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Abstract—We describe and analyze the basic algorithms for
the self-organization of a swarm of robots in coordinated motion
as a flock of agents as a strategy for the solution of multi-agent
tasks. This analysis allows us to postulate a simulation framework
for such systems based on the behavioral rules that characterize
the dynamics of these systems. The problem is approached from
the perspective of autonomous navigation in an unknown but
restricted and locally observable environment. The simulation
framework allows defining individually the characteristics of the
basic behaviors identified as fundamental to show a flocking
behavior, as well as the specific characteristics of the naviga-
tion environment. It also allows the incorporation of different
path planning approaches to enable the system to navigate the
environment for different strategies, both geometric and reactive.
The basic behaviors modeled include safe wandering, following,
aggregation, dispersion, and homing, which interact to generate
flocking behavior, i.e., the swarm aggregates, reach a stable
formation and move in an organized fashion toward the target
point. The framework concept follows the principle of constrained
target tracking, which allows the problem to be solved similarly
as a small robot with limited computation would solve it. It is
shown that the algorithm and the framework that implements
it are robust to the defined constraints and manage to generate
the flocking behavior while accomplishing the navigation task.
These results provide key guidelines for the implementation of
these algorithms on real platforms.
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I. INTRODUCTION

A field of great interest in robotics poses the solution of
problems not with a high-performance robot but with a group
of robots, simpler in structure, but which can interact to behave
as a single system [1], [2]. These systems are known as multi-
agent, and seek to exploit the ability of biological systems such
as flocks of birds [3], [4], schools of fish [5], [6], ants [7],
[8] or aggregations of bacteria to solve complex tasks together
[9], [10]. However, the control of these types of systems raises
problems of high complexity given the characteristics of these
dynamics. These are systems with self-organization capacity,
which results as an emergent consequence of the system from
basic behaviors of each of the agents [11]. The design of
these basic behavioral rules that should generate the emergent
behavior of the system is difficult. In addition, the robots, as
a single system, must perform some task.

The flocking behavior presents interesting characteristics
that make it of high interest for the design of artificial systems,
particularly in problems of localization, search and rescue.
This type of behavior has been observed in birds, is similar

to schooling fish and swarming insects, and is characterized
by a joint movement of the group without central coordina-
tion [12], [13]. The first basic rules of this dynamic were
established in 1987 as alignment, cohesion, and separation
[14]. Subsequently, in 2003, a mathematical model of the
1987 Reynolds rules was proposed taking advantage of the
geometrical strategies and the theory of Artificial Potential
Fields (APF) [15], [16]. In these works, it was demonstrated
how potentials in the environment are not only able to guide
the navigation of the robots to the target point, but also to
form a homogeneous flock along with the navigation task [17].
It has been observed in different applications that much of
the success of this dynamics lies in the local communication
scheme between agents, which determines the ability to self-
organize within the system [18], [19].

The dynamics of a flock of birds corresponds to that of
randomized search algorithms [20]. These algorithms rely on
a large number of agents distributed in the search space,
which at the same time identify local information, maintain
communication with their neighbors to jointly identify the most
optimal solution option. In the case of the flock of agents,
this solution corresponds to the region of the environment
with the characteristics most similar to those defined in the
search problem. These characteristics of the dynamics are what
make it suitable for solving complex navigation problems,
particularly in unknown and dynamic environments.

The complexity in the design of these systems lies in the
fact that they can produce a system that is unable to solve
the task either because the number of robots is too high or
too low, if the local signal being tracked is too strong for
the population size, or if the navigation environment is too
complex [21]. These types of problems can drive the system
to local minima, or impede the performance of the task. The
motion planning of each robot within the system is linked
to the structure of the system and the local information it can
detect from the environment [22], [23]. Part of the information
from the environment is transmitted to each robot from the
movement of the system, which makes it robust to continuous
changes of dynamics in the environment, but also dependent
on the characteristics of the environment and the system for
the success of the task. In this sense, the proper design of
both the system and the behavioral policies of the agents is
fundamental, particularly if we are looking for a system made
up of agents with modest computational resources [24].

This research focuses on the development of multi-agent
navigation strategies in this type of environment, guided by the
identification of regions of interest in the environment [25].
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These strategies must be following the task to be solved, so
parameters such as system size, the distance between agents,
the scope of the communication system, and characteristics of
the basic behaviors must be different in each case [26]. Some
assumptions are also made to simplify the model, but without
moving it functionally away from the real prototypes. Among
the initial assumptions, it is proposed to work with a single
robotic platform (uniform system) with perfect displacement
capabilities, constant values of the parameters throughout the
development of the task, and discrete behavior of the agents
in the sense that each action is triggered by a certain stimulus
[27]. The objective is to achieve preliminary results that allow
evaluating the success of the strategy and its possible imple-
mentation in real robots. Possible tasks in real applications
include tracking pollution sources (static, dynamic, and multi-
focal), intruder detection, or wildlife tracking.

One of the first developments in software tools to replicate
the behavior of robot swarms was the one developed by Craig
Reynolds to demonstrate the performance of his basic rules for
flocking behavior in this type of multi-agent systems [14]. A
later evolution by the same author was the OpenSteer project,
a framework for implementing autonomous agent motions and
behaviors [28]. These tools were originally intended for video
game development, yet robotics has benefited from their use in
demonstrating behavioral algorithms on them. The advantage
(and disadvantage) in the use of this type of tool is the
need for prior knowledge about the dynamics of multi-agent
systems, a simulator for video games does not require such
information, while a simulator dedicated to robotics requires
it while allowing great versatility in the implementation of
algorithms.

Perhaps the best-known robotic simulation tool is Player
Project [29]. It is an open-source software specifically devel-
oped for robotics that allows a large number of controls and
sensors to be incorporated into a client/server network inter-
face. The results of these simulations can be visualized in the
two-dimensional module Stage or the three-dimensional viewer
Gazebo. Unfortunately, the last update of the project was
made at the end of 2010. Still, Gazebo evolved independently,
and today it is a dedicated high-performance simulation tool.
Another project developed for robotics is Robot Virtual Worlds
or RVW [30], which, although oriented more for robotics
education purposes, under specific conditions can function as
a simulation platform with its programming language. Other
platforms worth mentioning include the CoppeliaSim project
[31], and Webots from Cyberbotics Ltd [32], active projects,
programmable in different languages, with a commercial focus.

We present the problem formulation in Section II. Here
we give special attention to the basic behaviors that generate a
flocking structure, and to the simplified representation assumed
for the navigation problem. Section III presents the methodol-
ogy followed for the construction of the framework, detailing
not only the algorithm used but also the characteristics of its
implementation. Section IV shows the results achieved in tests
for controlled laboratory conditions, under which it is possible
to perform experimental validation, and finally, the conclusions
are presented in Section V.

II. PROBLEM STATEMENT

The flocking behaviors emerge in a multi-agent system as a
consequence of a combination of basic or primitive behaviors
executed independently by each of the agents. Among these
primitive behaviors, five of them can be selected as the basis
for the flocking structure [33]:

• Safe wandering: In the design of path planning solu-
tions it is fundamental to guarantee the safe wandering
of the robot along with the environment, this includes
reducing collisions with other agents as well as with
the obstacles and limits of the environment [34].

• Following: Robots must be able to establish their
motion strategy from the motion of nearby robots.
In the case of flock-based navigation strategies, each
agent must identify neighboring agents, calculate its
distance to them, and define its forward direction and
speed to reduce interference in the system’s motion
[4].

• Aggregation: While agents must follow the movement
of their neighbors, flocking behavior also requires that
agents can dynamically assemble during navigation
while maintaining a safe distance between them [35].

• Dispersion: Like aggregation, dispersion (self-
localization of each robot in the system) turns out to
be an important quality in autonomous coordination
schemes, and is fundamental to the structure of the
system throughout task development [36].

• Homing: This behavior allows each agent to move to
the given target as part of the system task using sensed
information in the environment [37].

That is, in a flock, each agent wants to stay close to the
other agents (which it can detect), to do its best not to collide
with them, and to move simultaneously towards the desired
location. These behaviors make it possible to define a robust
and well-organized flock. The objective of this research is
to demonstrate that these basic behaviors allow generating a
flocking behavior for an artificial system from fixed rules. This
demonstration is done by simulation in a framework developed
in Python for a system composed of TurtleBot 3 Burger robots
from ROBOTIS. The goal is to scale the primitive behaviors
to a large population of these agents.

Consequently, the problem is defined from the activation
of n holonomic robots with known physical dimensions (not
points) in an environment W unknown to the robots but
partially observable from their sensors, and which is defined in
a connected and compact two-dimensional plane

(
W ⊂ R2

)
.

From this definition, it follows that all the constraints to which
the TurtleBot 3 robotic platform can be subjected are integrable
in positional constraints of the form:

f (q1, q2, q3, · · · , qn; t) = 0 (1)

where the variables qi corresponds to the coordinates of
the system.

Any typical environment W to be modeled by the frame-
work contains in its interior a set of obstacles called O
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that consists of regions inaccessible to the robot within W ,
where each of these regions is characterized by a closed and
connected boundary. Therefore, the set O is also considered
connected, finite, and piecewise analytic. An additional char-
acteristic of each of the obstacles in O is that they are disjoint
pairs of each other, so they do not share common points. The
boundaries of W , denoted by ∂W , constrain the movement of
the robots within the environment. In addition, the boundaries
of the obstacles are also part of ∂W . The free space through
which the robots can navigate is denoted by E and is defined
as W −O.

Each of these robots (Fig. 1), according to its mechanical
design, can be represented in the two-dimensional environment
by a dish with a radius of 0.105 m (with center at the LiDAR
sensor position) and an obstacle detection range (field of view
of the LiDAR sensor) of 360 degrees with a range of 3.5 m.
Other parameters derived from its design include a maximum
forward speed of 0.22 m/s, and an acceptable range to define
that it has reached a certain point in the environment of ±0.5
m.

These robots have no explicit communication among them-
selves, only the ability to locate themselves and define their
relative position concerning their neighbors (a basic type of
local communication). The simulation framework assumes that
the robots’ sensing capability is perfect, that they are capable
of perfect omnidirectional motion, and that they all follow the
same navigation rules to define the path in W (Fig. 2).

III. METHODS

The framework was developed in Python 3.7.12, with
support for Numpy 1.19.5, Scipy 1.4.1, and Matplotlib 3.2.2.
The tool allows simulating the movement of robots in the envi-
ronment at a scaled relative speed, and the result is compressed
into a video file. This is achieved with the Matplotlib animation
library, included in the Matplotlib 1.1 version, which enables to
obtain a visual demonstration of the behavior from the features
programmed in the navigation algorithm. The base class of the
animation tool is matplotlib.animation.Animation,
on which the animation functionality is built. The interfaces
of this tool are TimedAnimation and FuncAnimation,
the latter is the one used in our framework. More details
are provided below. From Numpy we use the linear alge-
bra library numpy.linalg.norm to calculate the norms
of the n-dimensional vectors. From Scipy we use the li-
braries scipy.spatial.distance.pdist to calculate
the distances between points in the n-dimensional space, and
scipy.spatial.distance.squareform that takes the
previous results to form a square matrix of distances.

The first part of the code defines the global variables of
the framework, which correspond mostly to user-configurable
parameters according to the conditions of the problem to be
simulated (Fig. 3 and Fig. 4). These variables include the
population size of the system (how many robots will conform
to the multi-agent system), the size of each of the robots
(two-dimensional circular shape is assumed), the sensing range
of the 360-degree distance sensors, the distance programmed
in each robot to initiate the avoidance policy, the maximum
speed, distance from the target to consider that the robot
reached its destination, interval between simulation steps in

Fig. 1. TurtleBot 3 Burger Robot from ROBOTIS

simulation time, the initial position of the robot swarm, and
dimensions of the simulation environment (the shape is always
assumed to be two-dimensional rectangular, complex shapes in
the environment can be achieved later with the definition of
the obstacles O).

The second section of the code defines the navigation
strategy to be followed by the robot swarm, i.e. how it will
move in W to find the target area. In this part, we have
facilitated the incorporation of several common algorithms,
from the explicit definition of the route using navigation
coordinates to the incorporation of geometric strategies such as
Potential Field algorithm, Dijkstra, and A*, and even reactive
strategies based on local sensing. Also in this section, the
location of the target region is defined.

The third part of the initial configuration corresponds
to the definition of the obstacles O. These are drawn on
the environment using the matplotlib.patches library,
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Fig. 2. Navigation Environment Defined in the Framework. The Definition
of W , the Free Space E, the Obstacles, and the Swarm of Robots are

Detailed

which corresponds to 2D objects defined by coordinates inside
W . The coordinates are captured graphically with the help of
a mouse pointer and converted to closed polygons that finally
define E. It is also possible to define the coordinates of a
rectangle, an option that is more versatile when looking for
an analysis of sensitivity to the position of the obstacles. By
default all obstacles in O are drawn in blue, to differentiate
them from other elements of the simulation (agents are set in
red and W boundaries in black).

With this information, we proceed to generate the ini-
tial position and velocity matrices of the system agents. In
both cases, the values are generated randomly within the
defined ranges. The initial state of the system is defined by
scaling the environment and the robots for its visualization
(the robots are represented as red-colored circles of propor-
tional size to the environment). The figure is created with
matplotlib.pyplot.figure, and all robots, obstacles,
information labels, and a grid are added to facilitate position
analysis. This configuration corresponds to the initial state of
the system.

To perform the simulation the first thing to do is to initialize
the robot speed arrangements. The speed of each robot can be
kept constant at a percentage of the maximum value, or set
to random in the same range. This is handled internally with
a multiplier on the maximum speed between 0 and 1. This
matrix is updated according to the motion policies applied to
each robot. Animations in Matplotlib consist of three elements,
an init() function that returns the background of each ani-
mation frame, an update() function that returns the figures
that should appear in each background frame, and the code
in charge of acquiring the animation object. In our case, the

Fig. 3. Pseudocode Detailing the Framework Structure

function init() loads the obstacles defined for the environ-
ment, and the function update() updates the position matrix
from the previous matrix, the velocity matrix, and the result of
the movement policies. The animation.FuncAnimation
function takes as arguments the init() function, as well as
the number of frames per iteration, the total animation interval,
and some smoothing and updates instructions.

Each of the basic behaviors was implemented separately
in functions that compute the velocity vector for each of the
robots (each basis function for the entire system, from zero
to n). The function for aggregation checks the readings from
the distance sensors of each robot and adjusts the velocity
vectors so that the robot moves towards its nearest neighbors.
Distances to nearby robots are used to define the relative
location of each robot in the environment, as well as its move-
ment strategy [4]. A function is also implemented to establish
attractors in the environment from the local readings, and the
navigation strategy used. These attractors allow defining the
velocity vector of each robot as if it were following a specific
route. To avoid collisions, a function is defined that verifies the
fulfillment of minimum distances between robots, obstacles,
and environment limits, forcing the movement in a random
direction when it detects a possible collision condition. These
basic behaviors are combined to create more complex flocking
behaviors. For example, the aggregation function and the
attractor function combine to produce the following behavior
and combined with the collision function they form a safe
wandering behavior. Thus by combining homing, aggregation,
and avoidance, the desired flocking behavior is achieved. In
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Fig. 4. Algorithm Flowchart

these combinations of basic behaviors, the effect of each is
weighted to allow for a greater impact of one on the other,
in most cases small homing versus high avoidance values and
moderate aggregation produces the best flocking behavior.

IV. RESULTS AND DISCUSSION

We have performed several tests with the framework for
different conditions of the environment, the system, and the
navigation strategy. The results shown below were performed
for the TurtleBot 3 Burger robot, the platform on which
we analyzed the flocking behavior. The characteristics of the
environment (rectangular 10 m × 10 m, with three fixed
obstacles) and the navigation strategy (reactive from intensity
landmarks in the environment) were also kept constant. The
varied parameters were population size and initial position of
the system, with the intention not only to observe the self-
organization in flocks but also to determine the performance
of the system for a given navigation task concerning the
population size. The system initialization parameters for these
tests were as follows:

• Number of agents: between 5 and 100

• Agent size: circular with 0.105 m radius.

• Sensing range: 3.5 m

• Avoidance distance: 0.5 m

• Final distance to target: 0.5 m

• Simulation timestep: 0.01 s

• Starting position: Random in E

• Environment size: 10 m × 10 m

The navigation strategy forces the flock of robots to nav-
igate the environment in a clockwise direction towards the
lower right region of the environment. We evaluated the time
it takes for the system to navigate to this region for different
population sizes, from a flock of five agents to a system with
100 agents. Fig. 5 shows the capture of four such simulations,
each with a different population size (20, 30, 40, and 50
agents). The starting point is randomly generated in E using a
computer time-dependent variable seed. In the simulations, it
is observed how the system self-organizes according to the
basic behaviors, and after reaching equilibrium, it starts to
move along the route without altering the formation, only in
the event of encountering an obstacle, in which case the agent
avoids it, and returns to the formation. A small animation of
20 s with these four cases can be seen in the following link:

https://youtu.be/R09mFqAb -c

Fig. 5. Screenshots Corresponding to Four Simulations with Different
Population Sizes Performing the Same Task. (a) 20 Agents, (b) 30 Agents,

(c) 40 Agents, and (d) 50 Agents

The strength of the tool is observed when evaluating
the performance of this type of system in the development
of tasks, which is much more complex in implementations
on real prototypes. To evaluate this, the above configuration
was followed to assess the impact of population size on the
total time required for task development. Since the navigation
strategy relies on local readings, which may vary depending on
the system agent detecting the landmarks, and according to the
initial position of the system, statistical analysis with multiple
simulations for multiple population sizes is needed to analyze
the impact problem. Following the conditions of the previous
simulations, the exercise was repeated for different population
sizes: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 agents. For
each population size, 100 simulations were performed (1100
simulations in total) and the times in seconds that each case
required were recorded. In the simulations, a 100% success rate
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was obtained (in all cases the system reached the target region),
but in some cases, the time required was an outlier (excessively
long), which was also experimented with in real tests. The
results are shown in Fig. 6, which shows a basic statistical
analysis with median values by population size, quartiles, and
excluded outliers.

Fig. 6. Box and Whisker Plot of the Times for the Development of the Task
for Different Population Sizes. Median, Quartiles, and Outliers are Detailed

The results show that beyond the fact that the system can
perform the task, there is a relationship between the time
required and the population size, for the particular working
conditions (type of robot, size of the environment, and con-
figuration of O) [25]. This relationship can be represented by
a mathematical function, which could be useful for system
sizing. This same exercise can be repeated with another set of
obstacles, a different size environment, different speeds of the
robots, or even some dynamic conditions making the obstacles
change their position every so often. The framework allows to
analysis and generalizes the behaviors of this kind of system,
in a fast, economic and reliable way. These results can then be
contrasted and scaled according to laboratory tests with some
real robots.

V. CONCLUSION

In this paper, we propose a new simulation framework to
replicate the flocking behavior of a swarm of robots, as a
strategy for the efficient and safe evaluation of the performance
of this type of system. The control scheme is designed based on
the basic behaviors identified in the literature as fundamental
for a flocking system: safe wandering, following, aggregation,
dispersion, and homing. Each of these basic behaviors is
replicated from each agent’s sensor data, and weighted in
conjunction with the navigation strategy to form the speed
vector. We identify the weighted value of each basic behavior
while allowing it to be adjusted according to the simulation
needs. The framework also allows modeling different types
of environments and robots, but the tests and calibrations
were performed with the TurtleBot 3 Burger platform from
Robotis. With this platform, the performance was tuned for a
pair of agents, which was scaled to allow evaluating tens and

hundreds of agents. In this sense, our framework allows us to
adjust specific parameters such as robot size, sensing capacity,
and maximum speed. The simulation performs an animation
of the system using Python’s Matplotlib library, which is
exported to video. In this animation, the obstacles are placed
in the background, while the agents are dynamically updated
in the foreground. The code allows to implementation of a
wide range of navigation strategies, both geometric from the
global characteristics of the environment, as well as reactive
navigation strategies based on local readings. The tool was
verified for a simple navigation task, evaluating both the self-
organizing capability of the system and the impact of system
features on task performance. Future research on this tool
includes the incorporation of other robotic platforms of the
research group.
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[17] F. Martı́nez, Robótica Autónoma: Arquitecturas Multiagente que Imitan
Bacterias. Universidad Distrital Francisco José de Caldas, 2021, vol. 1.
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diferenciales conectadas en topologı́a mesh para tecnologı́a zigbee en
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