positioning error. Then, mapping from the

estimated positions to user Wi-fi RSSI and combining with
WRP dataset was done to create training data for 4 machine
learning models: SVR, KNN, MLP, and RF. After the training
and model optimization process, all models were saved to the
central storage for evaluation in the online phase.

C. Online Phase Results

After loading the trained model from the central storage,
27 points with RSSI measurements illustrated in Fig. 4 were
used as the testing dataset for evaluating model performance.
For comparison, Fingerprinting method was employed, 4 ML
models similar to the last training step in the offline phase were
used and they were trained and optimized on the WRP dataset.
Positioning error (5) was still used as the metric to measure the
distance between the estimated points and the ground truth. In
addition, positioning error was calculated at different amounts
of motion data in the training data from the previous section.
Results of the proposed SVR, KNN, MLP, and RF along with
its Fingerprinting version were shown in Fig. 9a, Fig. 9b, Fig.
9c, and Fig. 9d respectively.

Looking at the 4 graphs in Fig. 9, it is clear that all 4 mod-
els which were trained using the estimated positions achieved
lower positioning error than the Fingerprinting version. It can
be seen that motion error of the training set reflects on the
performance of the model on the testing set and they form a
linear relationship. Across 4 models, although there were some
exceptions, the general trend is when the motion error of the
training set grows, the positioning error of the trained model
in the testing dataset increases.

In Fig. 9(a) the positioning error of the proposed SVR
model on the testing set was 1.65 meters at 0% motion error
and it reached 1.89 meters at 30% motion error. Conventional
Fingerprinting using the SVR model had a positioning error
of 2.24 meters across all levels of motion error. The difference
between the two models in the worst case is 0.35 meters,
which makes the Fingerprinting SVR positioning error 18%
higher than the proposed SVR model. In Fig .9b, the result
of the Fingerprinting KNN is 2.23 meters which is close to
the Fingerprinting SVR. The proposed KNN positioning error
gradually increased from 1.67 meters at 0% motion error to
1.76 meters at 25% motion error. Then a sudden jump at 30%
motion error happened, which made the positioning error of the
proposed KNN become 2.02 meters. Results of MLP models
were illustrated in Fig. 9c. The proposed MLP error at 0%
was 1.75 meters, which was the highest among the 4 proposed
models but from 5% motion error, the performance was close
to the proposed SVR and KNN. Finally, Fig. 9d illustrates the
results of the RF model. It can be seen that the positioning
error of the Fingerprinting RF was 2.3 meters and it was the
highest across all models and methods used in this section.
While the fingerprinting RF result was poor, the proposed RF
achieved good results with positioning error at 0% motion error
was 1.63 meters and got up to 1.93 at 30% motion error.

Similar to the previous section, the impact of the number
of WRPs on the proposed model performance is analyzed.
Training data with the lowest positioning error using 6 WRPs
and 4 WRPs were selected from the previous section and
became the training data for 4 machine learning models.
Fig. 10 shows the comparison of positioning error among 4
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Fig. 9. Positioning Error of 4 Machine Learning Models using the Proposed Method and Conventional Fingeprinting with respect to Different Amount of
Motion Error. (a) SVR, (b) KNN, (c) MLP, (d) RF

proposed models with different numbers of WRPs across 6
levels of motion error.

From Fig. 10 it can be seen that using fewer WRPs would
result in the increase of positioning error for all models.
However, the difference between using 8 and 6 WRPs is not
significant while there is a huge gap between using 8 WRPs
and 4 WRPs.

At 5% motion error in Fig. 10(a), the positioning error
of all models that use 8 WRPs are close, ranging from 1.69
meters (RF) to 1.73 meters (KNN). When using 6 WRPs, all
model’s positioning errors had slight increases. The proposed
KNN model still had the worst result at 1.86 meters following
are MLP, SVR, and RF. At 6 WRPs, a big jump of positioning
error can be observed across all 4 proposed models. This time,
RF had the most significant increase and peaks at 2.45 meters,
which was also the highest positioning error among others.

As can be seen, the trend in Fig. 10(b) to Fig. 10(c) is
similar to Fig. 10(a), especially with the proposed RF model.
While its results among the lowest positioning error at 8 WRPs
and 6 WRPs, the performance dramatically decreased at 4
WRPs. Other proposed models had close positioning error and
they only had a mild rise across levels of motion error. The
proposed models at 10 % motion error that use 6 WRPs had
errors ranging from 1.84 meters (SVR) to 1.95 meters (KNN)
and they reached the range from 1.85 meters to 2.06 meters at
20 % motion error. A similar case can be observed with models
that used 4 WRPs at 10 % motion error had positioning error
ranging from 2.35 meters to 2.45 meters and they jumped to
the range from 2.42 meters (KNN) to 2.48 meters (RF). As the
motion error gradually increased and peaked at 30 %, Fig. 10(f)
shows the worst case for all models. From Fig. 10(f), it can be
seen that SVR has the best performance among others across

different numbers of WRPs. It has a positioning error of 1.89
meters at 8 WRPs and peaks at 2.61 meters at 4 WRPs. On the
other hand, KNN has the worst performance with positioning
error at 2.02 meters at 8 WRPs and got up to 2.61 meters at
4 WRPs.

From the above analysis, it is clear that the number of WRP
and proposed model performance has a close relationship.
When less number WRP were used, the positioning error of
the estimated user positions will rise. In addition, the training
data would have less accurate data points than before. For
those reasons, it is expected that the trained model performance
would get poorer when the number of WRP drops. In real
cases, it is important to select an appropriate number of WRP
to collect. When system users want to have more accurate
results, then more WRP may need to be collected. Another
recommendation is the designation of the WRPs location
should form a grid that covers the whole area so that they
can capture the pattern of Wi-fi signal in every position.

The above experiment presented the online phase in the
first run of the system. In practice, both user motion data and
Wi-fi RSSI are collected and analyzed for potential usage. If
the positioning error of a new user data is lower than the one
that was used previously, then the model can be retrained for
better performance. This creates a close loop system where
user data are collected and models are updated continuously
to suit the indoor environment.

V. CONCLUSION

This paper proposed a new architecture in the offline phase
of the Fingerprinting method. Our proposed architecture takes
advantage of the user motion data and GA to create labels
for the user’s Wi-fi RSSI data. It enables our models to have
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Fig. 10. Positioning Error of 4 Machine Learning Models with respect to the Different Number of WRPs Across Different Amount of Motion Error

more training data to accurately predict user location while
reducing the amount of data that needs to be collected in
the conventional Fingerprinting method. However, it is worth
mentioning that our proposed offline phase procedure requires
heavy computation as the fitness value of every individual in
the population of GA needs to perform machine learning model
training and prediction. In addition, the proposed method
relies on motion data so any error, noise, and interference
in the motion data can affect the output of GA and machine
learning block. In the future, more studies on the application
of the genetic algorithm and also the field of evolutionary
computation will be conducted to improve the performance and
reduce the computational complexity of the existing system.

REFERENCES

[1] S. A. Golden and S. S. Bateman, “Sensor Measurements for Wi-Fi
Location with Emphasis on Time-of-Arrival Ranging,” IEEE Trans. on
Mobile Comput., vol. 6, no. 10, pp. 1185–1198, Oct. 2007. [Online].
Available: http://ieeexplore.ieee.org/document/4294899/

[2] C. Yang and H.-r. Shao, “WiFi-based indoor positioning,” IEEE
Commun. Mag., vol. 53, no. 3, pp. 150–157, Mar. 2015. [Online].
Available: http://ieeexplore.ieee.org/document/7060497/

[3] F. Subhan, H. Hasbullah, A. Rozyyev, and S. T. Bakhsh, “Indoor
positioning in Bluetooth networks using fingerprinting and lateration
approach,” in 2011 International Conference on Information Science
and Applications. Jeju Island: IEEE, Apr. 2011, pp. 1–9. [Online].
Available: http://ieeexplore.ieee.org/document/5772436/

[4] D. Ahmetovic, M. Murata, C. Gleason, E. Brady, H. Takagi,
K. Kitani, and C. Asakawa, “Achieving Practical and Accurate Indoor
Navigation for People with Visual Impairments,” in Proceedings
of the 14th International Web for All Conference. Perth Western
Australia Australia: ACM, Apr. 2017, pp. 1–10. [Online]. Available:
https://dl.acm.org/doi/10.1145/3058555.3058560

[5] C. Jihong, “Patient Positioning System in Hospital Based on Zigbee,”
in 2011 International Conference on Intelligent Computation and Bio-
Medical Instrumentation. Wuhan, China: IEEE, Dec. 2011, pp. 159–
162. [Online]. Available: http://ieeexplore.ieee.org/document/6131776/

[6] H. Kobayashi and A. F. Molisch, “Localization via ultra-wideband
radios: a look at positioning aspects for future sensor networks,” IEEE
Signal Processing Magazine, vol. 22, no. 4, p. 15, Jul. 2005.

[7] M. N. Husen and S. Lee, “Indoor human localization
with orientation using WiFi fingerprinting,” in Proceedings of
the 8th International Conference on Ubiquitous Information
Management and Communication - ICUIMC ’14. Siem Reap,
Cambodia: ACM Press, 2014, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2557977.2557980

[8] S. He and S.-H. G. Chan, “Wi-Fi Fingerprint-Based Indoor
Positioning: Recent Advances and Comparisons,” IEEE Commun. Surv.
Tutorials, vol. 18, no. 1, pp. 466–490, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7174948/

[9] F. Zafari, A. Gkelias, and K. K. Leung, “A Survey of Indoor
Localization Systems and Technologies,” IEEE Commun. Surv.
Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8692423/

[10] D. Tinh Pham and T. T. Ngoc Mai, “Ensemble
learning model for Wifi indoor positioning systems,” IJ-AI,
vol. 10, no. 1, p. 200, Mar. 2021. [Online]. Available:
http://ijai.iaescore.com/index.php/IJAI/article/view/20603

[11] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user
location and tracking system,” in Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), vol. 2. Tel Aviv, Israel: IEEE, 2000, pp. 775–784.
[Online]. Available: http://ieeexplore.ieee.org/document/832252/

[12] A. Anjum and M. U. Ilyas, “Activity recognition using smartphone sen-
sors,” in 2013 IEEE 10th Consumer Communications and Networking
Conference (CCNC). Las Vegas, NV: IEEE, Jan. 2013, pp. 914–919.
[Online]. Available: http://ieeexplore.ieee.org/document/6488584/

[13] W. Kang and Y. Han, “SmartPDR: Smartphone-Based Pedestrian
Dead Reckoning for Indoor Localization,” IEEE Sensors J.,
vol. 15, no. 5, pp. 2906–2916, May 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6987239/

[14] A. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison
of Pedestrian Dead-Reckoning algorithms using a low-cost MEMS
IMU,” in 2009 IEEE International Symposium on Intelligent Signal
Processing. Budapest, Hungary: IEEE, Aug. 2009, pp. 37–42.
[Online]. Available: http://ieeexplore.ieee.org/document/5286542/

www.ijacsa.thesai.org 677 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 2, 2022

[15] A. Brajdic and R. Harle, “Walk detection and step counting
on unconstrained smartphones,” in Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous computing.
Zurich Switzerland: ACM, Sep. 2013, pp. 225–234. [Online]. Available:
https://dl.acm.org/doi/10.1145/2493432.2493449

[16] Q. Wang, L. Ye, H. Luo, A. Men, F. Zhao, and Y. Huang,
“Pedestrian Stride-Length Estimation Based on LSTM and Denoising
Autoencoders,” Sensors, vol. 19, no. 4, p. 840, Feb. 2019. [Online].
Available: http://www.mdpi.com/1424-8220/19/4/840

[17] M. J. Abadi, L. Luceri, M. Hassan, C. T. Chou, and M. Nicoli,
“A collaborative approach to heading estimation for smartphone-
based PDR indoor localisation,” in 2014 International Conference
on Indoor Positioning and Indoor Navigation (IPIN). Busan,
South Korea: IEEE, Oct. 2014, pp. 554–563. [Online]. Available:
http://ieeexplore.ieee.org/document/7275528/

[18] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter
to Nonlinear,” Proc. SPIE 3068, Signal Processing, Sensor Fusion, and
Target Recognition VI, p. 12, Jul. 1997.

[19] S. O. H. Madgwick, “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays,” 2010.

[20] A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Modern WLAN Fin-
gerprinting Indoor Positioning Methods and Deployment Challenges,”

IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1974–2002, 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/7874080/

[21] B. Ferris, “WiFi-SLAM Using Gaussian Process Latent Variable Mod-
els,” Proceedings of the 20th international joint conference on Artifical
intelligence, Jan. 2007.

[22] A. Naguib, P. Pakzad, R. Palanki, S. Poduri, and Y. Chen,
“Scalable and accurate indoor positioning on mobile devices,” in
International Conference on Indoor Positioning and Indoor Navigation.
Montbeliard, France: IEEE, Oct. 2013, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/document/6817856/

[23] I. Constandache, R. R. Choudhury, and I. Rhee, “Towards Mobile
Phone Localization without War-Driving,” in 2010 Proceedings IEEE
INFOCOM. San Diego, CA, USA: IEEE, Mar. 2010, pp. 1–9.
[Online]. Available: http://ieeexplore.ieee.org/document/5462058/

[24] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence, 1st ed., ser. Complex adaptive systems. Cambridge, Mass:
MIT Press, 1992.

[25] A. L. Nelson, G. J. Barlow, and L. Doitsidis, “Fitness functions in evo-
lutionary robotics: A survey and analysis,” Robotics and Autonomous
Systems, vol. 57, no. 4, pp. 345–370, Apr. 2009. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0921889008001450

www.ijacsa.thesai.org 678 | P a g e


