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Abstract—Refactoring activity is essential to maintain the 

quality of a software’s internal structure. It decays as the impact 

of software changes and evolution. Class decomposition is one of 

the refactoring processes in maintaining internal quality. Mostly, 

the refactoring process is done at the level of source code. 

Shifting from source code level to design level is necessary as a 

quick step to refactoring and close to the requirement. The 

design artifact has a higher abstraction level than the source code 

and has limited information. The challenge is to define new 

metrics needed in class decomposition using the design artifact's 

information. Syntactic and semantic information from the design 

artifact provides valuable data for the decomposition process. 

Class decomposition can be done at the level of design artifact 

(class diagram) using syntactic and semantic information. The 

dynamic threshold-based Hierarchical Agglomerative Clustering 

produces a more specific cluster that is considered to produce a 

single responsibility class. 
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I. INTRODUCTION 

Refactoring alters software's internal structure without 
changing the external behavior [1]. The primary purpose of the 
refactoring process is to preserve the quality of internal 
structure as the impact of change implementation in the 
evolution cycle of software. The quality of software's internal 
structure may decay during evolution. Many research and tools 
exist to expose the mostly get the structural decay as an impact 
of the software evolution [2]. The reduced quality of software's 
internal structure impacts the next changes. Decreasing the 
internal structure also decreases the maintainability of software 
and increases the effort of the next changes [3], [4]. Therefore, 
refactoring is recommended to solve the structural decay and to 
avoid the high cost that the developer must pay during the 
software changes process. 

There are many options for refactoring the software artifact. 
Researchers already report and give guidance to refactoring 
based on the specific smells. One of the refactoring activities is 
the extract class. The class can be fat of functionality as an 
impact of the changes. The extract class decomposes the class 
due to class growth as changes happened during the evolution. 
According to the guidelines, the class must handle clear 
responsibility or function. Therefore, the extract class helps to 
maintain the class stay in clear functionality. Many research 
reports the methodology for class decomposition at the source 

code level [5]–[14]. Mostly was done by using the clustering of 
the class elements based on various points of view and done at 
the source code level. 

Hamdi et al. proposed the class decomposition 
methodology and named it Threshold-driven Class 
Decomposition based on the Agglomerative Hierarchical 
Clustering (AHC) algorithm [11]. The class decomposition 
uses several metrics that can only be easily calculated at the 
source code level. For example, direct and indirect call 
dependency, internal and external call dependency, and 
attribute sharing. The main result in the research of Hamdi is 
applying the threshold to HAC to determine the termination 
point in the process of decomposition. The result of Hamdi's 
algorithm sounds more promising in the case of termination 
state than the other approach. 

Now-a-days, researchers have changed the refactoring 
object and shifted it to the design level. Shift to the design is 
considered necessary due to the easiness of model 
transformation. Model as an object of transformation is like a 
bridge between software artifacts (act integrally). It is bridging 
between the requirement and the implementation artifact. The 
model refinement is close to the requirement and 
implementation artifact. It will have an impact on both sides. It 
can also be used for software evolution and implementation in 
code. Vertical and horizontal model transformations are both 
possible. Vertical transformations are used when the source 
and target models have different levels of abstraction. On the 
other side, a horizontal transformation occurs when the source 
and target models have the same abstraction. The source model 
transformation does not impact the target model's behavior 
[15]. 

The class diagram is one of the design or model artifacts. 
The class diagram is more abstract than the source code. 
According to the limited information, working with the higher 
model level has a big challenge. The lower level of abstraction 
of the model has more detailed information than the higher 
level of the model. The similarity metric was used to do 
decomposition using Hamdi's approach. The metric is 
calculated based on the information in the source code. Using 
Hamdi's metric is difficult if the experiment’s object is changed 
to the class diagram. The similarity value between elements is 
the mandatory requirement for clustering or decomposing 
using a hierarchical clustering algorithm. Shifting the 
experiment’s object to the class diagram gives the 
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consequences to define the new similarity metric based on the 
information from the class diagram. One outcome of this 
research is determining the new similarity metrics calculated 
using all of the data or information from the class diagram. The 
metrics have a function to measure the distance between 
elements. In the case of class, it is not only the methods but 
also the attributes. The similarity metrics are considered the 
class's syntactic and semantic information in the class diagram. 
Besides shifting the experiment’s object, the decomposition 
process only focused on the Blob class in the class diagram. 

The rest of the paper is organized as follows. Section 2 
summarizes the state of the arts of class decomposition 
approach. Section 3 describes the class usability and 
compactness of the class in the decomposition process. 
Sections 4 and 5 explain the proposed algorithm and the 
research scenarios. Section 6 describes the result and 
discussion. Then the last is the conclusion and future work in 
Section 7. 

II. RELATED WORK 

Several researchers are researching class decomposition as 
the refactoring activity. The class decomposition is used to 
maintain the class stay in the clear functionality. The 
development of research on class decomposition is as follows. 

A Two-Step Technique for Extract Class Refactoring by 
Bavota et al. told about the extract class's approach based on 
the responsibility [5]. The object study is source code. This 
experiment considers the structural and semantic information 
inner the class. Specifically, this uses the metrics to measure 
the structural and semantic similarity. The metrics are 
Structural Similarity between Methods (SSM), Call-based 
Interaction between Methods (CIM), and Conceptual Similarity 
between Methods (CSM). The chains extraction (The 
Transitive Closure), as the proposed approach, is obtained by 
computing the transitive closure of the method-by-method 
matrix. The value of the matrix is calculated based on the 
combination of three metrics. Then, the approach is used to 
extract the class using the threshold minCohesion and 
minLength. minCohesion is the similarity value between 
methods, and minLength is the minimum chain length in the 
graph. By using both thresholds, the class is split into several 
classes. 

The following paper from Bavota et al. discussed the 
identification of extract class refactoring opportunities using 
structural and semantic cohesion metrics [6]. In Bavota's 
refactoring process, the class partition process uses the 
MaxFlow-MinCut algorithm. Bavota implemented the 
algorithm as follows. In particular, let   be the class to be 
refactored and  ( )  *          +  be the set of its 
methods (including the constructor and static methods). The 
first main process in this approach is defining the graph 
showing the relationships between methods. The complete 
graph is defined as   . A set of weighted edges connects all 
the class's pairs of methods. The weight of each edge is 
represented by the value of the relatedness rate of a pair of 
methods. The weight of edges is computed by considering the 
Structural Similarity between Methods (SSM), Call-based 
Dependence between Methods (CDM), and Conceptual 
Similarity between Methods (CSM). Once the graph is 

computed (weighted), a MaxFlow-MinCut algorithm is used to 
obtain a partition of the original class. 

The next paper of Bavota et al. discussed the usefulness of 
using class structural and semantic information to extract class 
[7]. The structural and semantic are measured using SSM, 
CDM, and CSM. The final conclusion is that using a 
combination of structural and semantic information is worth 
doing extract class. This paper also said that the transitive 
closure approach is better than the MaxFlow-MinCut approach. 
Also, Bavota compares the transitive closure with the other 
approach, for example, Fokaefs et al., that uses a hierarchical 
clustering to extract class refactoring [10]. The transitive 
closure can split a Blob class into more than two classes, 
overcoming the MaxFlow-MinCut approach. And, it can 
automatically define the number of classes that should be 
extracted from a Blob class. 

Isong Bassey et al. talk about the metric-based refactoring 
opportunities identification (ROI) for object-oriented software 
systems [14]. They carried out a comprehensive analysis on 
sixteen (16) primary studies to identify the state of the practice 
in ROI. This paper is summarized all refactoring opportunities 
that already existed before 2016. They separated analysis into 
three groups: the structural, the semantic, and the structural and 
semantic. This paper focuses on the source of information that 
can be used to identify the refactoring opportunities using the 
matrices. This paper summarized several research experiments, 
such as Al Dallal for the structural approach, Bavota and Al 
Dallal for the structural and semantic approach already 
published in several papers. All papers use a metric-based 
analysis approach. The same review is also already done by Al 
Dallal [16]. 

Wang Ying et al. talk about automatic software refactoring 
using weighted clustering [12]. This paper focuses on class-
level refactoring. They consider the dependency relation 
between methods (as nodes) described as a network. Three 
matrices explain the relationships between methods, (i) 
attribute sharing (Sharing Attribute Weight/ SAW), (ii) method 
invocation (Method Invocation Weight/ MIW), and (iii) 
functional coupling (Functional Coupling Weight/ FCW). Not 
only the tree matrices but also Semantic Similarity Weight 
(SSW) is used to calculate the weight of the edge. The most 
beneficial cluster with the specific weight is chosen as the 
solution. The result is compared with the experiment conducted 
by Bavota and Fokaefs. Wang only compares the algorithm 
with Bavota and Fokaefs in terms of the effectiveness of 
clustering. Wang's approach can resolve cohesion and coupling 
problems without changing the code's external behavior. And, 
it can help to improve the understandability, flexibility, 
reusability, and maintainability of code. 

Mohammed Hamdi talks about the class decomposition 
method using the Hierarchical Agglomerative Clustering 
(HAC) [11]. The decomposition is iterative until classes have a 
single responsibility. The main problem is considering the 
difficulty of terminating the decomposition process. This paper 
defines the notion of threshold to determine the termination 
point in the decomposition process. This paper explains that 
class responsibility is identified using method similarity based 
on internal and external class relationships. There are six 
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matrices, Internal Attribute Sharing (IAS), Internal Direct Call 
dependency (IDC), Internal Indirect Call dependency (IIC), 
Internal Method Sharing (IMS), External Indirect Call 
dependency (EIC), and External Call Dependency (ECD). By 
using the weighted AHC, the result is considered better. This 
approach looked like solving the problems of limitation of a 
number of resulting classes and the termination state of the 
decomposition process. The research conducted by Hamdi is 
the latest research that raises the problems in previous research. 

III. SYNTACTIC AND SEMANTIC METRICS 

Shifting to the design artifact, especially the class diagram, 
brings out the new challenge of defining new metrics. The 
metrics are used to calculate the similarity score between the 
class's elements (attribute and method) used in the 
decomposition process. The metrics are calculated based on the 
information in the class diagram. There are two approaches to 
define the similarity rate between class elements: syntactic and 
semantic analysis. It means that the two approaches measure 
the similarity score using the similarity of syntax and meaning. 

The class diagram is one artifact that shows the relation of 
objects in the software system. It shows the inner structure of 
every class and the relation between them. When reading the 
class diagram, we got pure in the model level consisting of text 
and notation. It is not easy to collect information based on the 
image of the class diagram. However, by converting it into the 
XML file, all the information of the class diagram is easier to 
collect. [17], [18]. Extracting the information from the XML 
file uses the text-based extraction method. Therefore, syntactic 
and semantic analysis is appropriate to calculate the similarity 
metric from the XML class diagram. 

A. The Type References Similarity (Syntactic) 

Syntactic analysis means the analysis based on the actual 
syntax that lies on the class diagram. This approach is inspired 
by Al Dallal et al. [19] in their proposed cohesion metrics. In 
this approach, the class elements are considered a relationship 
if they have the same type. The type similarity is based on the 
type of attributes and methods (references variable or return 
value). The value will be 0 or 1. 0 means there is no relation, 
and one, there is a relation between method and attribute. 

    {
                
                

            (1) 

All the attribute and method data types are collected and 
then mapped into the relation matrix between them in every 
class. 

B. The Meaning Similarity (Semantic) of the Label 

Semantic analysis is the meaning analysis between attribute 
and method. This analysis considers the meaning of every label 
in the class (related to the class elements)—for example, the 
name of a method, attribute, and method's parameters. The 
label names are split into some words to make it easier to get 
the meaning. The semantic similarity is calculated based on the 
closest meaning between words with a value between 0 and 1. 
The higher value means the close of meaning. Semantic 
similarity can be calculated using the following formula. 

    
     |     |    (| (     )| | (     )|)

|  | |  |
           (2) 

Previously, the formula was used to calculate the semantic 
similarity between process names by Dijkman et al. [19]. From 
that formula,    and    are the word collections from every 
compared label. The words are extracted from the attributes or 
methods labels. The Dijkman’s formula is considered 
appropriate to use in the case of class element’s label. For an 
example of the splitting process, there is a label named 
"transcriptType." Then the "transcriptType" is split into 
"transcript" and "Type." Sometimes, the label of attributes or 
methods is written without using capital characters as a 
beginning of words. If not possible to split appropriately, then 
the splitting process is done by comparing the longest fragment 
of a word with the dictionary. If it exists in the dictionary, then 
it will be separated from the label.  (     ) or  (     ) is 
the number of words that have a synonym relationship between 
two labels. The synonymity of words is based on the 
calculation of relatedness by considering the depths of two 
words in the WordNet taxonomy (Wu-Palmer) [20]. A couple 
of words above 0.5 is considered a synonym.    and    are 
the weight that is defined for a similar word and the word that 
has semantic similarities (synonym). Dijkman defines the value 
of      and         [19]⁠. 

C. Elements Similarity Metric 

The element similarity metric is the combination of both 
syntactic and semantic metrics. The formula to calculate the 
similarity between method and attribute is described as 
follows.     and     are syntactic and semantic similarity 
scores respectively. Then,     and    are elements in the class. 
It can be the attributes or methods of the class. The whole 
formula for the element similarity metric is described as 
follows. 

   (     )  
       

 
              (3) 

This formula is used to define the similarity matrix that will 
be an input to the algorithm for decomposing the class. 

IV. THRESHOLD-BASED AGGLOMERATIVE HIERARCHICAL 

CLUSTERING ALGORITHM 

Threshold-based agglomerative hierarchical clustering is 
divided into static threshold and dynamic threshold hierarchical 
clustering. The difference between static and dynamic is the 
definition of the threshold. The static approach defines the 
threshold value at the beginning of the decomposition process. 
It is done only one time. The dynamic approach calculates the 
threshold in every cycle of the decomposition process. The 
threshold is adjusted based on the matrix changes in every step 
[11]. This research uses Hamdi's algorithm but is implemented 
at the design level. The similarity matrix considers syntactic 
and semantic aspects of the element's label. The decomposition 
is based on the similarity matrix composed using the formula 
(3) value. Later, the similarity matrix is used to compose the 
dissimilarity matrix to validate the decomposition result. Fig. 1. 
shows the dynamic threshold for threshold-based 
agglomerative hierarchical clustering. The static and dynamic 
threshold differences are located at the calculated threshold 
process. The calculation threshold is done once in the static 
approach and done in every process cycle in the dynamic 
approach. The process is run recursively and implemented in 
the prototype application. 
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Fig. 1. Dynamic Threshold-based Agglomerative Hierarchical Clustering 

[11]. 

V. RESEARCH SCENARIOS 

This chapter explains the scenarios of the experiment using 
new metrics from the class diagram and implements it using 
the threshold-based AHC by Hamdi. The scenario explains the 
dataset, tools, and validation process. 

This experiment focuses on shifting from the source code 
to the design level. The proposed metric is implemented using 
two cases. First is the same case as Hamdi's paper (Transcript 
class), then called case 1. The Transcript class is regenerated as 
a class diagram using the Visual Paradigm and converted into 
XML files. It has been modified at the data type of the 
parameters variable using the types often used for those 
variables. The class Transcript is described as Fig. 2. 

Second is the other case based on the smell dataset from the 
Landfill dataset [21]. Case 2 is the MDIApplication that is 
taken from the jHotDraw application. The MDIApplication is 
considered as Blob class based on the Landfill dataset. The 
MDIApplication is shown in the following Fig. 3. 

The threshold-based agglomerative hierarchical clustering 
algorithm proposed by Hamdi et al. is implemented into the 
prototype application. This application is considered important 
due to the time of the calculation process. Also, the prototype 
application is built for the accuracy of the calculation. It also 
implements the tree-based keyword search algorithm useful for 
information collected over the XML class diagram [17]. The 
calculation of similarity meaning between words (semantic) is 
using the WordNet library for Java to support the semantic 
score between labels using formula (2). 

The class diagram from the example cases (Fig. 2 and Fig. 
3) is converted into an XML file then extracted using the 
prototype application. Then, the prototype application will 
automatically generate the similarity matrix based on the 
formula (3). Table I shows the value of similarity between 
elements (attributes and methods) of the Transcript class. 
Before that, the labels of every element are named using the 
prefix "a" for attribute, and "m" is for a method then followed 
by a number as elements index. Finally, the decomposition 
process is done using the threshold-based AHC (both static and 
dynamic). And the result of the experiment will be compared 
with the result of class decomposition at the source code level. 
Table II shows Hamdi’s similarity matrix of the Transcript 
class. 

 

Fig. 2. Transcript Class. 

 

Fig. 3. MDIApplication Class from the jHotDraw. 

TABLE I. THE SIMILARITY MATRIX OF TRANSCRIPT CLASS (DESIGN 

LEVEL) 

  a1 a2 m1 m2 m3 m4 m5 m6 m7 

a1   0.59 0.15 0.23 0.65 0.28 0.16 0.28 0.93 

a2     0.15 0.09 0.58 0.19 0.05 0.14 0.65 

m1       0.92 0.63 0.73 0.73 0.92 0.75 

m2         0.71 0.78 1.00 1.00 0.88 

m3           0.65 0.59 0.71 0.79 

m4             0.71 0.83 0.80 

m5               1.00 0.73 

m6               
 

0.94 

m7                   

TABLE II. THE SIMILARITY MATRIX OF TRANSCRIPT CLASS (PREVIOUS 

APPROACH) [11] 

  m4 m5 m6 m7 m8 m9 m10 

m4   0.25 0.33 0.25 0.25 0.32 0.25 

m5     0.18 0.18 0.18 0.19 0.18 

m6       0.08 0.08 0.26 0.2 

m7        0.22 0.12 0.05 

m8         0.05 0.05 

m9          0.19 

m10               
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The validation uses two approaches. The first approach is 
by comparing the compactness rate using the Silhouettes index 
of cluster result. And the second approach is the conformance 
rate between the source code and the class diagram level’s 
result. The compactness rate of every cluster resulting from the 
decomposition process will calculate using the Silhouettes 
index. Silhouettes index is the method that can be used to 
validate the consistency data in the cluster [22]. Then, the deep 
analysis of the result according to the applicability of the class 
is also considered important. 

VI. RESULT AND DISCUSSION 

A. Result of Experiment 

The two metrics (    and    ) are used to calculate the 
similarity between class elements then the similarity matrix is 
composed for every case. Finally, the similarity matrix from 
the two cases is used for the decomposition process using the 
prototype application. Case 1 is the decomposition process 
using class Transcript at the design level. The result of 
decomposition is differentiated based on the approach (static 
and dynamic threshold). First, the static threshold 
decomposition result is shown in Table III. Then, the result of 
the dynamic decomposition is shown in Table IV. 

Table III shows the result of the decomposition process 
using the static threshold. It also shows the result of the 
Silhouettes index for every element inner the cluster. There are 
two clusters resulting from the static threshold decomposition 
process. The average of the Silhouettes index for all elements 
is 0.24. 

Table IV shows the result of decomposition using the 
dynamic threshold. It is shown that the number of clusters 
resulting from the decomposition process is four clusters. 
Every element in the clusters has the Silhouettes index score 
that expresses the validity of the position of current elements in 
the specific cluster. If the score is close to 1, it is considered in 
the better cluster. Otherwise, it is considered the worse cluster. 
The average of Silhouettes from all elements is 0.35 using the 
dynamic threshold decomposition process. 

Case 2 is taken from the jHotDraw application. The class 
MDIApplication will be decomposed due to the Blob 
indicators that are shown in the Landfill dataset.  Same with the 
first case, the second case also threatened using the same 
experiment. The result of the static threshold decomposition is 
described in the following Table V. 

There are two clusters resulting from the static threshold 
decomposition process. Every cluster represented the class 
after decomposition. Every element of the class has a 
Silhouettes index score representing the specific cluster's 
validity position. Many elements have negative of Silhouettes 
index. The average of Silhouettes for all elements is 0.08. 

The dynamic decomposition result using case number two 
is described in Table VI. There are 12 clusters, and every 
element of each cluster is calculated. There are also many 
negative Silhouettes scores. The average Silhouettes of all 
elements is 0.15. This is because many clusters only have one 
element. 

TABLE III. THE STATIC THRESHOLD DECOMPOSITION (CASE 1) 

Cluster Elements Silhouettes Index 

1    canGraduate -0.52  

 
   releaseTranscript -0.31  

 
   runAcademicServices -0.72  

 
   formTranscript -0.03  

 
   transcriptType 0.38  

 
   major 0.37  

2    isPassed 1.00  

 
   releaseFinalGrade 1.00  

 
   getFinalGrade 1.00  

Average Silhouettes 0.24  

TABLE IV. THE DYNAMIC DECOMPOSITION (CASE 1) 

Cluster Elements Silhouettes Index 

1    formTranscript -0.34  

 
   major -0.11  

2    canGraduate -0.18  

 
   runAcademicServices -0.48  

3    releaseTranscript 0.50  

 
   transcriptType 0.80  

4    isPassed 1.00  

 
   releaseFinalGrade 1.00  

 
   getFinalGrade 1.00  

Average Silhouettes 0.35  

TABLE V. THE STATIC DECOMPOSITION (CASE 2) 

Cluster Elements Silhouettes Index 

1    parentFrame -0.12  

     MDIApplication -0.03  

     desktopPane 0.01  

     Show -0.41  

     isSharingToolsAmongViews -0.01  

     Hide -0.39  

     serialVersionUID -0.03  

     scrollPane 0.03  

     Prefs 0.00  

2    createFileMenu 0.30  

     Init 0.01  

     getComponent 0.06  

     createViewActionMap 0.31  

     Configure 0.05  

     createModelActionMap 0.15  

     toolBarActions -0.01  

     createViewMenu 0.30  

     updateViewTitle 0.32  

     createHelpMenu 0.34  

     createWindowMenu 0.30  

     initLookAndFeel 0.11  

     wrapDesktopPane 0.04  

     createMenuBar 0.21  

     createEditMenu 0.32  

     Launch 0.05  

Average Silhouettes 0.08  
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TABLE VI. THE DYNAMIC DECOMPOSITION (CASE 2) 

Cluster Elements Silhouettes Index 

1    isSharingToolsAmongViews -0.12  

 
   Prefs -0.08  

2    scrollPane -0.27  

3    parentFrame 0.00  

 
   desktopPane 0.03  

4    MDIApplication 0.27  

 
   serialVersionUID 0.22  

5    Show -0.19  

 
   Hide -0.12  

6    getComponent -0.51  

7    Launch -0.62  

8    createFileMenu -0.84  

 
   Init -0.39  

 
   initLookAndFeel -0.49  

 
   createMenuBar -0.58  

9    updateViewTitle 0.28  

 
   Configure 0.08  

10    createViewMenu 0.78  

 
   createHelpMenu 0.89  

 
   createWindowMenu 0.75  

 
   createEditMenu 0.73  

11    wrapDesktopPane 0.95  

 
   toolBarActions 0.98  

12    createViewActionMap 1.00  

 
   createModelActionMap 1.00  

Average Silhouettes 0.15  

B. Compared with the Previous Approach 

The result of the experiment using new metrics (    and 
   ) at the design artifact shows different from the result of 
the previous approach. The previous approach uses six metrics 
at the source code level to calculate the similarity between 
class elements. The decomposition result using the previous 
approach will be assessed using the Silhouette index, then 
compared with the result of the current experiment. This 
comparison will focus on the Silhouette index value of 
decomposition using case 1. 

The calculation of the Silhouette index of previous is based 
on the dissimilarity matrix calculated from the similarity 
matrix. The Silhouette index comparison of the previous and 
proposed approaches using case 1 is shown in Table VII. Based 
on the result shown in Table VII, the average of Silhouette 
using the previous approach is shown little different from the 
current approach. In the previous approach, using the static 
threshold, the average of the Silhouette index is 0.05. The 
dynamic threshold approach produces the average Silhouette as 
-0.02. The current approach for static and dynamic are 0.24 and 
0.35, respectively. The experiment is used the prototype 
application to apply the decomposition using the previous 
approach's similarity matrix (Table II). 

The previous experiment uses the six metrics to calculate 
the similarity between the class's elements at the source code 
level. The current experiment is done at the design level using 

two metrics gathered from the class diagram. The comparison 
previous and proposed approach is to know how the 
conformance rate between each other. 

Tables VIII and IX show the clustering result using each 
approach (previous and proposed). Using different metrics and 
objects of study, the previous and proposed approach results in 
the same number of clusters but different elements. The 
conformance is calculated by dividing the number of 
conformed elements at both results by the number of all 
elements. For example, for the static threshold AHC, four 
elements conform at both sides of the result. m4 and m6 are 
located at the same cluster (also m5 and m8). The rest element, 
m7, m9, and m10, are considered not to conform. It is similar 
to the dynamic threshold AHC. Four elements conform at both 
sides (m10, m7, m9, and m6). The conformance rate for both 

results is 
 

 
       . The proposed experiment uses two 

metrics from the class diagram to do the class decomposition 
results 0.5714 conformance rate. 

C. Discussion 

Tables III, IV, V, and VI show the result of the experiment, 
not only the number of the cluster but also the Silhouettes 
index score for every element. The Silhouettes index shows the 
validity of every element placed in a specific cluster. A higher 
score is better for Silhouettes. 

TABLE VII. THE AVERAGE SILHOUETTE INDEX COMPARISON (CASE 1) 

  
Previous Approach Current Approach 

Static Dynamic Static Dynamic 

Case 1 0.05 -0.02 0.24 0.35 

TABLE VIII. THE AVERAGE SILHOUETTE INDEX OF STATIC THRESHOLD 

(CASE 1) 

Static Threshold 

Cluster Previous Cluster Proposed 

1    m5 1 m7 

 
   m7 

 
m10 

 
   m8 

 
m4 

 
   m10 

 
m6 

2    m4 2 m8 

 
   m6 

 
m9 

 
   m9 

 
m5 

TABLE IX. THE AVERAGE SILHOUETTE INDEX OF DYNAMIC THRESHOLD 

(CASE 1) 

Dynamic Threshold 

Cluster Previous Cluster Proposed 

1    m5 1 m6 

 
   m10 2 m7 

2    m7 
 

m4 

 
   m8 3 m10 

3    m9 4 m8 

4    m4 
 

m9 

 
   m6 

 
m5 
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The differences and the trend of the Silhouettes index 
between static and dynamic threshold AHC are interesting to 
discuss. Case 1 shows that the average of Silhouettes of static 
threshold is 0.25. And, the dynamic threshold has the average 
of Silhouettes is 0.35. In case 2 from jHotDraw, the static 
threshold shows that the average Silhouettes are 0.08 and 0.15 
for the dynamic threshold. The dynamic threshold AHC 
produces the higher Silhouettes index score from the two cases. 
The dynamic threshold AHC is better than the static threshold 
AHC for those two cases in the design phase. 

The comparison with the previous approach's average 
Silhouette shows a different trend. The previous approach 
shows that the static threshold AHC has a better value of the 
Silhouette index than a dynamic threshold. It is shown that the 
value of static and dynamic are 0.05 and -0.02, respectively. In 
this case, the value of the similarity matrix used in the 
experiment to decompose the class is taking an important 
position. The use of six metrics to calculate the similarity value 
and then decomposed using the static and dynamic threshold 
AHC is slightly lower than the use of two metrics (proposed 
experiment). The compactness of each cluster resulting from 
the decomposition process depends on the metrics used. Using 
two metrics, it shows the conformance rate of about 0.5714. It 
means that four elements conformed to each other (previous 
and proposed approach). With the 0.5714 conformance rate, 
the proposed approach’s result has a better average of 
Silhouettes. But, this result cannot be used to justify which one 
is better. The decomposition result's correctness might be able 
to be found by deep analysis at the implementation level after 
the decomposition is finished. 

The other angle of results shows that there are many 
elements with negative Silhouettes. It means that the elements 
are placed in the worse cluster. Silhouettes also show the 
density of every element in every cluster. The higher 
Silhouettes score shows the distance between elements inner 
the specific cluster is close to each other and far from the other 
cluster. High differentiation of distance between clusters is 
better for clustering results. 

The decomposition of class using static and dynamic 
threshold AHC leaves the existence of many elements with a 
negative score of the Silhouettes index problem. To overcome 
this problem is needed to move the element with negative 
Silhouettes to the other cluster by comparing the Silhouettes 
score before and after movement. The better Silhouettes score 
will be chosen to increase the validity of the cluster. 

The other point that is interesting to discuss is the result of 
clustering. The number of clusters between static and dynamic 
thresholds is always increased. The dynamic threshold 
produces more clusters than static. The static threshold 
produces less number of clusters, and the other side consists of 
a bigger element inner of every cluster and vice versa for the 
dynamic threshold AHC. Hamdi et al. said that the static 
threshold is suitable for fine-grained decomposition, and the 
dynamic is suitable for coarse-grained decomposition [11]. 
Based on the definition, the fine-grained will produce smaller 
objects. 

 

Fig. 4. Cluster Number Two. 

Fine-grained produces more objects than coarse-grained 
decomposition. But it differs from Hamdi's result in the class 
diagram and uses the two metrics (    and    ) for distance 
similarity calculation. In this experiment, using dynamic 
threshold AHC creates more clusters with smaller elements. 
And the static threshold produces a smaller number of clusters 
with a bigger number of elements in every cluster. It can 
happen because of the threshold. Different from the static, the 
dynamic threshold alters the threshold in every cycle of the 
decomposition process to find the separation limit. That is why 
the dynamic threshold has higher opportunities to create a new 
cluster in every decomposition cycle. 

In the class decomposition process, the main purpose is to 
decompose the class by distinguishing the functionality of the 
class. The dynamic threshold AHC can find the single 
functionality inner the decomposed class. Using syntactic and 
semantic metrics in the class diagram, the dynamic threshold 
AHC is more distinctive than the static threshold to do 
decomposition. The dynamic threshold that is calculated on 
every cycle process makes the decomposition done in fine-
grained size. 

The dynamic threshold AHC results in more clusters than 
static, but the number of elements in every cluster is smaller 
than the static threshold. Some clusters only consist of one 
element, for example, cluster number two resulting from 
dynamic threshold decomposition of case 2 (see Table VI). The 
element in cluster number two is only scrollPane, and it is an 
attribute. From the detailed class in Fig. 3, the scrollPane has a 
private modifier. This will be the next interesting problem to 
discuss. Cluster number two will be one class with only one 
attribute and is private. Fig. 4 shows how cluster number two is 
realized into the class. 

Class from cluster number two is doubtful to use. There is 
only one attribute, and it has a private modifier. The object 
from the class of cluster number two will be unable to access. 
The other word, the object will not collaborate with the other 
objects in the software system. The main purpose of object in 
the software system is to do sub-function to fulfill at least one 
of the software functionality. Ideally, the attribute is private to 
match the theory of information hiding. But, usually, at least 
there is one method that has a public modifier. The method has 
functioned as the object's boundary to access the data or 
process provided by the object. If there is no public method, 
then it will be an unuseful object. The movement process must 
solve this condition. For the class that only has private 
elements, the element must be moved to the other more valid 
cluster by comparing the validity or compactness rate of the 
element. 

VII. CONCLUSION AND FUTURE WORK 

The refactoring can be done by using the design artifact. 
This paper shows the new metrics from the class diagram to do 
the decomposition of class using the class diagram. The 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

64 | P a g e  

www.ijacsa.thesai.org 

metrics are     and     that measure using analysis of syntax 
and meaning. The metric uses the information gathered from 
the class diagram to calculate the similarity matrix. The 
decomposition process uses the algorithm from the previous 
approach but is implemented in the class diagram as a design-
level artifact. The decomposition result shows a few points of 
conclusion. 

The first conclusion is the differences between the previous 
and the current decomposition result. The current result of 
decomposition shows that the clusters resulting from the static 
and dynamic threshold AHC are more compact than the 
previous approach's result. It is validated using the Silhouette 
index to measure the compactness of the clusters. 

Both approaches produce the same number of clusters, 
whether using the static or dynamic threshold AHC. But, some 
of the elements are different between previous and proposed 
approaches. The conformance rate of both (previous and 
proposed) approaches is 0,5714, with the proposed approach 
result showing higher compactness. 

In the proposed experiment, there is a trend in the 
Silhouette index value of the proposed experiment's static and 
dynamic threshold result. The dynamic threshold is higher than 
static in the Silhouette value in both cases. Dynamic threshold 
AHC produces a more compact cluster than the static. The 
dynamic threshold AHC also produces more number of a 
cluster than the static threshold. On achieving single 
responsibility principles, the dynamic threshold AHC's result 
shows more specific than static because the result of the cluster 
consists of a lower number of elements but a higher Silhouette 
index as a measurement of compactness. 

The result shows the advantages that can be obtained and 
shows that there are still shortcomings. The decomposition 
result still shows the elements that have the negative Silhouette 
value. The negative Silhouette value shows that the distances 
of the current element are far from the other elements in the 
same cluster. The other word, the negative Silhouette elements 
are considered the worse place. The enhancement for the 
moving mechanism of the negative element is considered 
important. 

The result also shows that some clusters are considered 
unable to implement because the cluster may produce objects 
that cannot collaborate with others. The cluster that only has 
one element, specifically if the element has a private modifier, 
is considered a useless cluster. From this fact, it is considered 
important to include the modifier aspect to do the 
decomposition process. It is important to avoid the emergence 
of useless clusters. 
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