
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

57 | P a g e

www.ijacsa.thesai.org

Design Level Class Decomposition using the

Threshold-based Hierarchical Agglomerative

Clustering

Bayu Priyambadha
1
, Tetsuro Katayama

2

Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
1, 2

Faculty of Computer Science, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
1

Abstract—Refactoring activity is essential to maintain the

quality of a software’s internal structure. It decays as the impact

of software changes and evolution. Class decomposition is one of

the refactoring processes in maintaining internal quality. Mostly,

the refactoring process is done at the level of source code.

Shifting from source code level to design level is necessary as a

quick step to refactoring and close to the requirement. The

design artifact has a higher abstraction level than the source code

and has limited information. The challenge is to define new

metrics needed in class decomposition using the design artifact's

information. Syntactic and semantic information from the design

artifact provides valuable data for the decomposition process.

Class decomposition can be done at the level of design artifact

(class diagram) using syntactic and semantic information. The

dynamic threshold-based Hierarchical Agglomerative Clustering

produces a more specific cluster that is considered to produce a

single responsibility class.

Keywords—Refactoring; design level refactoring; software

refactoring; hierarchical clustering; class decomposition

I. INTRODUCTION

Refactoring alters software's internal structure without
changing the external behavior [1]. The primary purpose of the
refactoring process is to preserve the quality of internal
structure as the impact of change implementation in the
evolution cycle of software. The quality of software's internal
structure may decay during evolution. Many research and tools
exist to expose the mostly get the structural decay as an impact
of the software evolution [2]. The reduced quality of software's
internal structure impacts the next changes. Decreasing the
internal structure also decreases the maintainability of software
and increases the effort of the next changes [3], [4]. Therefore,
refactoring is recommended to solve the structural decay and to
avoid the high cost that the developer must pay during the
software changes process.

There are many options for refactoring the software artifact.
Researchers already report and give guidance to refactoring
based on the specific smells. One of the refactoring activities is
the extract class. The class can be fat of functionality as an
impact of the changes. The extract class decomposes the class
due to class growth as changes happened during the evolution.
According to the guidelines, the class must handle clear
responsibility or function. Therefore, the extract class helps to
maintain the class stay in clear functionality. Many research
reports the methodology for class decomposition at the source

code level [5]–[14]. Mostly was done by using the clustering of
the class elements based on various points of view and done at
the source code level.

Hamdi et al. proposed the class decomposition
methodology and named it Threshold-driven Class
Decomposition based on the Agglomerative Hierarchical
Clustering (AHC) algorithm [11]. The class decomposition
uses several metrics that can only be easily calculated at the
source code level. For example, direct and indirect call
dependency, internal and external call dependency, and
attribute sharing. The main result in the research of Hamdi is
applying the threshold to HAC to determine the termination
point in the process of decomposition. The result of Hamdi's
algorithm sounds more promising in the case of termination
state than the other approach.

Now-a-days, researchers have changed the refactoring
object and shifted it to the design level. Shift to the design is
considered necessary due to the easiness of model
transformation. Model as an object of transformation is like a
bridge between software artifacts (act integrally). It is bridging
between the requirement and the implementation artifact. The
model refinement is close to the requirement and
implementation artifact. It will have an impact on both sides. It
can also be used for software evolution and implementation in
code. Vertical and horizontal model transformations are both
possible. Vertical transformations are used when the source
and target models have different levels of abstraction. On the
other side, a horizontal transformation occurs when the source
and target models have the same abstraction. The source model
transformation does not impact the target model's behavior
[15].

The class diagram is one of the design or model artifacts.
The class diagram is more abstract than the source code.
According to the limited information, working with the higher
model level has a big challenge. The lower level of abstraction
of the model has more detailed information than the higher
level of the model. The similarity metric was used to do
decomposition using Hamdi's approach. The metric is
calculated based on the information in the source code. Using
Hamdi's metric is difficult if the experiment’s object is changed
to the class diagram. The similarity value between elements is
the mandatory requirement for clustering or decomposing
using a hierarchical clustering algorithm. Shifting the
experiment’s object to the class diagram gives the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

58 | P a g e

www.ijacsa.thesai.org

consequences to define the new similarity metric based on the
information from the class diagram. One outcome of this
research is determining the new similarity metrics calculated
using all of the data or information from the class diagram. The
metrics have a function to measure the distance between
elements. In the case of class, it is not only the methods but
also the attributes. The similarity metrics are considered the
class's syntactic and semantic information in the class diagram.
Besides shifting the experiment’s object, the decomposition
process only focused on the Blob class in the class diagram.

The rest of the paper is organized as follows. Section 2
summarizes the state of the arts of class decomposition
approach. Section 3 describes the class usability and
compactness of the class in the decomposition process.
Sections 4 and 5 explain the proposed algorithm and the
research scenarios. Section 6 describes the result and
discussion. Then the last is the conclusion and future work in
Section 7.

II. RELATED WORK

Several researchers are researching class decomposition as
the refactoring activity. The class decomposition is used to
maintain the class stay in the clear functionality. The
development of research on class decomposition is as follows.

A Two-Step Technique for Extract Class Refactoring by
Bavota et al. told about the extract class's approach based on
the responsibility [5]. The object study is source code. This
experiment considers the structural and semantic information
inner the class. Specifically, this uses the metrics to measure
the structural and semantic similarity. The metrics are
Structural Similarity between Methods (SSM), Call-based
Interaction between Methods (CIM), and Conceptual Similarity
between Methods (CSM). The chains extraction (The
Transitive Closure), as the proposed approach, is obtained by
computing the transitive closure of the method-by-method
matrix. The value of the matrix is calculated based on the
combination of three metrics. Then, the approach is used to
extract the class using the threshold minCohesion and
minLength. minCohesion is the similarity value between
methods, and minLength is the minimum chain length in the
graph. By using both thresholds, the class is split into several
classes.

The following paper from Bavota et al. discussed the
identification of extract class refactoring opportunities using
structural and semantic cohesion metrics [6]. In Bavota's
refactoring process, the class partition process uses the
MaxFlow-MinCut algorithm. Bavota implemented the
algorithm as follows. In particular, let be the class to be
refactored and () * + be the set of its
methods (including the constructor and static methods). The
first main process in this approach is defining the graph
showing the relationships between methods. The complete
graph is defined as . A set of weighted edges connects all
the class's pairs of methods. The weight of each edge is
represented by the value of the relatedness rate of a pair of
methods. The weight of edges is computed by considering the
Structural Similarity between Methods (SSM), Call-based
Dependence between Methods (CDM), and Conceptual
Similarity between Methods (CSM). Once the graph is

computed (weighted), a MaxFlow-MinCut algorithm is used to
obtain a partition of the original class.

The next paper of Bavota et al. discussed the usefulness of
using class structural and semantic information to extract class
[7]. The structural and semantic are measured using SSM,
CDM, and CSM. The final conclusion is that using a
combination of structural and semantic information is worth
doing extract class. This paper also said that the transitive
closure approach is better than the MaxFlow-MinCut approach.
Also, Bavota compares the transitive closure with the other
approach, for example, Fokaefs et al., that uses a hierarchical
clustering to extract class refactoring [10]. The transitive
closure can split a Blob class into more than two classes,
overcoming the MaxFlow-MinCut approach. And, it can
automatically define the number of classes that should be
extracted from a Blob class.

Isong Bassey et al. talk about the metric-based refactoring
opportunities identification (ROI) for object-oriented software
systems [14]. They carried out a comprehensive analysis on
sixteen (16) primary studies to identify the state of the practice
in ROI. This paper is summarized all refactoring opportunities
that already existed before 2016. They separated analysis into
three groups: the structural, the semantic, and the structural and
semantic. This paper focuses on the source of information that
can be used to identify the refactoring opportunities using the
matrices. This paper summarized several research experiments,
such as Al Dallal for the structural approach, Bavota and Al
Dallal for the structural and semantic approach already
published in several papers. All papers use a metric-based
analysis approach. The same review is also already done by Al
Dallal [16].

Wang Ying et al. talk about automatic software refactoring
using weighted clustering [12]. This paper focuses on class-
level refactoring. They consider the dependency relation
between methods (as nodes) described as a network. Three
matrices explain the relationships between methods, (i)
attribute sharing (Sharing Attribute Weight/ SAW), (ii) method
invocation (Method Invocation Weight/ MIW), and (iii)
functional coupling (Functional Coupling Weight/ FCW). Not
only the tree matrices but also Semantic Similarity Weight
(SSW) is used to calculate the weight of the edge. The most
beneficial cluster with the specific weight is chosen as the
solution. The result is compared with the experiment conducted
by Bavota and Fokaefs. Wang only compares the algorithm
with Bavota and Fokaefs in terms of the effectiveness of
clustering. Wang's approach can resolve cohesion and coupling
problems without changing the code's external behavior. And,
it can help to improve the understandability, flexibility,
reusability, and maintainability of code.

Mohammed Hamdi talks about the class decomposition
method using the Hierarchical Agglomerative Clustering
(HAC) [11]. The decomposition is iterative until classes have a
single responsibility. The main problem is considering the
difficulty of terminating the decomposition process. This paper
defines the notion of threshold to determine the termination
point in the decomposition process. This paper explains that
class responsibility is identified using method similarity based
on internal and external class relationships. There are six

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

59 | P a g e

www.ijacsa.thesai.org

matrices, Internal Attribute Sharing (IAS), Internal Direct Call
dependency (IDC), Internal Indirect Call dependency (IIC),
Internal Method Sharing (IMS), External Indirect Call
dependency (EIC), and External Call Dependency (ECD). By
using the weighted AHC, the result is considered better. This
approach looked like solving the problems of limitation of a
number of resulting classes and the termination state of the
decomposition process. The research conducted by Hamdi is
the latest research that raises the problems in previous research.

III. SYNTACTIC AND SEMANTIC METRICS

Shifting to the design artifact, especially the class diagram,
brings out the new challenge of defining new metrics. The
metrics are used to calculate the similarity score between the
class's elements (attribute and method) used in the
decomposition process. The metrics are calculated based on the
information in the class diagram. There are two approaches to
define the similarity rate between class elements: syntactic and
semantic analysis. It means that the two approaches measure
the similarity score using the similarity of syntax and meaning.

The class diagram is one artifact that shows the relation of
objects in the software system. It shows the inner structure of
every class and the relation between them. When reading the
class diagram, we got pure in the model level consisting of text
and notation. It is not easy to collect information based on the
image of the class diagram. However, by converting it into the
XML file, all the information of the class diagram is easier to
collect. [17], [18]. Extracting the information from the XML
file uses the text-based extraction method. Therefore, syntactic
and semantic analysis is appropriate to calculate the similarity
metric from the XML class diagram.

A. The Type References Similarity (Syntactic)

Syntactic analysis means the analysis based on the actual
syntax that lies on the class diagram. This approach is inspired
by Al Dallal et al. [19] in their proposed cohesion metrics. In
this approach, the class elements are considered a relationship
if they have the same type. The type similarity is based on the
type of attributes and methods (references variable or return
value). The value will be 0 or 1. 0 means there is no relation,
and one, there is a relation between method and attribute.

 {

 (1)

All the attribute and method data types are collected and
then mapped into the relation matrix between them in every
class.

B. The Meaning Similarity (Semantic) of the Label

Semantic analysis is the meaning analysis between attribute
and method. This analysis considers the meaning of every label
in the class (related to the class elements)—for example, the
name of a method, attribute, and method's parameters. The
label names are split into some words to make it easier to get
the meaning. The semantic similarity is calculated based on the
closest meaning between words with a value between 0 and 1.
The higher value means the close of meaning. Semantic
similarity can be calculated using the following formula.

 | | (| ()| | ()|)

| | | |
 (2)

Previously, the formula was used to calculate the semantic
similarity between process names by Dijkman et al. [19]. From
that formula, and are the word collections from every
compared label. The words are extracted from the attributes or
methods labels. The Dijkman’s formula is considered
appropriate to use in the case of class element’s label. For an
example of the splitting process, there is a label named
"transcriptType." Then the "transcriptType" is split into
"transcript" and "Type." Sometimes, the label of attributes or
methods is written without using capital characters as a
beginning of words. If not possible to split appropriately, then
the splitting process is done by comparing the longest fragment
of a word with the dictionary. If it exists in the dictionary, then
it will be separated from the label. () or () is
the number of words that have a synonym relationship between
two labels. The synonymity of words is based on the
calculation of relatedness by considering the depths of two
words in the WordNet taxonomy (Wu-Palmer) [20]. A couple
of words above 0.5 is considered a synonym. and are
the weight that is defined for a similar word and the word that
has semantic similarities (synonym). Dijkman defines the value
of and [19]⁠.

C. Elements Similarity Metric

The element similarity metric is the combination of both
syntactic and semantic metrics. The formula to calculate the
similarity between method and attribute is described as
follows. and are syntactic and semantic similarity
scores respectively. Then, and are elements in the class.
It can be the attributes or methods of the class. The whole
formula for the element similarity metric is described as
follows.

 ()

 (3)

This formula is used to define the similarity matrix that will
be an input to the algorithm for decomposing the class.

IV. THRESHOLD-BASED AGGLOMERATIVE HIERARCHICAL

CLUSTERING ALGORITHM

Threshold-based agglomerative hierarchical clustering is
divided into static threshold and dynamic threshold hierarchical
clustering. The difference between static and dynamic is the
definition of the threshold. The static approach defines the
threshold value at the beginning of the decomposition process.
It is done only one time. The dynamic approach calculates the
threshold in every cycle of the decomposition process. The
threshold is adjusted based on the matrix changes in every step
[11]. This research uses Hamdi's algorithm but is implemented
at the design level. The similarity matrix considers syntactic
and semantic aspects of the element's label. The decomposition
is based on the similarity matrix composed using the formula
(3) value. Later, the similarity matrix is used to compose the
dissimilarity matrix to validate the decomposition result. Fig. 1.
shows the dynamic threshold for threshold-based
agglomerative hierarchical clustering. The static and dynamic
threshold differences are located at the calculated threshold
process. The calculation threshold is done once in the static
approach and done in every process cycle in the dynamic
approach. The process is run recursively and implemented in
the prototype application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

60 | P a g e

www.ijacsa.thesai.org

Fig. 1. Dynamic Threshold-based Agglomerative Hierarchical Clustering

[11].

V. RESEARCH SCENARIOS

This chapter explains the scenarios of the experiment using
new metrics from the class diagram and implements it using
the threshold-based AHC by Hamdi. The scenario explains the
dataset, tools, and validation process.

This experiment focuses on shifting from the source code
to the design level. The proposed metric is implemented using
two cases. First is the same case as Hamdi's paper (Transcript
class), then called case 1. The Transcript class is regenerated as
a class diagram using the Visual Paradigm and converted into
XML files. It has been modified at the data type of the
parameters variable using the types often used for those
variables. The class Transcript is described as Fig. 2.

Second is the other case based on the smell dataset from the
Landfill dataset [21]. Case 2 is the MDIApplication that is
taken from the jHotDraw application. The MDIApplication is
considered as Blob class based on the Landfill dataset. The
MDIApplication is shown in the following Fig. 3.

The threshold-based agglomerative hierarchical clustering
algorithm proposed by Hamdi et al. is implemented into the
prototype application. This application is considered important
due to the time of the calculation process. Also, the prototype
application is built for the accuracy of the calculation. It also
implements the tree-based keyword search algorithm useful for
information collected over the XML class diagram [17]. The
calculation of similarity meaning between words (semantic) is
using the WordNet library for Java to support the semantic
score between labels using formula (2).

The class diagram from the example cases (Fig. 2 and Fig.
3) is converted into an XML file then extracted using the
prototype application. Then, the prototype application will
automatically generate the similarity matrix based on the
formula (3). Table I shows the value of similarity between
elements (attributes and methods) of the Transcript class.
Before that, the labels of every element are named using the
prefix "a" for attribute, and "m" is for a method then followed
by a number as elements index. Finally, the decomposition
process is done using the threshold-based AHC (both static and
dynamic). And the result of the experiment will be compared
with the result of class decomposition at the source code level.
Table II shows Hamdi’s similarity matrix of the Transcript
class.

Fig. 2. Transcript Class.

Fig. 3. MDIApplication Class from the jHotDraw.

TABLE I. THE SIMILARITY MATRIX OF TRANSCRIPT CLASS (DESIGN

LEVEL)

 a1 a2 m1 m2 m3 m4 m5 m6 m7

a1 0.59 0.15 0.23 0.65 0.28 0.16 0.28 0.93

a2 0.15 0.09 0.58 0.19 0.05 0.14 0.65

m1 0.92 0.63 0.73 0.73 0.92 0.75

m2 0.71 0.78 1.00 1.00 0.88

m3 0.65 0.59 0.71 0.79

m4 0.71 0.83 0.80

m5 1.00 0.73

m6

0.94

m7

TABLE II. THE SIMILARITY MATRIX OF TRANSCRIPT CLASS (PREVIOUS

APPROACH) [11]

 m4 m5 m6 m7 m8 m9 m10

m4 0.25 0.33 0.25 0.25 0.32 0.25

m5 0.18 0.18 0.18 0.19 0.18

m6 0.08 0.08 0.26 0.2

m7 0.22 0.12 0.05

m8 0.05 0.05

m9 0.19

m10

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

61 | P a g e

www.ijacsa.thesai.org

The validation uses two approaches. The first approach is
by comparing the compactness rate using the Silhouettes index
of cluster result. And the second approach is the conformance
rate between the source code and the class diagram level’s
result. The compactness rate of every cluster resulting from the
decomposition process will calculate using the Silhouettes
index. Silhouettes index is the method that can be used to
validate the consistency data in the cluster [22]. Then, the deep
analysis of the result according to the applicability of the class
is also considered important.

VI. RESULT AND DISCUSSION

A. Result of Experiment

The two metrics (and) are used to calculate the
similarity between class elements then the similarity matrix is
composed for every case. Finally, the similarity matrix from
the two cases is used for the decomposition process using the
prototype application. Case 1 is the decomposition process
using class Transcript at the design level. The result of
decomposition is differentiated based on the approach (static
and dynamic threshold). First, the static threshold
decomposition result is shown in Table III. Then, the result of
the dynamic decomposition is shown in Table IV.

Table III shows the result of the decomposition process
using the static threshold. It also shows the result of the
Silhouettes index for every element inner the cluster. There are
two clusters resulting from the static threshold decomposition
process. The average of the Silhouettes index for all elements
is 0.24.

Table IV shows the result of decomposition using the
dynamic threshold. It is shown that the number of clusters
resulting from the decomposition process is four clusters.
Every element in the clusters has the Silhouettes index score
that expresses the validity of the position of current elements in
the specific cluster. If the score is close to 1, it is considered in
the better cluster. Otherwise, it is considered the worse cluster.
The average of Silhouettes from all elements is 0.35 using the
dynamic threshold decomposition process.

Case 2 is taken from the jHotDraw application. The class
MDIApplication will be decomposed due to the Blob
indicators that are shown in the Landfill dataset. Same with the
first case, the second case also threatened using the same
experiment. The result of the static threshold decomposition is
described in the following Table V.

There are two clusters resulting from the static threshold
decomposition process. Every cluster represented the class
after decomposition. Every element of the class has a
Silhouettes index score representing the specific cluster's
validity position. Many elements have negative of Silhouettes
index. The average of Silhouettes for all elements is 0.08.

The dynamic decomposition result using case number two
is described in Table VI. There are 12 clusters, and every
element of each cluster is calculated. There are also many
negative Silhouettes scores. The average Silhouettes of all
elements is 0.15. This is because many clusters only have one
element.

TABLE III. THE STATIC THRESHOLD DECOMPOSITION (CASE 1)

Cluster Elements Silhouettes Index

1 canGraduate -0.52

 releaseTranscript -0.31

 runAcademicServices -0.72

 formTranscript -0.03

 transcriptType 0.38

 major 0.37

2 isPassed 1.00

 releaseFinalGrade 1.00

 getFinalGrade 1.00

Average Silhouettes 0.24

TABLE IV. THE DYNAMIC DECOMPOSITION (CASE 1)

Cluster Elements Silhouettes Index

1 formTranscript -0.34

 major -0.11

2 canGraduate -0.18

 runAcademicServices -0.48

3 releaseTranscript 0.50

 transcriptType 0.80

4 isPassed 1.00

 releaseFinalGrade 1.00

 getFinalGrade 1.00

Average Silhouettes 0.35

TABLE V. THE STATIC DECOMPOSITION (CASE 2)

Cluster Elements Silhouettes Index

1 parentFrame -0.12

 MDIApplication -0.03

 desktopPane 0.01

 Show -0.41

 isSharingToolsAmongViews -0.01

 Hide -0.39

 serialVersionUID -0.03

 scrollPane 0.03

 Prefs 0.00

2 createFileMenu 0.30

 Init 0.01

 getComponent 0.06

 createViewActionMap 0.31

 Configure 0.05

 createModelActionMap 0.15

 toolBarActions -0.01

 createViewMenu 0.30

 updateViewTitle 0.32

 createHelpMenu 0.34

 createWindowMenu 0.30

 initLookAndFeel 0.11

 wrapDesktopPane 0.04

 createMenuBar 0.21

 createEditMenu 0.32

 Launch 0.05

Average Silhouettes 0.08

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

62 | P a g e

www.ijacsa.thesai.org

TABLE VI. THE DYNAMIC DECOMPOSITION (CASE 2)

Cluster Elements Silhouettes Index

1 isSharingToolsAmongViews -0.12

 Prefs -0.08

2 scrollPane -0.27

3 parentFrame 0.00

 desktopPane 0.03

4 MDIApplication 0.27

 serialVersionUID 0.22

5 Show -0.19

 Hide -0.12

6 getComponent -0.51

7 Launch -0.62

8 createFileMenu -0.84

 Init -0.39

 initLookAndFeel -0.49

 createMenuBar -0.58

9 updateViewTitle 0.28

 Configure 0.08

10 createViewMenu 0.78

 createHelpMenu 0.89

 createWindowMenu 0.75

 createEditMenu 0.73

11 wrapDesktopPane 0.95

 toolBarActions 0.98

12 createViewActionMap 1.00

 createModelActionMap 1.00

Average Silhouettes 0.15

B. Compared with the Previous Approach

The result of the experiment using new metrics (and
) at the design artifact shows different from the result of
the previous approach. The previous approach uses six metrics
at the source code level to calculate the similarity between
class elements. The decomposition result using the previous
approach will be assessed using the Silhouette index, then
compared with the result of the current experiment. This
comparison will focus on the Silhouette index value of
decomposition using case 1.

The calculation of the Silhouette index of previous is based
on the dissimilarity matrix calculated from the similarity
matrix. The Silhouette index comparison of the previous and
proposed approaches using case 1 is shown in Table VII. Based
on the result shown in Table VII, the average of Silhouette
using the previous approach is shown little different from the
current approach. In the previous approach, using the static
threshold, the average of the Silhouette index is 0.05. The
dynamic threshold approach produces the average Silhouette as
-0.02. The current approach for static and dynamic are 0.24 and
0.35, respectively. The experiment is used the prototype
application to apply the decomposition using the previous
approach's similarity matrix (Table II).

The previous experiment uses the six metrics to calculate
the similarity between the class's elements at the source code
level. The current experiment is done at the design level using

two metrics gathered from the class diagram. The comparison
previous and proposed approach is to know how the
conformance rate between each other.

Tables VIII and IX show the clustering result using each
approach (previous and proposed). Using different metrics and
objects of study, the previous and proposed approach results in
the same number of clusters but different elements. The
conformance is calculated by dividing the number of
conformed elements at both results by the number of all
elements. For example, for the static threshold AHC, four
elements conform at both sides of the result. m4 and m6 are
located at the same cluster (also m5 and m8). The rest element,
m7, m9, and m10, are considered not to conform. It is similar
to the dynamic threshold AHC. Four elements conform at both
sides (m10, m7, m9, and m6). The conformance rate for both

results is

 . The proposed experiment uses two

metrics from the class diagram to do the class decomposition
results 0.5714 conformance rate.

C. Discussion

Tables III, IV, V, and VI show the result of the experiment,
not only the number of the cluster but also the Silhouettes
index score for every element. The Silhouettes index shows the
validity of every element placed in a specific cluster. A higher
score is better for Silhouettes.

TABLE VII. THE AVERAGE SILHOUETTE INDEX COMPARISON (CASE 1)

Previous Approach Current Approach

Static Dynamic Static Dynamic

Case 1 0.05 -0.02 0.24 0.35

TABLE VIII. THE AVERAGE SILHOUETTE INDEX OF STATIC THRESHOLD

(CASE 1)

Static Threshold

Cluster Previous Cluster Proposed

1 m5 1 m7

 m7

m10

 m8

m4

 m10

m6

2 m4 2 m8

 m6

m9

 m9

m5

TABLE IX. THE AVERAGE SILHOUETTE INDEX OF DYNAMIC THRESHOLD

(CASE 1)

Dynamic Threshold

Cluster Previous Cluster Proposed

1 m5 1 m6

 m10 2 m7

2 m7

m4

 m8 3 m10

3 m9 4 m8

4 m4

m9

 m6

m5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

63 | P a g e

www.ijacsa.thesai.org

The differences and the trend of the Silhouettes index
between static and dynamic threshold AHC are interesting to
discuss. Case 1 shows that the average of Silhouettes of static
threshold is 0.25. And, the dynamic threshold has the average
of Silhouettes is 0.35. In case 2 from jHotDraw, the static
threshold shows that the average Silhouettes are 0.08 and 0.15
for the dynamic threshold. The dynamic threshold AHC
produces the higher Silhouettes index score from the two cases.
The dynamic threshold AHC is better than the static threshold
AHC for those two cases in the design phase.

The comparison with the previous approach's average
Silhouette shows a different trend. The previous approach
shows that the static threshold AHC has a better value of the
Silhouette index than a dynamic threshold. It is shown that the
value of static and dynamic are 0.05 and -0.02, respectively. In
this case, the value of the similarity matrix used in the
experiment to decompose the class is taking an important
position. The use of six metrics to calculate the similarity value
and then decomposed using the static and dynamic threshold
AHC is slightly lower than the use of two metrics (proposed
experiment). The compactness of each cluster resulting from
the decomposition process depends on the metrics used. Using
two metrics, it shows the conformance rate of about 0.5714. It
means that four elements conformed to each other (previous
and proposed approach). With the 0.5714 conformance rate,
the proposed approach’s result has a better average of
Silhouettes. But, this result cannot be used to justify which one
is better. The decomposition result's correctness might be able
to be found by deep analysis at the implementation level after
the decomposition is finished.

The other angle of results shows that there are many
elements with negative Silhouettes. It means that the elements
are placed in the worse cluster. Silhouettes also show the
density of every element in every cluster. The higher
Silhouettes score shows the distance between elements inner
the specific cluster is close to each other and far from the other
cluster. High differentiation of distance between clusters is
better for clustering results.

The decomposition of class using static and dynamic
threshold AHC leaves the existence of many elements with a
negative score of the Silhouettes index problem. To overcome
this problem is needed to move the element with negative
Silhouettes to the other cluster by comparing the Silhouettes
score before and after movement. The better Silhouettes score
will be chosen to increase the validity of the cluster.

The other point that is interesting to discuss is the result of
clustering. The number of clusters between static and dynamic
thresholds is always increased. The dynamic threshold
produces more clusters than static. The static threshold
produces less number of clusters, and the other side consists of
a bigger element inner of every cluster and vice versa for the
dynamic threshold AHC. Hamdi et al. said that the static
threshold is suitable for fine-grained decomposition, and the
dynamic is suitable for coarse-grained decomposition [11].
Based on the definition, the fine-grained will produce smaller
objects.

Fig. 4. Cluster Number Two.

Fine-grained produces more objects than coarse-grained
decomposition. But it differs from Hamdi's result in the class
diagram and uses the two metrics (and) for distance
similarity calculation. In this experiment, using dynamic
threshold AHC creates more clusters with smaller elements.
And the static threshold produces a smaller number of clusters
with a bigger number of elements in every cluster. It can
happen because of the threshold. Different from the static, the
dynamic threshold alters the threshold in every cycle of the
decomposition process to find the separation limit. That is why
the dynamic threshold has higher opportunities to create a new
cluster in every decomposition cycle.

In the class decomposition process, the main purpose is to
decompose the class by distinguishing the functionality of the
class. The dynamic threshold AHC can find the single
functionality inner the decomposed class. Using syntactic and
semantic metrics in the class diagram, the dynamic threshold
AHC is more distinctive than the static threshold to do
decomposition. The dynamic threshold that is calculated on
every cycle process makes the decomposition done in fine-
grained size.

The dynamic threshold AHC results in more clusters than
static, but the number of elements in every cluster is smaller
than the static threshold. Some clusters only consist of one
element, for example, cluster number two resulting from
dynamic threshold decomposition of case 2 (see Table VI). The
element in cluster number two is only scrollPane, and it is an
attribute. From the detailed class in Fig. 3, the scrollPane has a
private modifier. This will be the next interesting problem to
discuss. Cluster number two will be one class with only one
attribute and is private. Fig. 4 shows how cluster number two is
realized into the class.

Class from cluster number two is doubtful to use. There is
only one attribute, and it has a private modifier. The object
from the class of cluster number two will be unable to access.
The other word, the object will not collaborate with the other
objects in the software system. The main purpose of object in
the software system is to do sub-function to fulfill at least one
of the software functionality. Ideally, the attribute is private to
match the theory of information hiding. But, usually, at least
there is one method that has a public modifier. The method has
functioned as the object's boundary to access the data or
process provided by the object. If there is no public method,
then it will be an unuseful object. The movement process must
solve this condition. For the class that only has private
elements, the element must be moved to the other more valid
cluster by comparing the validity or compactness rate of the
element.

VII. CONCLUSION AND FUTURE WORK

The refactoring can be done by using the design artifact.
This paper shows the new metrics from the class diagram to do
the decomposition of class using the class diagram. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

64 | P a g e

www.ijacsa.thesai.org

metrics are and that measure using analysis of syntax
and meaning. The metric uses the information gathered from
the class diagram to calculate the similarity matrix. The
decomposition process uses the algorithm from the previous
approach but is implemented in the class diagram as a design-
level artifact. The decomposition result shows a few points of
conclusion.

The first conclusion is the differences between the previous
and the current decomposition result. The current result of
decomposition shows that the clusters resulting from the static
and dynamic threshold AHC are more compact than the
previous approach's result. It is validated using the Silhouette
index to measure the compactness of the clusters.

Both approaches produce the same number of clusters,
whether using the static or dynamic threshold AHC. But, some
of the elements are different between previous and proposed
approaches. The conformance rate of both (previous and
proposed) approaches is 0,5714, with the proposed approach
result showing higher compactness.

In the proposed experiment, there is a trend in the
Silhouette index value of the proposed experiment's static and
dynamic threshold result. The dynamic threshold is higher than
static in the Silhouette value in both cases. Dynamic threshold
AHC produces a more compact cluster than the static. The
dynamic threshold AHC also produces more number of a
cluster than the static threshold. On achieving single
responsibility principles, the dynamic threshold AHC's result
shows more specific than static because the result of the cluster
consists of a lower number of elements but a higher Silhouette
index as a measurement of compactness.

The result shows the advantages that can be obtained and
shows that there are still shortcomings. The decomposition
result still shows the elements that have the negative Silhouette
value. The negative Silhouette value shows that the distances
of the current element are far from the other elements in the
same cluster. The other word, the negative Silhouette elements
are considered the worse place. The enhancement for the
moving mechanism of the negative element is considered
important.

The result also shows that some clusters are considered
unable to implement because the cluster may produce objects
that cannot collaborate with others. The cluster that only has
one element, specifically if the element has a private modifier,
is considered a useless cluster. From this fact, it is considered
important to include the modifier aspect to do the
decomposition process. It is important to avoid the emergence
of useless clusters.

REFERENCES

[1] M. Fowler et al., Refactoring Improving the Design of Existing Code
Second Edition, Second Ed. United State of America: Pearson Education
- Wesley, 2019.

[2] F. A. Fontana, P. Braione, and M. Zanoni, ―Automatic detection of bad
smells in code: An experimental assessment,‖ J. Object Technol., vol.
11, no. 2, 2012.

[3] A. Yamashita and L. Moonen, ―Exploring the impact of inter-smell
relations on software maintainability: An empirical study,‖ Proc.
International Conference on Software Engineering, 2013.

[4] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De
Lucia, ―On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation,‖ Empir. Softw. Eng., vol.
23, no. 3, pp. 1188–1221, 2018.

[5] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, ―A two-step
technique for extract class refactoring,‖ ASE’10 - Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., pp. 151–154, 2010.

[6] G. Bavota, A. De Lucia, and R. Oliveto, ―Identifying Extract Class
refactoring opportunities using structural and semantic cohesion
measures,‖ J. Syst. Softw., vol. 84, no. 3, pp. 397–414, Mar. 2011.

[7] G. Bavota, ―Using structural and semantic information to support
software refactoring,‖ Proc. - Int. Conf. Softw. Eng., pp. 1479–1482,
2012.

[8] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, ―Automating
extract class refactoring: an improved method and its evaluation,‖
Empir. Softw. Eng., vol. 19, no. 6, pp. 1617–1664, 2014.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
―Identification and application of Extract Class refactorings in object-
oriented systems,‖ J. Syst. Softw., vol. 85, no. 10, pp. 2241–2260, 2012.

[10] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
―Decomposing object-oriented class modules using an agglomerative
clustering technique,‖ IEEE Int. Conf. Softw. Maintenance, ICSM, pp.
93–101, 2009.

[11] M. Hamdi, R. Pethe, A. S. Chetty, and D. K. Kim, ―Threshold-driven
class decomposition,‖ Proc. - Int. Comput. Softw. Appl. Conf., vol. 1,
pp. 884–887, 2019.

[12] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, ―Automatic Software
Refactoring via Weighted Clustering in Method-Level Networks,‖ IEEE
Trans. Softw. Eng., vol. 44, no. 3, pp. 202–236, 2018.

[13] N. Anquetil, A. Etien, G. Andreo, and S. Ducasse, ―Decomposing God
Classes at Siemens,‖ Proc. - 2019 IEEE Int. Conf. Softw. Maint. Evol.
ICSME 2019, pp. 169–180, 2019.

[14] I. Bassey, N. Dladlu, and B. Ele, ―Object-Oriented Code Metric-Based
Refactoring Opportunities Identification Approaches: Analysis,‖ Proc. -
4th Int. Conf. Appl. Comput. Inf. Technol. 3rd Int. Conf. Comput. Sci.
Appl. Informatics, 1st Int. Conf. Big Data, Cloud Comput. Data Sci., pp.
67–74, 2017.

[15] M. Misbhauddin and M. Alshayeb, ―UML model refactoring: a
systematic literature review,‖ Empir. Softw. Eng., vol. 20, no. 1, pp.
206–251, 2013.

[16] J. Al Dallal, ―Identifying refactoring opportunities in object-oriented
code: A systematic literature review,‖ Inf. Softw. Technol., vol. 58, pp.
231–249, 2015.

[17] B. Priyambadha and T. Katayama, ―Tree-based keyword search
algorithm over the visual paradigm’s class diagram XML to abstracting
class information,‖ 2020 IEEE 9th Glob. Conf. Consum. Electron.
GCCE 2020, pp. 280–284, 2020.

[18] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, ―Utilizing the similarity meaning of label in class cohesion
calculation,‖ J. Robot. Netw. Artif. Life, vol. 7, no. 4, pp. 270–274,
2021.

[19] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling,
―Similarity of business process models: Metrics and evaluation,‖ Inf.
Syst., vol. 36, no. 2, pp. 498–516, 2011.

[20] J. B. Gao, B. W. Zhang, and X. H. Chen, ―A WordNet-based semantic
similarity measurement combining edge-counting and information
content theory,‖ Eng. Appl. Artif. Intell., vol. 39, pp. 80–88, 2015.

[21] F. Palomba et al., ―Landfill: An open dataset of code smells with public
evaluation,‖ IEEE Int. Work. Conf. Min. Softw. Repos., vol. 2015-
Augus, pp. 482–485, 2015.

[22] P. J. Rousseeuw, ―Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,‖ J. Comput. Appl. Math., vol. 20, pp. 53–
65, 1987.

