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Abstract—In this paper, a new index is proposed for detecting
the frequency of unknown underwater signals based on the
stochastic resonance theory. When the received weak signal is
input into the stochastic resonance system, first, by frequency
analysis, the frequency with the highest amplitude Am of the
output signal spectrum is considered as the pre-detection fre-
quency. Then a cosine signal with the pre-detection frequency
and unit amplitude is constructed. Define the pre-signal-to-noise-
ratio as the logarithm of the squared amplitude Am over the
mean of signal amplitudes in all other frequencies. The new
index is defined as the product of the pre-signal-to-noise-ratio and
the correlation coefficient between the received unknown signal
and the constructed cosine signal. The new index is featured
by taking into account the signal characteristics in both time
and frequency domain, and it will yield better signal frequency
detection performance. In addition, to improve the time efficiency
of the frequency detection, a method to bound the searching
range, keyed to the genetic algorithm, of the stochastic resonance
system parameters is proposed. The method can be used to detect
the frequency of both single frequency and frequency-hopping
unknown signals. With the designed new index and system
parameter bounding method, the simulations and experiments for
the weak underwater unknown signals are conducted. Compared
to the piecewise mean value index and weighted power spectral
kurtosis index, the new index yields a higher detection probability
at varied input signal-to-noise ratios and signal frequencies. With
bounding system parameter searching ranges, the time efficiency
is improved. The main purpose of this paper is to detect the
frequency of unknown underwater weak signals by stochastic
resonance system with genetic algorithm. The main contributions
are summarized as follows. First, the detection probability of
weak signals is improved by stochastic resonance system with the
proposed signal detection index than some other indexes. Second,
to improve the time efficiency of the signal frequency detection,
a method to bound the searching range of system parameters is
proposed.

Keywords—Stochastic resonance; underwater weak signal de-
tection; genetic algorithm; frequency detection; frequency-hopping
signal; index

I. INTRODUCTION

The detection and identification of underwater unknown
targets are of great significance for the coastal defense de-
velopment. However, because of natural and human activities,
the underwater environment is very complex, such as wind
and waves on the sea surface, marine biological activities,
ocean currents on the seabed and the movement of hulls. In
addition, some underwater targets can change their frequencies
and other information to hide themselves. These factors make
the detection and identification of underwater targets more
challenging. Therefore, the efficient detection of underwater
targets in such a complex environment is very important for

both scientific research and engineering practice. The methods
of traditional weak signal detection usually use finite impulse
response (FIR) and infinite impulse response (IIR) [1], [2]
filters to filter out the background noise mixed with the signal.
Although these methods have some effects on filtering the
out-of-band noise of signal, they will fail when the noise is
distributed in the signal band. Stochastic resonance (SR) [3]
theory is a weak signal detection method with high efficiency,
which is different from traditional signal detection methods.
With the SR system, the weak signal can be enhanced, and the
system output signal-to-noise ratio (SNRo) will be maximized
by utilizing the background noise. The SR system is mainly
composed of weak signal, background noise, and nonlinear
system [4]. SR theory was first proposed by R.Benzi et al. in
1981 [5], which explained a phenomenon that the glacial and
warm climates occurred periodically in ancient climate. Then
SR theory has been further developed. Nowadays, it has been
applied extensively to many subjects such as meteorology [6],
hydroacoustics [7], biomedicine [8] and mechanical mechanics
[9], [10].

In recent years, researchers have paid more attention to
the field of weak signal detection based on SR theory. Wang
et al. The author in [11] extend the bistable SR system to
the tri-stable system by adjusting the three potential heights
of SR system potential function. They use the differential
evolutionary particle swarm algorithm to search the optimal
values of system parameters, which can effectively improve the
system SNRo by simulations and experiments. Zheng et al. The
author in [12] propose a fractional-order stochastic resonance
(FOSR) multi-parameter optimization algorithm based on ge-
netic algorithm (GA), which is beneficial to the application
and popularization of FOSR in weak signal detection. H. T.
Reda et al. The author in [13] discuss the application of SR in
spectrum sensing and propose a firefly-inspired algorithm to
optimize the SR and noise parameters of the dynamic system
to improve signal detection. Guo et al. [14], [15] detect the
multi-frequency weak signal by the cascading and paralleling
of SR system. Based on the adiabatic approximation theory
[16], SR theory is applicable to the signal detection of low
frequency (�1Hz). However, most of the signal frequencies
in practical applications are not low. Leng et al. The authors
in [17], [18] propose to transform high frequency to low
frequency signals by using scale transformation and secondary
sampling theory such that the high frequency weak signals
can be detected based on SR theory. Ji et al. [19] realize
the detection of hydroacoustic high frequency chirp signals
by SR system, and verify the correctness and feasibility of
this method by simulations and experiments. The performance
of SR system is directly related to the detection probability
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of weak signal. It is crucial to design a index with high
adaptability for weak signal detection, which can keep the
resonance response to follow the unknown signal features. The
SNRo can be increased by SR system, hence SNRo and signal-
to-noise ratio gain (SNRg) [20], [21] are the most common and
intuitive indexes for measuring the performance of the adaptive
SR system. However, to calculate SNRo and SNRg , some prior
information should be available, such as the frequency of weak
signal. Normally, these prior information cannot be obtained in
practical applications. It is indispensable to define a new index
for the detection of completely unknown signals. Therefore,
many new indexes have been proposed, such as weighted
kurtosis index [22], time domain correlated kurtosis index
[23], correlation coefficient index [24], weighted power spec-
trum kurtosis (WPSK) index [25], entropy kurtosis variation
product index [26] and piecewise mean value index (PMV)
[27]. Although these indexes are feasible in some conditions,
their adaptability is constrained. For example, for some single
indexes, the time and frequency domain characteristics of the
signal cannot be taken together to detect the signal. For some
multiple indexes, they are sensitive to signal frequency and
pulse signal. When the input signal frequency is high or the
input signal contains a large amount of pulse signals, with
these indexes the weak signal detection probability is low. In
this paper, a new index is proposed to improve the weak signal
detection probability by SR system.

The contributions of this paper are as follows. First, a
new index is designed for weak signal detection and GA
is used as the optimization method to search the optimal
values of system parameters. The signal detection probability
with the new index is proved to be higher than that by SR
systems with PMV and WPSK indexes through simulations
and experiments. The designed new index takes into account
both the time and frequency domain characteristics of the
signal, and it is insensitive to the change of signal frequency.
Second, to decrease the frequency detection time for both
single frequency and frequency-hopping signals, a method to
bound the searching ranges of system parameters is proposed.
However, there are some limitations in the existing work. The
experimental site is located at the seaside of Xing-hai Park
in Dalian City in this paper, which is different from the deep
sea. In addition, the simulation is carried out in Gaussian noise,
which is different from the actual noise type.

The remaining parts of this paper are organized as follows.
The SR theory and the definition of a new index are introduced
in Section II. For single frequency and frequency-hopping
signals, the method to bound the searching ranges of system
parameters a and b is presented in Section III. The simulations
and experiments are analyzed in Section IV and V. The results
and discussion are introduced in Section VI. The future plans
and improvements are introduced in Section VII. Finally, this
paper is concluded in Section VIII.

II. NEW INDEX DEFINITION AND DESIGN OF SR SYSTEM

A. Stochastic Resonance Theory

The bistable SR system can be given by nonlinear Langevin
equation [28],

dx

dt
= −V ′ (x) + s (t) + n (t) (1)
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Fig. 1. The Potential Function Curve of V (x), when a = b = 1. ∆V is the
Potential Height, xm is the Half Width of Potential well, tan θ = ∆V/xm.
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Fig. 2. The Curve of SNRo with Noise Intensity D, when A = 0.1, a = b =
1.

where V (x) = −a
2x

2 + b
4x

4 is the potential function and
its curve is shown in Fig. 1. x is the SR system output signal.
System parameters a and b are real numbers greater than
zero. s (t) = A cos (2πf0t) is the weak periodic signal to be
detected, A is the signal amplitude and f0 is the frequency.
n(t) is the noise, and n (t) =

√
2Dε (t). D is the noise

intensity and ε (t) represents the Gaussian white noise with
zero mean and variance one.

The SR system is in a stable state and the particle is in
one of the two potential wells when there is no external signal
input to the system. When an appropriate noise is input to
the system, the particle will obtain energy from the noise
and then skip the potential barrier to complete the transition
between the two potential wells. Because the voltage difference
between the two bistable potential wells is much larger than
the original input signal amplitude, the SNRo of SR system is
greatly improved in this situation. The SNRo of SR system is
given by

SNRo ≈
√

2∆V

(
A

D

)2

e−
∆V
D (2)

where A is the amplitude of system input signal s(t), ∆V
is the potential height of the potential function. The SNRo with
respect to the noise intensity D is shown in Fig. 2.

It is inefficient and lacks of adaptivity to put the nonlinear
system in a resonant state by adjusting noise intensity [29].
The potential height ∆V determined by the system parameters
a and b is crucial for the particle to complete the periodic
transition between the two potential wells. Parameters a and
b can be searched by some optimization methods. In this
paper, we choose GA as the optimization method to search
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the optimal values of system parameters dynamically [30].

To detect the signal frequency by SR system, it is required
that the input signal be of low frequency. A signal with high
frequency can be down-converted into a low frequency signal
by re-sampling the original signal with a ratio R. Then the low
frequency f

′

0 of weak signal can be detected by SR system
and finally we can restore the actual signal frequency by f0 =
f ′0 ×R.

B. Definition of the New Index

For the frequency detection of unknown signals, various
indexes have been proposed such as PMV and WPSK indexes.
However, the signal frequency detection probability with these
indexes are low. Herein, we propose a new index for the signal
frequency detection through a SR system. Denote the received
unknown weak signal by r(t) and r(k) is its sampled one
signal. The new index is designed as follows.

I). The output signal x(k) of SR system can be calculated
by the fourth-order Longe-Kutta algorithm. The Fourier trans-
form of x(k) is denoted by H(f). The frequency with the
maximum amplitude of H(f) is denoted by fm.

II). Construct a new cosine signal s
′
(t) = cos(2πfmt) with

frequency fm and initial phase zero. The absolute value of the
correlation coefficient between r (t) and s

′
(t) is written as

C = |R(r(k), s
′
(k))|, where r(k) and s

′
(k) are the sampling

signals of r (t) and s
′
(t), respectively.

III). The pre-signal-to-noise ratio of the output signal x(k)

is defined as PSNR = 10 × log10
H2(fm)∑

f 6=fm
H(f)/N , where

H (fm) is the peak amplitude of H(f) and N is the length of
output signal x(k).

IV). The new index, called CSNR, is defined as the product
of C and PSNR, and the value of CSNR can be calculated by
γcsnr = C×PSNR, which will be used as the fitness function
of GA for searching the optimal values of system parameters
a and b.

C. Process Detecting the Frequency of Weak Signals with the
New Index

The sampled signal r(k) of received unknown weak signal
r (t) is input to the optimal SR system and its spectrum H(f)
is obtained. The frequency with the maximum spectrum am-
plitude is considered as the frequency of r (t). The frequency
detecting process of the optimal SR system for detecting the
frequency of weak signals is shown in Fig. 3.
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Fig. 3. The Frequency Detecting Process of SR System.

When the frequency with the maximum spectrum ampli-
tude is not the target signal frequency f0, s

′
(t) and r (t)

will not be highly correlated, and the value of C will be
smaller. Hence, C can be used as a single time domain
index. In addition, when the value of PSNR is larger, the
peak amplitude of output signal spectrum is larger than other
amplitudes obviously, which can reduce the influence of other
random frequencies on the frequency with the maximum
spectrum amplitude. Hence, the value of PSNR can be used
as a single frequency domain index. To jointly consider both
the time and frequency domain characteristics of the output
signal, the product of the two single indexes can be a new
index, which will yield better detection performance. When
n (t) is zero mean Gaussian noise, the correlation coefficient
between r (t) and s

′
(t) is

C = |R (r (k) , s′ (k))| = |Cov (r (k) , s′ (k))|√
V ar (r (k))× V ar (s′ (k))

(3)

The denominator of (3) is a constant and its numerator is

c =

∣∣∣∣∣
N∑

k=1

s(k)× s
′
(k) +

N∑
k=1

n(k)× s
′
(k)

∣∣∣∣∣
=

{
c1, fm = f0

c2, fm 6= f0

(4)

Generally, c1 ≥ c2, where c is the numerator of (3), s(k),
s
′
(k) and n(k) are the sampled signal of s(t), s

′
(t) and n(t),

respectively. N is the number of signal s(k). When fm = f0,
c = c1, otherwise, c = c2.

III. A METHOD TO BOUND THE SEARCHING RANGES OF
SYSTEM PARAMETERS a AND b

A. The Searching Range of System Parameter b for Single
Frequency Signal Detection

The intensity of noise added to the nonlinear system will
affect SR system operation. If the noise intensity is too low,
the particle cannot obtain enough energy from the noise to
skip the potential barrier. If the noise intensity is too high,
although the particle can obtain enough energy from the noise
to skip the potential barrier and resonance will occur, there
will be a large amount of random noise mixed with the output
signal. In this situation, the SNRo of SR system is still very low
and the signal frequency cannot be detected from the output
signal with the strong background noise. Different potential
heights ∆V determined by system parameters a and b have
different fitness values of GA. The optimal values of system
parameters a and b can be obtained by GA with the CSNR
index. To reduce the searching time of system parameters a
and b, we propose a method to limit the searching range of
parameter b for GA.

From Fig. 1, the half width of potential well xm =
√

a
b

and the potential height ∆V = a2

4b [31]. The critical conditions
for the particle to skip the potential barrier are given by{

∂V (x,t)
∂x = −ax+ bx3 = 0

∂2V (x,t)
∂x2 = −a+ 3bx2 = 0

(5)
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Where x is the system output signal. Hence, the critical
amplitude of particle is Ac =

√
4a3

27b , which is considered as
the threshold for the particle to skip the potential barrier. The
amplitude of signal and noise intensity need to satisfy{

A ≤ Ac

Ac ≤ A+D
(6)

When A>D, the input signal-to-noise ratio (SNRi) of
system is high, and we can obtain the signal frequency from
the received signal spectrum easily. Hence, assume A ≤ D,
from (6), we can obtain b ≥ 4a3

27(A+D)2 ≥ 4a3

27(2D)2 , where
A is the amplitude of input signal s(t), and D is the noise
intensity. When the standard deviation of noise n(t) is

√
2D,

hence, we can obtain the received signal power P ≈ 2D.
Therefore, b ≥ 4a3

27P 2 at low SNRi, which indicates the potential
height ∆V determined by the system parameters a and b would
not be large. In addition, ∆V would not be small, otherwise,
there will be a large amount of random noise mixed with the
output signal. In this situation, the frequency f0 of the target
signal cannot be distinguished from other random frequencies.
Hence, we can set a searching range for the parameter b. Define
tan θ = ∆V

xm
= a

√
a

4
√
b

(see Fig. 1 for θ). Therefore, we can
obtain the searching range of parameter b, where P is the
power of the received signal

4a3

27P 2
≤ b ≤ a3

16 (tan θ)
2 (7)

B. The Searching Ranges of System Parameters a and b for
Frequency-Hopping Signal Detection

To detect the frequency of frequency-hopping signal by
the proposed SR system and reduce the searching time of
parameters a and b, we will constrain the searching ranges of
a and b. The Kramers rate rk is the twice of signal frequency
f0 when resonance occurs [32].

rk =
a√
2πr

e−
a2

4bD =
a√
2πr

e−
∆V
D = 2f0 (8)

where r is the damping factor of the second order duffing
equation in (9) and rk is the Kramers rate.

d2x

dt2
− r dx

dt
= −V

′
(x) + s (t) + n (t) (9)

where x is the system output signal, s(t) is the input signal,
and n(t) is the background noise.

The potential height ∆V affects the transition of the
particle between the two potential wells and then the ac-
curacy of signal frequency detection. Derived from (8), the
relationship between the frequency f0 and potential height
∆V is (10). Hence, ∆V needs to change while the input
signal frequency changes. ∆V should decrease to help the
particle to complete the transition between the two potential
wells when the signal frequency f0 increases. When the signal
frequency f0 decreases, ∆V should increase to reduce the
speed of particle transition between the two potential wells,
which can make the output signal frequency decrease and let

it equal to the weak input signal frequency.

f0 =
a

2
√

2πr
e−

∆V
D (10)

The relationship between the values of two adjacent signal
frequencies is fb

m<fc<m × fb, where m is a real number
greater than zero. fb is the signal frequency before the fre-
quency changes, and the current frequency is fc. Hence,

fb
fc
∈
(

1

m
,m

)
(11)

Set ∆Vn = ∆Vc−∆Vb

D , where ∆Vb is the optimal potential
height before the frequency changes and ∆Vc is the optimal
potential height for the current frequency. Hence,

∆Vn ∈
(

ln

(
ac

m× ab

)
, ln

(
m× ac
ab

))
(12)

where ab is the optimal value of parameter a before the
frequency changes and ac is the optimal a for the current
frequency. When f0 increases,


∆Vn ∈

(
ln
(

ac

m×ab

)
, 0
)
, ab

m ≤ ac<m× ab
∆Vn ∈

(
ln
(

ac

m×ab

)
, ln
(

m×ac

ab

))
, ac <

ab

m

0, ac ≥ m× ab

(13)

When f0 decreases,


∆Vn ∈

(
0, ln

(
ac

m×ab

))
, ab

m ≤ ac<m× ab
∆Vn ∈

(
ln
(

ac

m×ab

)
, ln
(

m×ac

ab

))
, ac ≥ m× ab

0, ac <
ab

m

(14)

Generally, when ab

m ≤ ac<m× ab ∆Vn ∈
(

ln
(

ac

m×ab

)
, 0
)
, if f0 increases

∆Vn ∈
(

0, ln
(

ac

m×ab

))
, if f0 decreases

(15)

Hence, when f0 increases,

∆Vc ∈
(

∆Vb +D × ln

(
ac

m× ab

)
,∆Vb

)
(16)

when f0 decreases,

∆Vc ∈
(

∆Vb,∆Vb +D × ln

(
m× ac
ab

))
(17)

Because ∆Vc = (ac)2

4bc
, where bc is the optimal system

parameter b for the current frequency. Hence,{
bc.min = (ac)2

4∆Vc.max

bc.max = (ac)2

4∆Vc.min

(18)

where ∆Vc.min = ∆Vb + D × ln
(

ac

m×ab

)
, ∆Vc.max =
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∆Vb +D × ln
(

m×ac

ab

)
. Therefore, bc ∈ (bc.min, bc.max) .

IV. SIMULATIONS

For the input signal, we set the amplitude A = 0.1 and
frequency f0 = 0.01 Hz. The signal sampling frequency fs
= 10 Hz, and the number of signal sample is l = 10000.
The population size of genetic algorithm M = 100, crossover
probability ps = 0.6, and mutation probability pm = 0.001.
The searching ranges of system parameters a and b are
[0.0001 ∼ 20] and [0.0001 ∼ 1000], respectively.

First, the background noise is assumed to follow zero mean
Gaussian distribution with standard deviation

√
2D, and let

D = 1 to verify that the SR system can improve the SNRo. The
time domain and frequency domain diagrams of the received
signal and output signal are shown in Fig. 4. From Fig. 4. (a),
when the noise intensity D = 1, it is observed that, due to the
noise, the received signal appears non-periodic although the
pure original signal is periodic. The periodicity of received
signal r(t) from the time domain waveform is not obvious,
and the original cosine signal s(t) is completely submerged
in the background noise. The spectrum amplitude of target
frequency f0 = 0.01 Hz is not the biggest and smaller than
that of some other frequencies in Fig. 4. (c). Therefore, the
target frequency f0 could not be detected from the received
signal r(t) . However the time domain waveform of the output
signal has obvious periodicity in Fig. 4. (b), and the spectrum
amplitude of target frequency f0 is significantly higher than
that of other frequencies in Fig. 4. (d). The SNRi = -27.6647
dB and the SNRo = -8.6511 dB. The SNRo increases by
19.0136 dB. Therefore, the SNRo of weak signal with strong
background noise can be increased and the target frequency
can be detected by SR system.

A. The performance of SR System with the CSNR Index

We compare the performance of SR systems with the
CSNR, PMV, and WPSK indexes for weak signal frequency
detection. With 500 trials, the different frequency detection
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Fig. 4. (a) Received Signal in Time Domain, (b) Output Signal in Time
Domain, (c) Received Signal in Frequency Domain, (d) Output Signal in

Frequency Domain.

probability p of SR systems with different indexes are shown
in Fig. 5, denoted by pc, pp and pw, respectively. The detection
probability p decreases with SNRi decreases. pc is higher than
pp and pw when the SNRi ranges from -32 to -19 dB. This
indicates that the CSNR index is more robust. pc and pw are
approximate to 1 and higher than pp when the SNRi ranges
from -19 to -16 dB. From Fig. 5, the SNRo of SR system
with the CSNR index is improved by around 2.3 dB and
6.1 dB compared to the output by PMV and WPSK indexes,
respectively when detection probability p is around 0.9.

We compare the sensitivity of SR systems with the CSNR,
PMV, and WPSK indexes, respectively, regarding the signal
frequency change. Let noise intensity D = 1 and the input
signal frequency f0 varies from 0.01 to 0.3 Hz with step of 0.01
Hz. The detection results are shown in Fig. 6 and the detection
probability p of SR systems with the three indexes decreases
with the input signal frequency increases, which verifies that
the SR system is adaptive to the detection of low frequency
signal. pc is higher than 0.8 and pp is between 0.5 and 0.8. In
addition, pw is lower than 0.5 and decreases rapidly. Therefore,
the SR system with CSNR index is less sensitive to the change
of signal frequency and more robust than the SR systems with
PMV and WPSK indexes.

B. Time Efficiency of Single Frequency Signal Detection

Let tan θ = ∆V/xm = 1/30 in Fig. 1. We compare the
signal detection probability p and time T by SR systems with
the different searching ranges of parameter b and different
input signal-to-noise ratios. The detection results are shown
in Fig. 7. It indicates that the detection probability p of weak
signal frequency with different searching ranges of system
parameter b decreases with the SNRi. The detection probability
p with different searching ranges of system parameter b are no
obvious difference basically when SNRi rangs from -32 to -
16 dB. From Fig. 7. (b), it is clear that the detection time T
with different searching ranges of system parameter b increases
when SNRi varies from -32 to -21 dB and then decreases when
SNRi varies from -21 to -16 dB. It indicates that when the
signal amplitude A = 0.1, frequency f0 = 0.01 Hz, and the

-32 -30 -28 -26 -24 -22 -20 -18 -16

SNR
i
/dB

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

 p

CSNR index

PMV index

WPSK index

Fig. 5. The Single Frequency Signal Detection Probability by SR Systems
with Different Indexes and Different Input Signal-to-Noise Ratios, where the
Red, Green and Blue Curves are the Detection Probability with the CSNR,

PMV and WPSK Indexes, respectively.
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SNRi = -21 dB, the SNRo of SR system will be maximized.
The trends of three detection time curves are similar to the
SNRo with respect to the noise intensity D (see Fig. 2).
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Fig. 7. With the Different Searching Ranges of Parameter b, the Single
Frequency Signal Detection Probability and Detection Time with CSNR

Index and Different Input Signal-to-Noise Ratios.

Denote the optimal noise intensity by Do. When D < Do,
the SNRo of SR system increases with noise intensity D. In
this situation, when noise intensity D increases, the SR system
needs more time to detect the weak signal. When D = Do,
the SR system has the maximal SNRo and the detection time
of signal frequency should be maximized. When D>Do, the
SNRo of SR system decreases with the noise intensity D. The
output signal of SR system is suboptimal and the detection
time will decrease when noise intensity D increases. From Fig.

7. (b), the detection time with the upper and lower searching
ranges of parameter b is less than that of the other searching
ranges of parameter b obviously. Therefore, by bounding the
searching range of parameter b, the detection time T can
decrease. When the signal frequency changes with D = 1 and
f0 varies from 0.01 to 0.3 Hz with step of 0.01 Hz, the signal
detection probability p and time T of SR systems with different
searching ranges of parameter b are shown in Fig. 8. It is
observed that the signal frequency detection time is decreased
when the method of bounding the parameter b searching range
is applied.
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Fig. 8. With the Different Searching Ranges of Parameter b, the Single
Frequency Signal Detection Probability and Detection Time with CSNR

Index and Different Signal Frequencies.

C. Time Efficiency of Frequency-Hopping Signal Detection

For the input frequency-hopping signal, set amplitude A
= 0.1, and the signal hopping frequency is [0.01, 0.06, 0.01,
0.02, 0.04, 0.08, 0.05, 0.10, 0.15, 0.13] Hz, respectively. The
signal sampling frequency fs = 10 Hz, and the number of
sampling points of signal for each frequency is l = 10000.
The change of signal frequency is shown in Fig. 9. (a). SNRi

ranges from -24 to -16 dB. With 100 trials, the signal detection
time T with different searching ranges of parameters a and b
is shown in Fig. 9. (b), and the detection probability p for each
frequency is 1. It can be concluded that the detection time for
frequency-hopping signal can decrease by SR system when the
method of bounding the parameters a and b searching ranges
is applied.
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Fig. 9. (a) The Frequency of Original Frequency-Hopping Signal. (b) With
the different Searching Ranges of Parameters a and b, the

Frequency-Hopping Signal Detection Time by SR System with the CSNR
Index.

V. EXPERIMENTS

A. Single Frequency Signal Detection

The experimental site is located at the seaside of Xing-
hai Park in Dalian City. The signal of a motor with a fixed
frequency is used as the weak signal to be detected. A mobile
phone is used as the receiving device. The signal sampling
frequency fs = 8000 Hz. The motor and phone are placed
below the sea surface around 0.5 m and the distance between
them is around 2 m. The received signal rs is shown in Fig.
10. rs is amplified by a factor g, g = 3. We select three periods
of signals ri (i = 1, 2, 3) from rs. The number of signal
samples for each period is l = 10000. The sample points are
[325000 ∼ 335000], [356000 ∼ 366000], [450000 ∼ 460000]
for r1, r2 and r3, respectively. The detection results are shown
in Tab. I and Fig. 11. The detected frequency f

′

0 = 0.028
Hz by SR system and the actual signal frequency can be
obtained by f0 = f

′

0 × R = 56 Hz, where R is the ratio
of down-converting the high frequency of actual signal into a
low frequency, R=2000. From Fig. 11, the frequency of weak
signal r1 can be detected by SR systems with CSNR, PMV,
and WPSK indexes, respectively. For the output signal, the
spectrum amplitude of frequency f

′

0 with the CSNR index is
higher than that by each of the other two indexes. From Tab.
I, the SNRo by SR system with the CSNR index is higher
than the output by the other two indexes, and the detection
time of single frequency by SR system with the upper and
lower searching ranges of parameter b is less than that when no

searching range is set for parameter b or only lower searching
range is set.
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Fig. 10. Original Received Signal rs

B. Frequency-Hopping Signal Detection

The signal of a motor with dynamic frequency change is
used as the weak signal to be detected. The signal sampling
frequency fs = 44100Hz. The frequency of the motor is ad-
justed dynamically by a knob. The motor and phone are place
below the sea surface around 0.5 m and the distance between
them is around 4 m. The received signal rs is shown in Fig.
12. rs is amplified by a factor g, g = 200. We select ten periods
of signals ri (i = 1...10) from signal rs. The number of signal
samples for each period is l = 10000. Then the ten periods of
signals are combined into a new frequency-hopping signal s.
From Fig. 13. (a) and Fig. 14. (a), the periodicity of signal s is
not obvious. However, the output signals by SR systems with
different parameters searching ranges show a strong periodicity
(see Fig. 13. (b), (c), (d)). The time-frequency spectrum of
the output signals by the SR systems with different searching
ranges of system parameters a and b are shown in Fig. 14.
(b), (c), (d), where the color brightness for each frequency in
the signal spectrum indicates the magnitude of the normalized
spectrum amplitude. In each of four cases, the target frequency
is detected, i.e., the spectrum amplitude of the target frequency
is the maximum and it is indicted by the brightest color.
The frequency-hopping signal s is detected in four cases: 1)
frequency-hopping signal s; 2) no searching ranges set for
a and b; 3) set searching range of parameter b for single
frequency signal; and, 4) set searching ranges of a and b for
frequency-hopping signal. The detection results are the same
for the four cases, however the periodicity of system output
signal for the case 2), 3) and 4) are more strong than case
1). The detection frequencies are f

′
= [0.063945, 0.134505,

0.055125, 0.063945, 0.072765, 0.059535, 0.14112, 0.06615,
0.090405, 0.04851] Hz by SR systems with different searching
ranges of parameters a and b, respectively. The actual signal
frequencies can be obtained by f = f

′×R = [127.89, 269.01,
110.25, 127.89, 145.53, 119.07, 282.24, 132.30, 180.81, 97.02]
Hz, where R=2000. The detection time of the frequency-
hopping signal s with different searching ranges of parameters
are 307.374s, 282.517s, and 226.736s, respectively. It indicates
for frequency-hopping signal that the detection time by SR
system by setting the searching ranges for a and b decreases by
80.638s and 55.781s, respectively, than that produced when no
searching range is set or only the searching range for parameter
b is set.
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TABLE I. THE DETECTION RESULTS OF SINGLE FREQUENCY SIGNAL

r1 r2 r3

Different
indexes SNRo/dB T/s SNRo/dB T/s SNRo/dB T/s
CSNRno -9.3987 16.7440 -8.2307 9.1730 -9.6321 9.5680
CSNRl -9.7140 10.6470 -8.5466 13.6340 -9.8430 18.5040
CSNRul -9.3512 8.2720 -8.1565 8.5050 -9.6743 8.4370
PMV -9.7326 15.1588 -8.6778 10.3360 -9.7843 8.7956
WPSK -9.8321 13.7259 -8.8342 9.0453 10.3420 9.5723

aCSNRno is the condition with the CSNR index and the no searching range set.
bCSNRl is the condition with the CSNR index and the only lower searching range set for b.
cCSNRul is condition with the CSNR index and the upper and lower searching ranges set for b.
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Fig. 11. The Detection Results of Single Frequency Signal r1 by SR Systems with Different Indexes and Searching Ranges of Parameter b.
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Fig. 12. Original Received Signal rs.

VI. RESULTS AND DISCUSSION

The performance of weak signal detection by SR system
with the CSNR index is verified by simulations and experi-
ments. The frequency detection probability of SR systems with
CSNR, PMV, and WPSK indexes are denoted by pc, pp and

pw, respectively. In simulations, pc of weak signal with the
CSNR index is 1 when the SNRi is higher than -26 dB, and
pc is as high as 0.9 when SNRi = -27.5 dB. pc is higher than
pp and pw when SNRi varies from -32 to -19 dB. pc and
pp are approximate to 1 and higher than pw when SNRi is
[−19 ∼ −16] dB. When SNRi = -26 dB, the performance of
SR system with the CSNR index is insensitive to the change of
input signal frequency. pc is higher than 0.8 and pp is between
0.5 and 0.8 when the input signal frequency f0 varies from
0.01 to 0.3 Hz with step of 0.01 Hz. However, pw is lower
than 0.5 and pw decreases rapidly. With the searching range set
for system parameter b, the detection time of single frequency
signal with the CSNR index decreases. The SNRo of SR system
with CSNR index is higher than the output by PMV and WPSK
indexes in the same condition. For frequency-hopping signal,
with the searching ranges set for system parameters a and b,
when SNRi varies from -24 to -16 dB, the signal detection
time will decrease significantly. The experimental results are
consistent with the simulation results.
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Fig. 13. The Signal in Time Domain. (a) Frequency-Hopping Signal s, (b)
the Output Signal with no Searching Range Set, (c) the Output Signal with

Searching Range Set for Parameter b only, (d) the Output Signal with
Searching Ranges Set for Parameters a and b.
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Fig. 14. The Signal in Time-Frequency Spectrum. The X-Label Represents
Signal ri (i = 1...10) and Y-Label Represents the Output Signal Frequency
(from 0 to 500 Hz). (a) Frequency-Hopping Signal s, (b) the Output Signal
with no Searching Range Set, (c) the Output Signal with Searching Range
Set for Parameter b only, (d) the Output Signal with Searching Ranges set

for Parameters a and b.

VII. FUTURE PLANS AND IMPROVEMENTS

The future plans are summarized as follows. First, the
machine learning method can be combined with the genetic
algorithm in this paper to further improve the detection time
efficiency of unknown signals. Second, we can use underwater
sonar array to improve the signal detection probability. The
experimental verification part needs to be improved. I hope to
conduct experiments in deep sea in the future to obtain more
diverse and accurate underwater signals.

VIII. CONCLUSION

In this paper, a new index, called CSNR, is proposed to
detect the frequency of unknown underwater signals based

on SR theory with genetic algorithm, and the method of
bounding searching ranges of system parameters a and b is
presented to reduce the detection time. The performance of
weak signal detection by SR system with the CSNR index
is verified by simulations and experiments. The frequency
detection probability of SR systems with CSNR, PMV, and
WPSK indexes are denoted by pc, pp and pw, respectively. The
results show that pc is higher than pp and pw. In addition, the
performance of SR system with the CSNR index is insensitive
to the change of input signal frequency. With the searching
ranges set for system parameters a and b, the signal detection
time will decrease significantly in simulations and experiments.
In conclusion, the SR system with the proposed CSNR index
and parameter searching ranges outperforms SR systems with
PMV and WPSK indexes in terms of detection probability and
detection time. Therefore, the contributions proposed in this
paper are of positive significance to the detection of underwater
weak signals in practical applications.
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