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Abstract—Binary choices, such as success or failure, 

acceptance or rejection, high or low, heavy or light, and so on, 

can always be used to express decision-making. Based on the 

known predictor feature values, a classification model can be 

used to predict an unknown categorical value. The logistic 

regression model is a commonly used classification approach in a 

variety of scientific domains. The goal of this research is to create 

a logistic regression model with a heuristic approach for selecting 

input characteristics and to compare the Newton Raphson and 

gradient descent (GD) algorithms for estimating parameters. 

Among predictor traits, there were four that met the criterion for 

being both dependent on the target and independent of one 

another. Also, optional features In Malang, Indonesia, 

researchers used the Chi-square test to find four significant 

characteristics that increase the incidence of pregnant women 

developing preeclampsia: age (X1), parity (X2), history of 

hypertension (X3) and salty food consumption (X6). In the above 

work author proposed, the logistic regression model developed 

using the gradient descent approach had a lower risk of error 

than the logistic regression model generated using the Newton 

Raphson algorithm. The model with the gradient descent 

approach has a precision of 98.54 percent and an F1 score of 

97.64 percent, while the model with the Newton Raphson 

algorithm has a precision of 86.34 percent and an F1 score of 

72.55 percent. 

Keywords—Classification model; feature selection; gradient 

descent; logistic regression; Newton Raphson 

I. INTRODUCTION 

In modern statistical modeling, there is a simple point of 
view in developing a statistical model, namely by observing 
the presence of a target feature in the data set. A descriptive 
model is developed if there is no target feature. On the other 
hand, if there is a target feature, a predictive model is 
developed. The clustering method is the most popular 
descriptive model. Marji et al [1] discussed topics related to 
fuzzy subtractive clustering, and Handoyo et al [2] discussed 
the performance of the optimal clustering method with a hybrid 
between subtractive fuzzy and c-mean fuzzy clustering. 
Another type of descriptive modeling is the method used as an 
assessment tool to generate a ranking of objects based on their 
features [3]. Predictive modelling is divided into 2 types based 
on the measuring scale of the target feature. The regression 
model is built when the target feature is continuous (interval or 

ratio), while the classification model is built when the target 
feature is discrete (nominal or ordinal). In statistics, regression 
modeling is more emphasized to explore the causality 
relationship between the target and predictor features [4-5], but 
in the machine learning community, regression modeling is 
oriented to capture all existing patterns in a data set in order to 
obtain a model that is able to predict the unknown value of 
target feature with high accuracy [6]. Some examples of 
regression modeling for predictive purposes include Handoyo 
et al [7] have developed a model to predict the regional 
minimum wage, while Handoyo and Chen [8] have developed 
a model to predict daily soybean prices in Indonesia. 

The application of the classification method gets more 
serious attention because a decision-making will be more 
measurable and easy to execute in the form of discrete choices, 
each continuous scale will also be simpler when it is 
transformed into a discrete scale [9]. Several researchers have 
compared the performance of classification models, including 
Widodo and Handoyo [10] compared logistic regression and 
Support Vector Machine, Nugroho et al [11] compared logistic 
regression and Learning Vector Quantization, and Handoyo et 
al [12] varied the threshold values to obtain the best performing 
logistic regression and linear discriminant models. A model 
involving only predictor features that have a significant 
contribution to the variability of the target feature is an ideal 
model for researchers [13-14]. Thus, feature selection is an 
important stage in model development. In general, the feature 
selection method is divided into 2 approaches, namely the 
wrapped and the filter approach. Wrapped approach features 
selection is computationally expensive because it involves the 
model with all of the possible feature combinations [15]. 
Feature selection with the filter approach method is more 
heuristic in nature, namely by evaluating both the dependency 
between predictor and target features, as well as independency 
among predictor features [16-17]. Chi-square test can be used 
for the above evaluation purposes if both features are 
categorical features [18]. 

Parameter estimation has an important role in producing the 
best model. In statistics, estimate parameters can be obtained 
by minimizing the sum of squared errors (SSE) known as the 
least square (LS) method [19] or by maximizing the log-
likelihood function known as maximum likelihood estimation 
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[20-21]. The LS method is generally used for estimating 
parameters in linear systems, while the maximum likelihood 
estimation (MLE) method is used for estimating parameters in 
nonlinear systems. The complexity of the nonlinear model has 
also prompted researchers to lead using optimization methods 
such as Particle Swarm Optimization [22-23]. Newton 
Raphson algorithm works based on maximizing the likelihood 
function which is considered as an equation that is solved to 
find the equation root as the estimated parameters [24-25]. On 
the other hand, the gradient descent algorithm finds the 
estimated parameters by reducing the score function gradient 
and leads to be 0 which means the optimal solution has been 
reached [26-27]. 

In the field of public health, there are many problems that 
must be handled and controlled properly, one of which is the 
case of preeclampsia because it is the main cause of maternal 
death [28]. The immune system plays an important role in 
promoting the occurrence and development of preeclampsia. 
Wang et al [29] identified significant immune of the related 
genes for predicting the occurrence of preeclampsia. Women 
with preeclampsia are more likely to develop acute kidney 
injury, placental abruption, and postpartum hemorrhage 
syndrome before they give birth [30]. Reddy et al [31] 
evaluated the related application of a broader definition of 
hypertension and the most appropriate definition of end-organ 
dysfunction because there is still controversy over the 
definition that has been used so far. 

Based on the description above, this study aims to obtain 
predictor features that are independent and have a significant 
effect on preeclampsia by using the Chi-square test, also to 
compare the performance of fitting the logistic regression 
model obtained using Newton Raphson algorithm and gradient 
descent by popular criteria used as classification model 
performance measure. 

The paper consists of five sections. The remaining sections 
include Section 2 which described the proposed method in 
detail, namely the feature selection method with a filter 
approach using the Chi-square test, the cost function in 
predictive modeling, and both learning algorithms i.e. Newton 
Rapson and gradient descent. The presentation of empirical 
data, both of response and predictor features are given in 
Section 3, while in Section 4, the logistic regression model and 
its performance are discussed, both the model generated by the 
Newton Raphson and algorithm gradient descent. Conclusions 
and recommendations for further research are given in 
Section 5. 

II. PROPOSED METHOD 

A good model is simple and has high performance. One of 
the characteristics of the simple model is that it involves a 
small number of predictor features. Model parameters estimate 
are carried out in the training process using an optimization 
technique such as Maximum likelihood. When the log-
likelihood function is non-linear in its parameters, a numerical 
iteration algorithm can be used to obtain an estimator of the 
model parameters. In this section, we will discuss the test of 
dependencies for feature selection, the score function in 
maximum likelihood, the Newton Raphson and gradient 
descent algorithm. 

A. Chi Square Test for Feature Selection 

In machine learning, the predictor and the response features 
are expected to have a relationship (dependency) while 
between two predictor features do not have a relationship [32]. 
The chi-square test is useful for evaluating the correlation 
between two categorical features. The chi-square (χ2) statistical 
test has the null hypothesis i.e. two categorical features are 
independent versus the alternative hypothesis i.e. two 
categorical features are dependent [33]. The null hypothesis is 

rejected when the 𝑃(𝜒𝑑𝑓
2  > 𝜒2 statistic) is less than 0.05 (the 

p-value is less than 0.05) and otherwise the null hypothesis not 
able be rejected. 

The main idea of the chi-square test is to compare the 
observed values in the data with the theoretically expected 
values and test whether the values are related to each other. 
The contingency table associated with both categorical features 
is created to support the calculation of the chi-square value. 
The formula of chi square statistic is the following [34]: 

𝜒2 = ∑ ∑
(𝑂𝑖,𝑗−𝐸𝑖,𝑗)

2

𝐸𝑖,𝑗

𝑐
𝑗=1

𝑟
𝑖=1              (1) 

Where 𝜒2 is Chi square statistic, 𝑂𝑖,𝑗 is the observed value 

and 𝐸𝑖,𝑗  is the expected value of two nominal variables. The 

Chi square statistic has a degree of freedom (df) of (𝑟 −
1)(𝑐 − 1). The 𝐸𝑖,𝑗 value can be calculated by formula: 

𝐸𝑖,𝑗 =
∑ 𝑂𝑖,𝑗

𝑐
𝑘=1 ∑ 𝑂𝑘,𝑗

𝑟
𝑘=1

𝑁
             (2) 

Where ∑ 𝑂𝑖,𝑗
𝑐
𝑘=1  is the sum of the 𝑖𝑡ℎcolumn, ∑ 𝑂𝑘,𝑗

𝑟
𝑘=1  is 

the sum of the 𝑘𝑡ℎcolumn, and N is the total instance. 

When the evaluation of dependency between predictor and 
response feature, the expected decision is to reject the null 
hypothesis and the associated predictor feature is kept as the 
member of predictor variable. In other side, when the 
evaluation of dependency between 2 predictor features, the 
expected decision is to accept the null hypothesis that means 
both categorical features are kept as the member of predictor 
features. 

B. Score Function in Maximum Likelihood Estimation 

The goal of a predictive model is to make the correct 
prediction of the target value for a previously unseen data item. 
A score function is a function of the difference between the 

real answer 𝑦(𝑖) and the predicted value 𝑓 ̂(𝑥(𝑖); 𝜃)  [35]. 

Consider the n instances hawing the response feature 𝑦(𝑖) and 

predictor feature 𝑥(𝑖) = [𝑥1, 𝑥2 ⋯ 𝑥𝑝]  for 𝑖 = 1,2,3, … , 𝑛 . 

Assume 𝑦(𝑖) = 𝜃T𝑥(𝑖) + 𝜀(𝑖)  is a regression model structure 

having as many as p unknown parameters. The 𝜀(𝑖) is a random 
noise (error) which is the un-modeled effect. By assuming 

𝜀(𝑖)~𝑁𝐼𝐼𝐷(0, 𝜎2), the probability density function of 𝜀(𝑖) can 
be stated such as the equation (3) following [36]. 

𝑃(𝜀(𝑖)) =
1

√2𝜋𝜎
exp (

−(𝜀(𝑖))
2

2𝜎2 )            (3) 
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The posterior probability with the unknown parameter 𝜃 is 

𝑃(𝑦(𝑖)|𝑥(𝑖); 𝜃) =
1

√2𝜋𝜎
exp (

−(𝑦(𝑖)−𝜃T𝑥(𝑖))
2

2𝜎2 )           (4) 

The equation (4) means that 𝑦(𝑖)|𝑥(𝑖); 𝜃~𝑁(𝜃T𝑥(𝑖), 𝜎2) 

and it also is called the likelihood function. The following is 
the likelihood function of n instances: 

ℒ(𝜃) = 𝑃(𝑦⃗|𝑋; 𝜃) 

= ∏ 𝑃(𝑦(𝑖)|𝑥(𝑖); 𝜃)

𝑛

𝑖=1

 

= ∏
1

√2𝜋𝜎
exp (

−(𝑦(𝑖) − 𝜃T𝑥(𝑖))
2

2𝜎2
)

𝑛

𝑖=1

 

ℓ(𝜃) = 𝑛 ln
1

√2𝜋𝜎
+ ∑

−(𝑦(𝑖)−𝜃T𝑥(𝑖))
2

2𝜎2
𝑛
𝑖=1            (5) 

The log likelihood is 

ℓ(𝜃) = log ℒ(𝜃) ≈ ln ℒ(𝜃)   

= ln ∏
1

√2𝜋𝜎
exp (

−(𝑦(𝑖) − 𝜃T𝑥(𝑖))
2

2𝜎2
)

𝑛

𝑖=1

 

= ∑ [ln
1

√2𝜋𝜎
+ ln exp (

−(𝑦(𝑖) − 𝜃T𝑥(𝑖))
2

2𝜎2
)]

𝑛

𝑖=1

 

ℓ(𝜃) = 𝑛 ln
1

√2𝜋𝜎
+ ∑

−(𝑦(𝑖)−𝜃T𝑥(𝑖))
2

2𝜎2
𝑛
𝑖=1            (5) 

Maximum Likelihood Estimation method is how to choose 
𝜃 to maximize ℓ(𝜃) in the equation (5) by the first derivative 
with respect to 𝜃 and set its to 0 [37]. All term in equation (5) 
involving the 𝜃 parameter is only the second part numerator i.e. 
the sum square of error which must be minimized to get the 
ℓ(𝜃)  maximum. In the other word, to obtain the optimum 
parameter 𝜃  through MLE is equivalence to minimize the 
equation (6) also called as the score function of regression 
model which is the negative of log likelihood ℓ(𝜃). 

Minimize 

𝐽(𝜃) =
1

2
∑ (𝑦(𝑖) − 𝜃T𝑥(𝑖))

2𝑛
𝑖=1             (6) 

Where 𝐽(𝜃)  is called as a loss or cost function of a 
regression model. 

A binary classification model has the response feature 
of 𝑦𝜖{0,1}. In the logistic regression case, the classifier model 
structure is a sigmoid function which has a primary task to 
separate both classes or as a boundary curve between 2 classes. 
Suppose the sigmoid formula of an instance is stated in the 
following: 

ℎ𝜃(𝑥) = 𝑔(𝜃T𝑥) =
1

1+𝑒−𝜃T𝑥
            (7) 

It is expected that  ℎ𝜃(𝑋)𝜖[0,1]  with  𝑃(𝑦 = 1|𝑋; 𝜃) =
ℎ𝜃(𝑋)  , and  𝑃(𝑦 = 0|𝑋; 𝜃) = 1 − ℎ𝜃(𝑋) . The posterior 

probability of a binary classification follows a binomial 
distribution as the following: 

𝑃(𝑦|𝑋; 𝜃) = ℎ𝜃(𝑋)𝑦(1 − ℎ𝜃(𝑋))
1−𝑦

 

The n instances likelihood function is expressed as the 
following: 

ℒ(𝜃) = 𝑃(𝑦⃗|𝑋; 𝜃) 

= ∏ 𝑃(𝑦(𝑖)|𝑋(𝑖), 𝜃)

𝑛

𝑖=1

 

= ∏ ℎ𝜃(𝑋)𝑦(𝑖)
(1 − ℎ𝜃(𝑋))

1−𝑦(𝑖)
𝑛

𝑖=1

 

The log likelihood function for binary classification is 

ℓ(𝜃) = log ℒ(𝜃) 

∑ [𝑦(𝑖) log ℎ𝜃(𝑋(𝑖)) + (1 − 𝑦(𝑖)) log (1 − ℎ𝜃(𝑋(𝑖)))]𝑛
𝑖=1      (8) 

The score function of a binary classification model is the 
negative of ℓ(𝜃) which has the popular name called as cross 
entropy loss function as the following [38]. 

𝐽(𝜃) = − ∑ [𝑦(𝑖) log ℎ𝜃(𝑋(𝑖)) + (1 − 𝑦(𝑖)) log (1 −𝑛
𝑖=1

ℎ𝜃(𝑋(𝑖)))]              (9) 

Machine learning model is trained by minimizing loss 
function to yield the estimate parameter 𝜃. 

C. Newton Raphson and Gradient Descent Algorithm 

A way to obtain the estimate parameter 𝜃 is by maximizing 
the log likelihood function ℓ(𝜃) through the first derivative 
with respect to 𝜃 and to be set 0. Because the ℓ′(𝜃) has non 
linear form, the analytic (close form) solution can not be 
obtained. A numerical approach through the iterative method 
can be used to handle the problem. Newton's method was 
originally intended to find the roots of an equation by 
determining the value of the function to be 0 (to find the root of 
𝑓(𝜃) = 0)  [39]. Consider that the gradient (slope) of a line 
equation is defined as the following: 

𝑓′(𝜃(0)) =
ℎ𝑒𝑖𝑔ℎ𝑡

𝑏𝑎𝑠𝑒
=

𝑓(𝜃(0))

∆
, so ∆ =

𝑓(𝜃(0))

𝑓′(𝜃(0))
 

and the other hand  ∆= 𝜃(0) − 𝜃(1) (i.e. base which is 
difference between 2 of x-coordinate values). For a stage t, a 
new x-coordinate can be expressed as the following. 

𝜃(𝑡+1) ≔ 𝜃(𝑡) −
𝑓(𝜃(0))

𝑓
′(𝜃(0))

 , for 𝑓(𝜃) = ℓ′(𝜃) then it is obtained  

𝜃(𝑡+1) ≔ 𝜃(𝑡) −
ℓ′(𝜃)

ℓ′′(𝜃)
 

𝜃(𝑡+1) ≔ 𝜃(𝑡) + 𝐻−1∇𝜃ℓ(𝜃)          (10) 

Where Hessian H is defined as 𝐻𝑖𝑗 =
𝜕2ℓ(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
 and ∇𝜃ℓ(𝜃) =

ℓ′(𝜃). The equation (10) is the iterative formula of Newton 
Raphson algorithm [40]. The stopping criteria can be used 
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either a iteration number or a threshold value desired by user. 
So the solution of the Newton Raphson is a value that 
maximize the log likelihood function ℓ(𝜃). 

In the machine learning approach, a gradient descent (GD) 
is an algorithm that minimizes the cost function 𝐽(𝜃) such as 
stated in equation (9). The parameters that minimize 𝐽(𝜃) are 
obtained using a search algorithm that starts with a "initial 
guess" value by repeatedly changing it to make 𝐽(𝜃) smaller 
until it is expected to converge to a value. Here is the formula 
of the GD algorithm which starts with an initial value, and is 
repeatedly updated [41]. 

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃)           (11) 

The GD algorithm can be implemented when the partial 
derivative on the right-hand side of equation (9) has been 
known. Suppose there is 1 instance (x, y), so the summation 
term in the definition of 𝐽(𝜃)  on the equation (8) can be 
negligible. 

𝜕

𝜕𝜃𝑗

𝐽(𝜃)  =
𝜕

𝜕𝜃𝑗

(− ℓ(𝜃)) 

𝜕

𝜕𝜃𝑗

𝐽(𝜃)  = − (𝑦
1

𝑔(𝜃T𝑥)

− (1 − 𝑦)
1

1 −  𝑔(𝜃T𝑥)
)

𝜕

𝜕𝜃𝑗

𝑔(𝜃T𝑥) 

= − (𝑦
1

𝑔(𝜃T𝑥)
− (1 − 𝑦)

1

1 −  𝑔(𝜃T𝑥)
) 𝑔(𝜃T𝑥)(1

−  𝑔(𝜃T𝑥))
𝜕

𝜕𝜃𝑗

𝜃T𝑥 

= − (𝑦(1 −  𝑔(𝜃T𝑥)) − (1 − 𝑦)𝑔(𝜃T𝑥)) 𝑥𝑗   

= −(𝑦 −  𝑔(𝜃T𝑥))𝑥𝑗 

So, it is found that the first derivative of the loss function 
classification is 

𝜕

𝜕𝜃𝑗
𝐽(𝜃) = −(𝑦 −  ℎ𝜃(𝑥))𝑥𝑗          (12) 

The gradient descent iterative formula is 

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃)           (13) 

By substituting the equation (12) into the equation (13), It 
leads to the updating parameter final formula of the GD 
algorithm as the following: 

𝜃𝑗 = 𝜃𝑗 + 𝛼 ∑ (𝑦(𝑖) − ℎ𝜃(𝑋(𝑖)))𝑋𝑗
(𝑖)𝑛

𝑖=1          (14) 

Where 𝛼  is a learning rate determined together with a 
stopping criteria value such as a threshold or iteration number 
before the training model is started. 

III. DESCRIBING DATA 

The data used in this study are the secondary data as many 
as 205 instances obtained from the Center of Child 
Development Studies at the Wira Husada Nusantara Midwifery 

Academy Malang in 2021. The data set consist of a response 
feature, namely preeclampsia status, and 7 predictor features, 
namely the factors affecting preeclampsia include age, parity, 
history of hypertension, pregnancy interval, household 
harmony, consumption of salty foods, consumption of fruits, 
and vegetables. The description of features in the data set is 
stated in Table I. 

TABLE I. CLASS LABEL DISTRIBUTION IN THE DATASET 

Feature name Class label 
Label 

distribution 

Preeclampsia (Y) [No, Yes] [140, 65] 

Age (X1) 
[No risk, 
Risk] 

[133, 72] 

Parity (X2) 
[No risk, 

Risk] 
[133, 72] 

History of Hypertension (X3) [No, Yes] [135, 70] 

Pregnancy Interval (X4) 
[No risk, 

Risk] 
[153, 52] 

Household Harmony (X5) [Yes, No] [145, 60] 

Salty Food Consumption (X6) [No, Yes] [116, 89] 

Fruits and Vegetables Consumption 
(X7) 

[Yes, No] [141, 64] 

All features in the data set are categorical consisting of 2 
class labels, namely [No or No risk, Yes or Risk] except for X5 
and X7 features which have class labels [Yes, No]. The class 
label in the first order is worth 0, while the class label in the 
second-order is worth 1. In the target feature y, the proportion 
of class 0 is 68% and the proportion of class 1 is 32%. The 
distribution of class labels on the predictor features is very 
similar to the distribution of class labels on the target features, 
except that the X6 feature has a distribution of class labels of 
58% and 42% for class 0 and class 1. Imbalance class on the 
target feature should receive serious attention in building a 
classification model. Fortunately, in this data set, both the 
target and predictor features have a distribution of class labels 
that are classified as balanced. 

IV. RESULT AND DISCUSSION 

This section initially discusses feature selection by 
evaluating the dependencies between target and predictor 
features. The predictor features that have significant 
dependencies are preserved as the final candidate features that 
are evaluated for their independence. The final predictor 
features are selected from the final candidate features that are 
independent of each other. The classification model parameters 
associated with the final predictor feature are estimated using 
the Newton Rapson and Gradient descent algorithms. The 
performance of the two models is evaluated using several 
measures that are popularly used in classification. 

A. Heuristic Feature Selection 

Dependencies between two categorical features can be 
evaluated using Chi-square statistic which is calculated based 
on the contingency table formed from these two features. The 
contingency table between the target feature (Preeclampsia) 
and the Parity feature is presented in Table II. 

The values in the cells of the contingency table are the 
observed values between the two categories (combination of 2 
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labels) derived from the two features. The observation values 
are compared with the expected values calculated using 
formula (2). Then the Chi-square statistic was calculated using 
formula (1). Table III presents the Chi-square statistic and 
associated p-value of the dependency measure between target 
and predictor feature. 

All p-values in Table III are less than 0.05 (level of 
significance) which means that all predictor features have a 
significant dependence on the target feature. The evaluation 
between predictor features was based on the Chi-square 
statistic and the corresponding p-values which are presented in 
Table IV and Table V, respectively. 

TABLE II. THE CONTINGENCY TABLE BETWEEN PARITY (X1) AND 

PREECLAMPSIA (Y) 

Parity 
Preeclampsia 

No Yes Total 

No Risk 108 25 133 

Risk 32 40 72 

Total 140 65 205 

TABLE III. THE CHI SQUARE STATISTIC AND P VALUE OF DEPENDENCY 

BETWEEN PREDICTOR AND RESPONSE 

Predictor Chi square P value 

X1 136.59 0 

X2 29.15 0 

X3 166.76 0 

X4 10.76 0.00104 

X5 57.47 0 

X6 98.53 0 

X7 16.95 4.00E-05 

TABLE IV. THE CHI SQUARE STATISTIC OF DEPENDENCY AMONG 2 

PREDICTORS 

Feature X1 X2 X3 X4 X5 X6 X7 

X1 205.0 1.842 2.168 10.73 37.06 2.316 13.23 

X2 1.842 205.0 1.977 21.35 12.35 2.742 13.23 

X3 2.168 1.977 205.0 12.01 79.30 2.386 17.47 

X4 10.73 21.35 12.01 205.0 17.27 13.68 4.000 

X5 37.06 12.35 79.30 17.27 205.0 34.44 13.94 

X6 2.316 2.742 2.386 13.68 34.44 205.0 13.79 

X7 13.23 13.23 17.47 4.000 13.94 13.79 205.0 

TABLE V. THE P VALUE OF DEPENDENCY AMONG 2 PREDICTORS 

Feature X1 X2 X3 X4 X5 X6 X7 

X1 0 0.117 0.092 0.001 0 0.082 0.000 

X2 0.117 0 0.107 0 0.000 0.061 0.000 

X3 0.092 0.107 0 0.001 0 0.078 0 

X4 0.001 0 0.001 0 0 0.000 0.046 

X5 0 0.000 0 0 0 0 0.000 

X6 0.082 0.061 0.078 0.000 0 0 0.000 

X7 0.000 0.000 0 0.0456 0.000 0.000 0 

The independent features are obtained by using the grid 
search method. The first time the X1 feature is used as a search 
base i.e. to look for a p-value greater than 0.05 (significant 
level) in the X1 row, and the results show that the p-values of 
the X2, X3, and X6 features are greater than 0.05 that means 
features X1 are independent to features X2, X3, and X6. Next, 
feature X2 as the basis for searching and do checking whether 
the p-value of X3 and X6 in row X2 is greater than 0.05, lastly, 
feature X3 as the basis for searching and do checking whether 
the p-value of X6 in row X3 is greater than 0.05. The p-values 
in Table V which are greater than the significant level are 
marked with different colours. Thus the predictor features that 
have a significant dependence on the target feature and are also 
significantly independent of each other are features X1, X2, 
X3, and X6. These four features are finally used as predictor 
features of the logistic regression model to be built. 

B. Model with the Newton Raphson Algorithm 

The Newton Raphson algorithm is widely implemented in 
various statistical data analysis software, including R and SAS, 
which are statistical computing software that is popular among 
the statistician community. By setting the number of iterations 
= 1000 and the threshold value = 0.0001, the parameter 
estimators of the logistic regression model are presented in 
Table VI. 

Based on the parameter estimator values in the second 
column of Table VI, the logistic regression model, namely the 
posterior probability of an instance as a member of class 0 is 
expressed in equation (15) as follows: 

𝜋(𝑥) =  
exp(

−13.1080+4.3990𝑋1(1)+5.2480𝑋2(1)+

+7.9540𝑋3(1)+4.6360𝑋6(1)
)

1+exp(
−13.1080+4.3990𝑋1(1)+5.2480𝑋2(1)+

+7.9540𝑋3(1)+4.6360𝑋6(1)
)

        (15) 

If the coefficient is positive, it means that it contributes to 
support for class 0, on the other hand, a coefficient that is 
negative means that it contributes to support for class 1. All of 
coefficients except the intercept support for class 0 where the 
feature X3 has the highest contribution to support for class 0. 

The ability of the model to predict the instances used to 
build the logistic regression model is determined based on the 
confusion matrix, which is a matrix whose elements state the 
number of instances that were predicted correctly or the 
number of instances that were predicted incorrectly by the 
logistic regression model in equation (15). The Table VII 
presents the confusion matrix of model in equation (15). 

TABLE VI. THE ESTIMATE MODEL PARAMETERS RESULTED BY THE 

NEWTON RAPHSON AND GRADIENT DESCENT 

Feature 𝜷̂𝒋 of Newton Raphson 𝜷̂𝒋 of Gradient descent 

Intercept -13.11 -10.02 

X1 4.399 3.760 

X2 5.248 3.688 

X3 7.954 6.046 

X6 4.636 3.575 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

124 | P a g e  

www.ijacsa.thesai.org 

TABLE VII. THE CONFUSION MATRIX WITH NEWTON RAPHSON 

ALGORITHM 

Actual Class 
Predicted Class 

Class 0 Class 1 

Class 0 140 0 

Class 1 28 37 

Based on Table VII, it can be seen that there is no instance 
of the class 0 which is predicted to be wrong. However, there 
are the 28 instances of the 65 instances of the class 1 which are 
predicted to be wrong. This logistic regression classification 
model with Newton Raphson algorithm turned out to produce a 
model that was only able to detect the sensitivity of the model 
in that the risk of misclassifying people with preeclampsia was 
very high, which was above 40%. The model performance is 
presented in Table VIII. 

TABLE VIII. PERFORMANCE OF MODEL WITH NEWTON RAPHSON AND 

GRADIENT DESCENT ALGORITHM 

Performance Newton Raphson Gradient descent 

Accuracy 0.8634 0.9854 

Precision 0.5692 0.9538 

Recall 1 1 

F1 Score 0.7255 0.9764 

The model's accuracy performance is 86.34% meaning that 
the model is able to predict instances according to their actual 
class of 86.34%. While the performance of the F1 score of 
72.55% means that the model is able to correctly predict the 
occurrence of preeclampsia cases by 72.35%. 

C. Model with Gradient Descent Algorithm 

As described in section 2, the gradient descent algorithm 
works based on the minimization of the cost function. In this 
research, the stochastic gradient descent method is applied by 
setting the learning rate hyper-parameter value = 0.015, and the 
number of iterations = 1000. After the training process is 
complete, the results of the cost function graph in Fig. 1, and 
the parameter estimator in the last column of Table VI. 

Fig. 1 is the learning curve of the logistic regression model 
shows the curve of cross-entropy loss in which starting from 
the 200th iteration there is only a fairly small change and the 
curve tends to slope after the 800th iteration. This curve also 
illustrates that the selection of a learning rate of 0.015 is the 
right value, namely in the initial iterations. , the curve does not 
experience a very sharp decrease (occurs when the learning 
rate value is too large) or the curve decreases very slowly 
(occurs when the learning rate is too small). 

Based on the estimated parameter values which are in the 
last column of Table VI, the logistic regression model obtained 
with GD algorithm is as follows. 

𝜋(𝑥) =  
exp(

−10.0160+3.7602𝑋1(1)+3.6878𝑋2(1)+

+6.0457𝑋3(1)+3.5749𝑋6(1)
)

1+exp(
−10.0160+3.7602𝑋1(1)+3.6878𝑋2(1)+

+6.0457𝑋3(1)+3.5749𝑋6(1)
)

        (16) 

 

Fig. 1. The Learning Curve of the Logistic Regression Model. 

In this logistic regression model, all of the coefficients 
except the intercept support for the class 0 where the X3 
feature has the highest contribution to support for the class 0. 
Although the coefficients generated by the GD algorithm have 
a similar pattern to the coefficients generated by the Newton 
Rapson algorithm, the two models have different 
performances. The confusion matrix and performance 
measures of the logistic regression model with the GD 
algorithm are presented in Table VIII and Table IX. 

TABLE IX. THE CONFUSION MATRIX WITH THE GRADIENT DESCENT 

ALGORITHM 

Actual Class 
Predicted Class 

Class 0 Class 1 

Class 0 140 0 

Class 1 3 62 

Table IX shows that only 3 instances of the 65 instances 
from the class 1 are predicted to be wrong and also all of 
instances from the class 0 are predicted to be correct. The 
Gradient descent method produces a logistic regression 
classification model that is able to detect the sensitivity of the 
model, namely the risk of misclassification of patients with 
preeclampsia case is very low, which is less than 5%. 

The last column of Table VIII shows very clearly that the 
logistic regression classification model with gradient descent 
algorithm has superior performance than the one with Newton 
Raphson algorithm. It has the model's accuracy performance is 
98.54% and the performance of the F1 score of 97.64%. 

V. CONCLUSION 

Feature selection using Chi-square test on factors that 
influence the incidence of pregnant women experiencing 
preeclampsia in Malang, Indonesia, obtained 4 significant 
features, namely consisting of age (X1), parity (X2), history of 
hypertension (X3), and consumption of salty foods (X6). The 
logistic regression model with the gradient descent algorithm 
has a lower risk of error in predicting cases of preeclampsia 
than the logistic regression model generated with the Newton 
Raphson algorithm. The model with the gradient descent 
algorithm has an accuracy performance of 98.54% and an F1 
score of 97.64%, while the model with the Newton Raphson 
algorithm has an accuracy performance of 86.34% and an F1 
score of 72.55%. 
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The dataset used in this study is too simple, which only 
consists of 7 predictor features, all of which are of binary 
categorical type. The comparison of the two algorithms will be 
more interesting if a dataset with a large number of predictor 
features is used and also involves both categorical and numeric 
features. Furthermore, the feature selection method used, not 
only involves the Chi-square test but also involves analysis of 
variance (F test) and also the Spearman correlation test. 
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