
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

110 | P a g e

www.ijacsa.thesai.org

Technique for Balanced Load Balancing in Cloud

Computing Environment

Narayan A. Joshi

Department of Master of Computer Applications

Dharmsinh Desai University, Nadiad, India

Abstract—Resource sharing by means of load balancing in

cloud computing environments helps for efficient utilization of

cloud resources and higher overall throughput. However,

implementation of poor load balancing algorithms may cause

some virtual machines starving for additional cloud resources.

Employing meagre crafted mechanism for priority-oriented load

balancing may leave low-level priority virtual machines starving.

We suggest an improved resource sharing mechanism for load

balancing in the cloud computing environments. The suggested

mechanism helps to provide efficient load balancing by avoiding

starvation. In order to cater efficient load balancing, the

proposed resource sharing technique takes respective virtual

machines’ priority levels into consideration. An implementation

of the suggested load balancing algorithm in cloud environment

provides reduction in waiting time of the starving virtual

machines which are looking for additional resources in cloud

platform. The implementation of our proposed algorithm has

been deployed on a prototype cloud computing infrastructure

testbed established with open source software OpenStack. The

prototype cloud testbed is supported in backend by the open

source CentOS Linux operating system’s minimal setup.

Experimental results of proposed load balancing mechanism in

the prototype cloud computing infrastructure setup designate

reduction in the waiting time of overloaded starving virtual

machines. The proposed mechanism is beneficial to accomplish

priority-oriented and starvation free resource sharing for load

balancing in cloud computing environments. In future, the

proposed technique can be further enhanced for implementing

load balancing in collaborated cloud computing environments.

Keywords—Cloud environment; resource sharing; load

balancing; starvation; priority oriented resource allocation

I. INTRODUCTION

Cloud computing is one of the most important and
outstanding innovations in the 21

st
 century. Amongst several

technological innovations done in the 21
st
 century, the cloud

computing has seen the expeditious adoption into not only IT
sector but also IT enabled services sectors. Nowadays majority
of the computing solutions which are being used in various
societal service sectors directly or indirectly bank upon cloud
computing-based services in the backend. Various parameters
such as progressions in mobile communication infrastructure
technologies, computation technologies, data storage
technologies and telecommunication technologies have
increased the span of cloud computing environments in several
countries. Apart from that, the ongoing global COVID
pandemic have influenced a vital role in cloud computing
based digital transformation of numerous organizations in both
IT sector and IT-enabled services sectors around the world [1].

Moreover, in the last decade, establishment and utilization of
cloud computing based various service models for offering
virtual classrooms, distance learning and e-learning platforms
has grown exponentially across urban and rural areas in
developed and developing countries [2].

Moreover, advancements in virtualization, networking and
storage technologies have enabled resource sharing by means
of load balancing in cloud computing environments. Cloud
load balancing distributes workloads and computing
infrastructure across multiple servers in order to provide
advantages such as: increased scalability, redundancy, reduced
downtime, increased performance, increased flexibility and
higher throughput [3]. However, effective resource
management plays a vital role in the overall success of
utilization of computing solutions which are based on cloud
computing enabled IT services. End-user satisfaction highly
depends on the quality of service and adequate fulfilment of
service level agreement. For attaining the objective of efficient
resource management, cloud service providers extensively
bank upon resource allocation solutions by means of load
balancing. The mechanism of load balancing in cloud
computing systems involves reorganization of workload
allocation amongst other nodes in a cloud computing platform.
Load balancing process encompasses continuous identification
of overburdened and lightly loaded machines in cloud and then
migrate the workload from overburdened machines to suitable
lightly loaded machine in cloud. It helps to attain optimum
utilization of cloud resources by safeguarding virtual machines
from becoming not only overloaded but also underloaded or
idle [4].

Several load balancing approaches have been proposed so
far in literature and many of them are being practiced
extensively nowadays in various public and private cloud
computing environments. A novel load balancing technique
has been presented in this paper. The technique presented in
this paper helps to avoid starvation and reduce waiting time for
overburdened machines in the cloud.

In cloud computing environments, machines work at
different priority levels for example, some of the priority
values could be: high priority, standard priority or low priority.
Priority-based resource allocation in cloud computing
environments is advantageous, however it may often cause
starvation for machines which work at low priority level. A
priority-oriented and starvation free resource sharing
mechanism suitable for cloud-based load balancing has been
suggested here. The proposed algorithm reports reduction in
the waiting time. Reduction in the waiting time of overloaded

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

111 | P a g e

www.ijacsa.thesai.org

virtual machines for additional cloud resources helps not only
improve quality of service and performance but also better
return on investment.

The sequence of this research paper is set out as follows:
our observations on the related literature survey have been
discussed in the Section 2 whereas the proposed load balancing
mechanism has been presented in the Section 3. The Section 4
and the Section 5 represent the implementation details,
observations and outcomes respectively. Concluding remarks
and further research scope have been given in the Section 6.

II. LITERATURE REVIEW

Load balancing is primarily concerned with how the
workload is distributed among machines in cloud computing
environments. Inadequate and poor management of cloud
resources at the cloud service provider layer may turn into poor
quality of service. Often, such a deterioration in quality of
service may further result into termination of service level
agreements also. Excerpts and our observations about the
relevant literature survey in the area of load balancing has been
presented here.

A mechanism for resource sharing [5] carries out migration
of tasks from overburdened virtual machines to the
underloaded virtual machines. The load balancing decisions are
taken dynamically. However, the technique evenly operates on
each virtual machine irrespective of the VM’s priority level.
While taking load balancing decisions, the technique does not
take individual VM’s priority level into consideration. Hence,
the mechanism may result into starvation causing reduction in
performance of the load balancing virtual machines.

A task scheduling algorithm suggested in [6] is based on
ant colony optimization. The simulation-based algorithm
focuses on reducing the average waiting time and works to
optimize the makespan of the system. Another task scheduling
technique available in [7] offers load balancing. The technique
implements modified particle swarm optimization task
scheduling called LBMPSO to schedule tasks in cloud
computing environment. The load balancing mutation particle
swarm optimization technique aims to minimize makespan and
maximize utilization of cloud resources.

A machine learning based task scheduling mechanism in
cloud computing environment is present in [8]. The load
balancing technique takes advantage of K-means algorithm in
order to create clusters of jobs and the resources available
based on their operating characteristics and processing
behavior.

A load balancing technique based on Dynamic Data
Replication Algorithms is available in [9]. The technique
works on three phase data replication algorithms. The initial
two phases work on finding appropriate node for the sake of
achieving load balancing. On other side, the third phase
focuses on achieving better access improved load balancing by
means of the dynamic duplication deployment scheme.

A novel load balancing technique available in [10]
incorporate big-ip into an experimental framework. The
technique incorporates secure socket layer, local traffic
manager and access policy manger. The approach promises to

offer high availability, redundancy and load balancing and data
channel.

A load balancing technique based on Grey wolf
optimization technique is available in [11]. The algorithm
initially finds the unemployed or busy nodes. Then, the
algorithm calculates such node’s threshold and fitness function.
The results obtained through the simulation indicate reduced
cost and response time.

An integrated load balancing approach of Harries Hawks
optimization and Pigeon inspired optimization algorithm is
available in [12]. The cloudsim simulation-based load
balancing technique ensures the optimal resource utilizations
with task response time. A hybrid algorithm based on
combining particle swarm optimization and genetic algorithm
is available in [13]. The load balancing technique has a specific
objective function.

A Weighted Signature based Load Balancing (WSLB)
technique [14] aims on reducing users response time. The
technique gathers the load assignment factor for each host and
carries out mapping the virtual machines on the basis of the
gathered factor value. A methodical review about load
balancing techniques in software defined networks is available
in [15]. The review mainly classified such techniques into
deterministic and non-deterministic approaches. The paper
discusses role, challenges and metric analysis in the domain of
software defined networks. The study presented is based on
single level classification.

In a load balancing approach based on software defined
networking is available in [16]. The technique aims on
optimizing traffic and data flow and reducing the delay. The
resource sharing technique works on implementing FlowQoS
mechanism like flow classifier and rate shaper with help of
virtual queues.

An optimized resource management scheme known as
MEMA is available in [17]. It splits the actual mechanism into
two parts: load balancer for normal requests, and load balancer
for urgent requests. The mechanism emphasizes on improving
task allocation by means of providing quick services and
servers to urgent requests. The technique works on lowering
waiting time and maximizing fairness with help of a modified
round robin technique. The technique entertains all nodes
equally without discriminating their priority values.

A load balancing mechanism existing in [18] offers
resource sharing suitable for cloud computing platform. A
recommended load balancer software component
EfficientLoadBalancer operates in coordination through
various cooperating daemon threads: LoadBalancer,
ManageState, OverLoadedVM and underLoadedVM. The load
balancer operates differently in line with the various states of
virtual machines. The technique maintains two values for
representing VM’s state: OVERLOAD_PASSIVE,
UNDERLOAD_PASSIVE. The load balancer functions on the
basis of shifting workload from the overburdened nodes to the
unburdened nodes in cloud. However, the load balancer does
not distinguish among the respective virtual machines’ priority
levels by operating all nodes equally for load balancing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

112 | P a g e

www.ijacsa.thesai.org

An improved technique for resource sharing has been
suggested in [19]. The technique offers resource sharing in
cloud computing environment and it balances workload as per
the priority value of virtual machines. The load balancer
module PriorityBasedLoadBalancer operates in coordination
through various cooperating threads in background:
PBLoadBalancer thread, ManageState thread, PBOverloaded
VM thread and the thread PBUnderloadedVM thread. The
priority-based load balancer module functions on transferring
workload between virtual machines of the same priority level.
However, in long run the load balancer may cause starvation in
load balancing requests which involve low priority virtual
machines.

A load balancing framework available in [20] works on
attaining better performance on the parameters makespan and
cost. The suggested framework is based on hybridization of
heuristic technique with metaheuristic algorithm. The
framework focuses on deadline constraints and improved
resource provisioning in the Cybershake and Ligo workflows
execution domain.

A load balancing technique based on genetic pso algorithm
is available in [21]. The technique responsible for sharing
resources in cloud computing, works over heterogeneous cloud
infrastructure. The hybrid genetic pso based task distribution
algorithm mainly works on optimizing cost of resource
allocation and makespan. The technique works on improving
load balancing of the workflow application over the
heterogeneous resources in the cloud environment.

A honeybee algorithm-based load balancing technique is
present in [22]. The task allocation technique aims to
minimization of service makespan on the cloudsim and the
workflow. The dynamic resource allocation mechanism works
for both dependent and independent jobs. Moreover, the
technique addresses to the task priorities and not the VM
priorities.

An IMLDB mechanism for resource sharing [23] is based
on Improved Modified Distribution Load Balancing and it aims
to yield low cost for task migration. The mechanism eyes on
the two facets overloading and under loading by means of
maintaining profit of the capital gain during the process of task
migration in the cloud computing environment.

Intercloud load balancing techniques are present in [24,
25]. The techniques work on resource sharing in collaborated
cloud computing environments. The suggested techniques eye
on offering not only optimized resource utilization but also
continuous availability of cloud resources to stakeholders.
However, the mechanisms do not discriminate among the
respective virtual machines’ priority levels. They treat all
virtual machines at the same level.

A modified genetic based algorithm is available in [26].
The technique works on the optimization problem and strives
to determine the fittest machines which are associated with
various data centers for allocation of cloudlets into appropriate
virtual machines. The technique reports lesser execution time
consumption by the cloudlets.

In a view of the literature study presented above so far in
this section, it is felt that some of the load balancing
mechanisms are restricted to specific computation platforms
only. Apart from it, few load balancing mechanisms focus on
relocating entire overburdened virtual machines to some
another host on the cloud infrastructure. Some of the load
balancing techniques are static in nature, such techniques are
inappropriate for the dynamic load balancing environments. On
the other side, some available simulation-based load balancing
mechanisms do require prior knowledge about various time
variables such as the service time and the arrival time of
workload. Often, there exist some closed source load balancing
solutions of which no source code is available openly. Hence,
it is difficult to extend such closed source solutions on open-
source cloud computing frameworks such as the OpenStack.
Whereas some of the existing open-source resource sharing
techniques fail in controlling starvation problems arising due to
their inability to tackle priority-oriented load balancing in
particular way.

Hence, virtual machines’ priority oriented and starvation
free mechanism for dynamic resource sharing in cloud
computing environments has been presented here. The load
balancing technique presented here aims to overcome the
starvation problem often faced by overloaded virtual machines.
Furthermore, the technique takes the priority level of virtual
machines before taking load balancing decisions. The
suggested mechanism has been presented in the following
Section 3.

III. MATERIALS AND METHOD

The resource sharing mechanism suggested in [18]
provides load balancing functionality in cloud computing
environment. However, the technique operates every virtual
machine equally without discriminating the virtual machines
according to their respective priority levels.

On the other side, the resource sharing technique available
in [19] offers priority-based load balancing in cloud computing
environment. The technique schedules resource sharing on
basis of the preassigned priority value of the virtual machines.
However, the technique may cause starvation for certain low
priority virtual machines. Situations may arise such that the
low priority and the standard priority virtual machines which
are overloaded might not get necessary attention due to higher
number of resource sharing demands made by the high priority
virtual machines.

Hence, the constraints of the work available in [18] and
[19] motivated us to extensively work the resource sharing
problem. An extended mechanism of priority-based dynamic
load balancing approach [19] for load balancing in cloud
computing environments has been presented here in order to
give adequate attention to such starving overloaded virtual
machines. The block diagram our proposed methodology has
been described in the Fig. 1. Working of various components
of our proposed load balancer PBImprovedLoadBalancer have
been presented here:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

113 | P a g e

www.ijacsa.thesai.org

Fig. 1. Block Diagram of Proposed Load Balancing Technique Priority based Improved Load Balancer.

1) The mechanism maintains various state values for

representing current state of a particular virtual machine. The

AVAILABLE and UNAVAILABLE states indicate current

availability and unavailability respectively of a particular

virtual machine for load balancing. The UL_PASSIVE state is

used to signal that a particular virtual machine was previously

underloaded; but now it has already been considered for

assigning additional workload and hence no more workload

should be assigned to it. The OL_PASSIVE state is used to

signal that a particular virtual machine was previously

overloaded; but the virtual machine is currently under the

process of unloading. The extended mechanism presented here

offers one more state of virtual machines: OL_STARVING.

The newly introduced state helps the mechanism to mark the

overloaded virtual machines which are striving since

considerable amount of time for availing additional resources

by means of resource sharing in the cloud.

2) The three priority levels LOW, STANDARD and HIGH

have been employed for representing current priority of

machine. The mechanism permits resource sharing amongst the

virtual machines at the same priority level.

3) Based on the current workload of the concerned virtual

machines, the thread thread_PBIUnderloadedVM puts the

virtual machines with the underutilized resources in one of the

respective priority queues: qULhigh, qULstd or qULlow. The

daemon thread keeps fetching underutilized virtual machines

and drops them in the appropriate queue. For sharing the

resources, the load balancer picks virtual machine from

relevant priority queue of underloaded virtual machines. Empty

queue indicates unavailability of underloaded virtual machine.

4) Based on the current workload of virtual machines, the

thread PBIOverloadedVM puts the overloaded virtual

machines in one of the appropriate priority queues: qOLhigh,

qOLstd or qOLlow. The daemon thread keeps fetching

overloaded virtual machines and drops them in the appropriate

queue. For obtaining the cloud resources, the load balancer

picks virtual machines from relevant priority queue of

overloaded virtual machines.

5) The resource sharing task is carried out by the thread

PBImprovedLoadBalancer. The operation takes place between

the overburdened virtual machine and the under burdened

virtual machines at the same priority levels. The thread runs

continuously. The thread may sleep for a while if there are no

additional requirements available in the relevant overload

queue.

6) In priority-based cloud computing environment, the

suggested technique helps stay away from starvation. The

technique periodically evaluates waiting time of concerned

virtual machines in the LOW priority queue. The technique

treats the starving LOW priority virtual machines with help of

the continuously working thread operateStarvingVM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

114 | P a g e

www.ijacsa.thesai.org

7) To avoid multiple consecutive resource allocations on

the same virtual machine, the load balancer module switches

the state of concerned virtual machines to UL_PASSIVE state.

Arrangement is such that the suggested resource sharing

mechanism does not consider UL_PASSIVE virtual machines

eligible for new load balancing requests. However, after

completion of certain buffer time, such virtual machines should

be automatically toggled back to the AVAILABALE state.

Only AVAILABLE state virtual machines are considered

eligible for making additional resource demands and sharing of

resources.

8) A daemon thread PBImanageState is assigned the task

of state management of virtual machine. It periodically keeps

checking if the VM is currently passive or not. If the VM is

found to be passive, then the thread toggles the VM state to

AVAILABLE.

9) Finally, the enhanced module for priority-based

resource allocation starts by initializing all time variables and

all priority queues. The variables TSu, TSo and TSt represent

sleeping time of various daemon threads PBIUnderloadedVM,

PBIOverloadedVM, operateStarvingVM respectively.

10) Then the load balancer module launches various

collaborating daemon threads PBIOverloadedVM, PBI

UnderloadedVM, operateStarvingVM and PBEnhancedLoad

Balancer. The thread PBIManageState is responsible for VM

state management. It also is launched during the starting phase

of our load balancer module PBImprovedLoadBalancer.

11) The module maintains an enumerated data structure

variable v_priority for maintaining the priority-level values of

all virtual machines. At a time, the v_priority variable can have

any one of the possible three VM priority values: LOW,

STANDARD and HIGH.

12) The module maintains an enumerated data structure

variable v_state for maintaining the current state values of all

virtual machines. At a time, the v_state variable can have any

one of the possible five state values: UNAVAILABLE,

AVAILABLE, UL_PASSIVE, OL_PASSIVE and OL_

STARVING.

Key segments of the recommended resource sharing
algorithm with necessary explanation have been presented
here:

Module PBImprovedLoadBalancer

{

// Algorithm for starvation free and priority oriented improved

// sharing of cloud resources

enum v_priority {LOW, STANDARD, HIGH};

// possible VM priority values

enum v_state {UNAVAILABLE, AVAILABLE,

UL_PASSIVE, OL_PASSIVE, OL_STARVING};

// Virtual machine state values: unavailable, available,

// underload passive, overload passive, overload starving

int TSt, TSo, TSu; //sleeping time for thread

struct VMachine

// Holds metadata of a VM

{

v_priority vm_priority;

v_state vm_state; // current state

// VM’s resources’ information

float vm_load;

unsigned int ncores;

unsigned long tot_mem, free_mem;

float bandwidth;

// Timestamp when VM’s state was set as passive

unsigned long passive_set_time;

unsigned long WTUnder, WTOver;

// Threshold for waiting time in queues related to

// overloaded and underloaded virtual machines

char vmIP[40];

…

// getter and setter methods for accessing and

// setting VMachine structure members.

…

}

// Starvation time threshold

unsigned long OLVmStarvationThresholdTime;

// Queues for maintaining underloaded VMs

Queue <VM*> qULlow, qOLhigh, qULstd;

// Queues for maintaining overburdened VMs

Queue <VM*> qOLstd, qULhigh, qOLlow;

// Keep detecting underloaded virtual machines and

// populate them in respective priority queue

Thread: thread_PBIUnderLoadedVM

{

VM* pVMU = null;

void fetch_PBIUnderloaded_VM(){

//Thread method

while(true) {

pVMU = null;

//Find out underloaded VM

pVMU = determine_underloaded_VM();

if(qUL<pVMU -> vm_priority>.find

 (pVMU) ||

 pVMU.passive_set_time < WTUnder)

continue;

if(!pVMU) {

// At present there is no such VM.

// So, sleep thread for TSu sleep time.

sleep(TSu); continue;

 }

qUL<pVMU->

 vm_priority>.append(pVMU);

// Found underloaded VM.

// So, append it to relevant queue.

}//while

}//End of Thread method

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

115 | P a g e

www.ijacsa.thesai.org

// Keep detecting overloaded virtual machines and

// populate them in respective priority queue.

Thread: thread_PBIOverLoadedVM

{

VM* pVMO = null;

void fetch_PBIOverloaded_VM(){

//Thread method

while(true) {

pVMO = null;

// Find out overloaded VM

pVMO = determine_overloaded_VM();

if(qOL<pVMO->vm_priority>.find(pVMO) ||

pVMO.passive_set_time<WTOver)

continue;

if(!pVMO) {

// At present there is no such VM

// So, sleep thread for TSo sleep time

sleep(TSo); continue;

}

qOL<pVM->vm_priority>.append(pVMO);

// Found overloaded VM.

// So, append it to relevant queue.

}//while

}//End of thread method

}//Thread

// Procedure for starvation free and priority oriented load

// sharing

Thread: thread_PBImprovedLoadBalancer

{

VMachine* pVMO, pVMU;

void PBImprovedLoadBalance()

{

Thread sleep if there are no overloaded VMs

Thread sleep if there are no resource sharing offers

while(true) {

pVMU=qUL<high,std,low>.fetch()

if(!pVMU)

// VM for resource sharing is unavailable at present.

// So, search again.

 continue;

if(pVMU->timeSincePassive() <

MaxULTimeThreshold

|| !pVMU-> isUnderloaded()

 || pVMU->vm_state== UL_PASSIVE)

 // Found VM but it is still passive or it has no

// sharable resources

continue;

pVMO=qOL<pVMU.priority>.fetch()

if(!pVMO)

// Resource requirements unavailable at present.

// So, search again.

continue;

if(pVMO->timeSincePassive() <

MaxOLTimeThreshold

||pVMU->isOverloaded()

||pVMO->vm_state==OL_PASSIVE)

// VM is still passive or it has no resource

// requirements.

continue;

if(pVMU->vm_state == AVAILABLE &&

pVMO->vm_state == AVAILABLE){

// Both source and target VMs are available.

// So, carry out resource sharing.

// Make both VMs passive for further load

// balancing requests and to protect them from

// instantaneous overburdening.

 pVMU->vm_state=UL_PASSIVE;

 pvmO->vm_state=OL_PASSIVE;

set passive_set_time for pVMO

set passive_set_time for pVMU

// Remove both VMs from respective wait queues

 qUL<pVMU.priority>.remove()

 qOL<pVMO.priority>.remove()

// Load balance

balance(pVMO,pVMU)

 …

}

} // function PBImprovedLoadBalancer.

} //while

} // thread thread_PBImprovedLoadBalancer.

// Keep detecting the starving virtual machines which are

// waiting for additional resource requirements in queue.

Thread: thread_operateStarvingVM

{

void operateStarvingVM()

{

while(true){

…

pVMO = qOL<low>.fetchLast()

if(pVMO->timeSincePassive() >

OLVmStarvationThresholdTime) {

//VM is starving, so operate it.

 qOL<low>.shiftToFirst(pVMO)

sleep(TSt);

//Sleep thread for TSt Starvation sleep time.

…

}

}// while

}// function operateStarvingVM

}// thread thread_operateStarvingVM

// Keep managing VM state

Thread: thread_PBImanageState

{

void vmStateManager() {

…

for all VMs: pVM

if(pVM-> vm_state = UL_PASSIVE &&

pVM->timeSincePassive()>=

pVM->WTUnder)

||

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

116 | P a g e

www.ijacsa.thesai.org

(pVM-> vm_state = OL_PASSIVE &&

pVM->timeSincePassive()>=

pVM->WTOver)

// Time to remain in the passive state for a

// particular VM is over. So, now make it

// AVAILABLE for load balancing.

reset pVM’s passive_set_time

// Make pVM as AVAILABLE for load balancing.

pVM->vm_state = AVAILABLE;

…

}// function thread_PBIManageState

}//thread thread_PBIManageState

// Launch module now.

void start()

{

…

Initialize times: TSu, Tso, TSt

Initialize time: OLVmStarvationThresholdTime

Initialize queue: qOL<low,std,high>

Initialize queue: qUL<low,std,high>

Spawn thread: thread_PBIOverLoadedVM

Spawn thread: thread_PBIUnderLoadedVM

Spawn thread: thread_PBImprovedLoadBalancer

Spawn thread: thread_operateStarvingVM

Spawn thread: thread_PBImanageState

…

}// function start

}//module PBImprovedLoadBalancer

The start() function in the suggested module
PriorityBasedImprovedLoadBalancer starts with initializing
various time intervals which are meant for making the thread
sleep for certain time intervals. The module also sets the
starvation time threshold in waiting queue for the overloaded
virtual machines. Finally, the start() function launches the
collaboratively working threads. The parallelly running threads
thread_PBIOverLoadedVM and thread_PBIUnderLoadedVM
keep finding those virtual machines which are in shortage of
resources and the virtual machines which have excessive
unutilized resources go wasted respectively. The priority based
improved load balancer thread thread_PBImprovedLoad
Balancer executes resource sharing. The collaboratively
working thread thread_operateStarvingVM takes care of
starving virtual machines which are waiting in queue.

IV. IMPLEMENTATION

The prototype cloud environment testbed was established
on physical server and the entire setup was made run as
suggested in the [19]. The private cloud computing
environment was setup over a minimal setup of the open-

source CentOS Linux operating system platform. In order to
facilitate the Infrastructure as a Service (IaaS) by means of
offering cloud-based instances which are available on demand,
the open-source cloud computing environment was established
by installing OpenStack on top of the CentOS Linux platform.

V. RESULTS AND DISCUSSION

The mechanism begins with setting and initializing values
of various data structures such as sleeping time of various
threads, respective queues for maintaining information about
overloaded and underloaded virtual machines. After initializing
the data structures and queues, the algorithm spawns the
collaborating daemon threads: PBImanageState, PBIOver
LoadedVM, PBImprovedLoadBalancer PBIUnderLoadedVM
and operateStarvingVM.

The daemon thread thread_operateStarvingVM keeps
watching and operating the starving virtual machines. The
Table I shows comparison of results obtained using our
proposed method with the results of existing technique. For the
low priority overloaded virtual machines, the experimental
results have been presented in a Table I. The Table I represents
the waiting times of various starving virtual machines in
absence and presence of our suggested thread
thread_operateStarving VM respectively. The function of the
daemon thread thread_operateStarvingVM is to efficiently
manage the starving overloaded virtual machines with a motive
to reduce their waiting time.

The column A in the Table I represents the observed
waiting time value of the overloaded virtual machines in
absence of our suggested daemon thread thread_operate
StarvingVM. The average of the waiting times mentioned in
the column A is 9.62 milliseconds for such overloaded virtual
machines [19].

The column B in the Table I represents the observed value
of waiting time of the overloaded virtual machines in presence
of our suggested daemon thread thread_operateStarvingVM.
However, in presence of our suggested collaborative daemon
thread thread_operateStarvingVM, the average value of the
observed waiting times mentioned in the column B is found to
be reduced to 7.1 milliseconds, which clearly designates
performance improvement by means of reduction in waiting
time of overloaded virtual machines in waiting queue.

TABLE I. TABLE SHOWING WAITING TIMES OF VIRTUAL MACHINES IN

THE WAITING QUEUE IN ABSENCE AND PRESENCE OF THE THREAD

THREAD_OPERATESTARVINGVM RESPECTIVELY

Virtual

Machine (IP

address)

Waiting time (milli seconds)

A. In absence of the

thread_

operateStarvingVM

B. In presence of the thread_

operateStarvingVM

192.168.10.2 8.9 ms 6.4 ms

192.168.10.3 10.2 ms 7.6 ms

192.168.10.4 10.4 ms 7.9 ms

192.168.10.5 9.4 ms 6.9 ms

192.168.10.7 9.2 ms 6.7 ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

117 | P a g e

www.ijacsa.thesai.org

Fig. 2. Chart of Comparison of Waiting Times of Virtual Machines in Absence and Presence of the Thread thread_operateStarvingVM.

Moreover, a chart shown in a Fig. 2 also designates
significant reduction in the waiting time of all concerned
overloaded virtual machines for availing additional cloud
resources for load balancing.

Such a reduction in the average waiting times is extremely
beneficial to the low priority overloaded virtual machines in
the cloud. The dropout in waiting time of a concerned starving
overloaded virtual machine in a respective priority queue helps
it to attain the required additional resources from cloud in
lesser time. Hence, faster availability of additional cloud
resources will cause faster execution of tasks. Quicker
execution of tasks results into increased overall system
performance and optimized utilization of cloud resources.

VI. CONCLUSION

An enhanced mechanism for priority-oriented resource
sharing for cloud computing platform has been suggested in
this paper. The mechanism prevents resource requirements on
low priority virtual machines from starvation. Implementation
of proposed algorithm clearly designates reduction in waiting
time of concerned virtual machines. The technique is helpful in
attaining efficient resource utilization and improved
performance. The obtained results undoubtedly reveal
reduction in the average waiting time of overloaded virtual
machines in the waiting queue. Hence the technique helps
overcome starvation. Thereby, the proposed technique helps
achieving improved resource sharing for low priority virtual
machines in cloud computing environment.

In future, this technique can be extended further on
collaborated cloud computing environments for attaining
improved resource utilization and getting better return on
investment. Moreover, the suggested technique can be explored
further for studying security aspects.

REFERENCES

[1] Alashhab Z, Anbar M, Singh M, Leau Y, Al-Sai Z, Alhayja S. Impact of
coronavirus pandemic crisis on technologies and cloud computing
applications, Journal of electronic science and technology. 2021; 19.

[2] Joshi N. Performance-centric cloud-based e-learning, The IUP Journal
of information technology. 2014; 10(2).

[3] Afzal S, Kavitha G. Load balancing in cloud computing – A hierarchical
taxonomical classification, Journal of cloud computing. 2019; 8.

[4] Mishra SK, Sahoo B, Parida PP. Load balancing in cloud computing: A
big picture. Journal of king saud university – computer and information
sciences. 2020; 32(2).

[5] Joshi N, Choksi DB, Kotecha K, Pandya S. Implementation of novel
load balancing technique in cloud computing environment. International
conference on computer communication and informatics. 2018.

[6] Amit D, Dinesh R. Design a novel technique for load balancing in cloud
computing environment. Solid State Technology. 2021. 64(2).

[7] Arabinda P, Sukanata Kishoro B. A novel load balancing technique for
cloud computing platform based on PSO. Journal of king saud university
– computer and information sciences. 2020; In Press.

[8] Shivaprasada K, Sangameshwar, Rajesh S, Swasthika T. Machine
learning aided scheduling on cloud computing, International journal of
emerging trends in engineering research. 2020; 8(9).

[9] Hsieh HC, Ching M. The incremental load balance cloud algorithm by
using dynamic data deployment. Journal of grid computing. 2019; 17.

[10] Bholanath M, Rajesh B, Sandip R. A novel approach to load balancing
and cloud computing security using SSL in IaaS environment.
International journal of advanced trends in computer science and
engineering. 2020; 9(2).

[11] Sefati S, Mousavinasab M, Zareh Farkhady R. Load balancing in cloud
computing environment using the Grey wolf optimization algorithm
based on the reliability: performance evaluation. Journal of
supercomputing. 2021; In press.

[12] Poornima G, Radhamani A. A hybrid meta-heuristic for optimal load
balancing in cloud computing. Journal of grid computing. 2021; 19.

[13] Dhiraj K, Vijay D. Performance evaluation of new hybrid approach of
load balancing in cloud computing. Design engineering. 2021; 2021(5).

[14] Ajit M, Vidya G. VM level load balancing in cloud environment.
International conference on computing, communications and networking
technologies. 2013.

[15] Neghabi AA, Navimipour NJ, Hosseinzadeh M, Rezaee A. Load
balancing mechanisms in the software defined networks: a systematic
and comprehensive review of the literature. IEEE access. 2018;
6:14159–14178.

[16] Gokilabharathi R, Deepalakshmi P. Efficient load balancing to enhance
the quality of service (QOS) in Software Defined Networking (SDN).
International conference on trends in electronics and informatics. 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

118 | P a g e

www.ijacsa.thesai.org

[17] Manasser S, Alzghoul M, Mohmad M. An advanced algorithm for load
balancing in cloud computing using MEMA technique. International
journal of innovative technology and exploring engineering. 2019; 8 (3).

[18] Joshi N. Efficient load balancing in cloud computing. Research review
international journal of multidisciplinary. 2019; 4(6).

[19] Joshi N. Priority based mechanism for resource sharing in cloud.
International journal of innovative technology and exploring
engineering. 2020; 9(3).

[20] Kaur A, Kaur B. Load balancing optimization based on hybrid heuristic-
metaheuristic techniques in cloud environment, Journal of king saud
university – Computer and Information Sciences. 2019.

[21] Manasrah A, Ali H. Workflow scheduling using hybrid GA-PSO
algorithm in cloud computing, Wireless communications and mobile
computing. 2018; 2018.

[22] Gopinath G, Vasudevan SK. A novel improved honey bee based load
balancing technique in cloud computing environment. Asian journal of
information technology. 2016; 15(9).

[23] Afzal S, Kavitha G. Optimization of task migration cost in infrastructure
cloud computing using IMDLB algorithm. International conference on
circuits and systems in digital enterprise technology. 2018.

[24] Joshi NA. Optimized Mechanism for Resource Sharing in Cloud.
International journal of engineering and advanced technology. 2019.
9(2).

[25] Joshi N. Performance centric model for resource sharing in cloud.
Research review international journal of multidisciplinary. 2018; 3(5).

[26] Swarnakar S, Kumar N, Kumar A, Banerjee C. Modified genetic based
algorithm for load balancing in cloud computing. International
conference for convergence in engineering. 2020.

