
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

211 | P a g e  

www.ijacsa.thesai.org 

Deep Learning Framework for Physical Internet Hubs 

Inbound Containers Forecasting 

El-Sayed Orabi Helmi
1
, Osama Emam

2
, Mohamed Abdel-Salam

3
 

Dept. of Business Information Systems, Faculty of Commerce and BA, Helwan University, Cairo, Egypt
1, 3 

Dept. of Computer Science, Faculty of Computing and AI, Helwan University, Cairo, Egypt
2 

 

 
Abstract—This article presents a framework for physical 

internet hubs inbound containers forecasting based on deep 

learning and time series analysis. The inbound containers 

forecasting is essential for planning, scheduling, and resources 

allocation. The proposed framework consists of three main 

phases. First, the inbound historical transaction has been 

processed to find out the training window size (lags) using auto 

correlation function (ACF) and partial autocorrelation function 

(PACF). Second, the framework uses convolutional neural 

network (CNN) and recurrent neural network (RNN) as training 

networks for the historical time series data in two techniques. 

The proposed framework uses univariate and multivariate time 

series analysis to explore the maximum forecasting outcomes. 

Last, the framework measures the accuracy and compares the 

forecasting output using mean absolute error matrix (MAE) for 

both approaches. The experiments illustrated that RNN forecasts 

univariate inbound transaction with total 5.0954 MAE rather 

than 5.0236 for CNN. The CNN outperforms multivariate 

inbound containers forecasting with 0.7978 MAE. All the results 

has been compared with autoregressive integrated moving 

average (ARIMA) and support vector machine (SVR). 
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I. INTRODUCTION 

All Physical internet (π) is a global logistics system first 
introduced by [1] in the early of this decade. The main 
objective of the physical internet is to connect all the logistics 
partners (customers, suppliers, shippers) in an intelligent way. 
π Hub is one of the main milestones in the future logistics 
network. π hub is responsible for distributing goods and items 
through the logistics network. These hubs should be managed 
and controlled in an intelligent manner to perform the complex 
logistics challenges. Scheduling and resources localization are 
two of these challenges. Also, moving items in and out the hub 
requires clear vision and scalable solutions [2]. Machine 
learning gives the researchers the ability to contribute solutions 
in different research fields. Machine learning, especially deep 
learning proposed research outperformed in classification, 
clustering, and regression analysis [2]. 

In 2012 [3] proposed the main functions that should be in 
any railway πhub. These functions have been measured using 
key performance indicators. These indicators measure the 
performance of the proposed design of the πhub through three 
perspectives. The first is from the customer's perspective. The 
second is suppliers’ point of view. The last indicators measure 
the railway worker's satisfaction. The researchers in this case 

study faced some challenges such as determining the number 
of containers that will be inbound in a certain πhub. They 
assumed that 30% of containers on each train will be unloaded 
and reloaded by others in stock containers. Then they 
calculated the estimated unload and reload time to this 
assumption. They also calculated the required time to unload 
and reload all the containers for the entire train. Starting from 
this challenge we tried to forecast the actual or near actual 
containers flow through the πhub. The objective of this 
research is to integrate two deep learning training networks 
with a physical internet providing framework for inbound 
containers forecasting. This framework will forecast the flow 
of goods and items through the π hub based on historical time 
series data. Based on time series analysis and deep learning 
techniques we propose this framework to be a guide for πhub 
resource management system aiming to achieve high accuracy 
with minimum inbound forecasting error. 

The prediction process is one of the most difficult 
operations because it is subject to several variables, which 
makes choosing the appropriate algorithms to solve this 
problem very important. Some of the current prediction 
algorithms lack self-learning, such as linear and non-linear 
systems and moving average. And because of the strength in 
the field of deep learning in a number of areas, especially 
machine learning, drones, autonomous cars, computer vision 
and other fields, the research team decided to use deep learning 
algorithms in this research. 

This article is divided into several parts. The first part 
provides an overview of some concepts, previous studies and 
some current analysis methods for time series. The researcher 
also presents in the first part of the article some methods of 
deep learning. As for the second part of the article, it presents 
the proposed framework for forecasting future inbound 
containers quantities in the short term, based on some previous 
data. As for the third part, it presents the results of the 
established experiments, their analysis and comparison with 
some of the current methods of prediction. 

II. THEORETICAL BACKGROUND 

The following section discusses briefly the main concept of 
physical internet, time series analysis, recurrent neural 
network, and convolutional neural network respectively. Some 
related studies will be discussed in section. 

A. Physical Internet 

Physical internet is a global open logistic system. Physical 
internet's main objective is to encapsulate interfaces and 
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protocols to manage physical, digital, and operational 
interconnectivity of the recent logistic functions through one 
global system. New containers, movers, nodes, and hubs have 
been proposed. Through a series of proposed standards and 
functions designs which replaced or integrated with the current 
logistics infrastructure that will replace the entire logistics 
system by 2050 [1]. The Physical Internet is structured in a 
similar way to data packets sent via the standard digital 
Internet. This notion fundamentally alters how commodities 
are designed, relocated, and distributed today. This approach, 
in which the items relocation process is known and 
implemented in an optimal and efficient manner at each 
relocation stage, is critical for all supply chain players. Prior to 
the start of the procedure, it was ensured that it would be 
transparent, efficient, and ecologically friendly [4]. The 
Physical Internet's goal entails enclosing commodities in smart, 
eco-friendly, and adaptable containers ranging in size from a 
shipping container to a little box. It therefore generalizes the 
marine container, which has shaped ships and ports to 
accommodate globalization, and extends containerization to 
logistical services in general. Instead of a warehouse or a truck, 
the Physical Internet relocates the private space's boundary to 
the inside of a container. These modular containers will be 
continuously monitored and directed using the Internet of 
Things to take advantage of their digital interconnection [1,4]. 
Each π container has a unique global identifier, such as the 
MAC address in the Ethernet network and the digital Internet, 
from an informational standpoint. This identifier is physically 
and digitally attached to each π container to ensure 
identification reliability and efficiency. Each π container has a 
smart tag attached to it that acts as its representative agent. 
Through the Physical Internet, it helps to ensure container 
identification, integrity, routing, conditioning, monitoring, 
traceability, and security. Smart tagging allows for the 
distributed automation of a wide range of handling, storage, 
and routing tasks. 

B. Time Series Analysis 

Before going further in our forecasting case study, it is 
essential to briefly illustrate the term time series data analysis 
which is the core foundation of our study. Time series data is 
recording of processes and observations varies over time. 
These observations can either be recorded in continuous points 
or as a set of discrete observations sequentially. These 
observations are exposed to trending, cyclical, seasonality and 
irregular variations. The trend of the observed data may be 
positive or negative in other word increasing or decreasing of 
data values over time. The cycle is a repetition of data behavior 
over a long time. The seasonality is a regular fluctuation of the 
observations at the same week, month or quarter every year. 
The irregularity in the time series data may happen for more 
than one reason. It could be because of noise, outliers, wrong 
data entry or sudden increase or decrease of observations value. 
Different analysis methods and techniques had been proposed 
over years. Time series consists of modeling mathematical 
descriptions estimating separately the four components 
independently. Time series analysis could be presented 
statistically in two approaches. The first approach is univariate 
analysis. The univariate approach is the analysis of single 
variable. The second approach is multivariate analysis 
approach. The multivariate approach is the analysis of two or 

more variables. These variables may be dependent or 
independent variables. Univariate time series are subject to 
descriptive statistical analysis such as central tendency (mode, 
median, and median). It also, subject to dispersion analysis 
such as (variance, range and standard deviation). Multivariate 
analysis is more suitable for real life applications because of its 
high conclusion accuracy. Multivariate includes more than one 
factor of independent variables that influence the variability of 
dependent variables. Multivariate analysis is computational 
intensive. The researchers over years proposed significant 
methods and approaches. Those methodologies can be 
distinguished as ARIMA and nonARIMA methods. Several 
ARIMA stochastic models has been introduced, such as 
autoregressive (AR), moving average (MA), autoregressive 
moving average (ARMA), ARIMA, seasonal ARIMA 
(SARIMA), autoregressive fractionally integrated moving 
average (ARFIMA), and autoregressive conditional 
heteroscedasticity (ARCH) [5]. The ARIMA method has often 
been utilized for various types of univariate time series for 
many years. The ARIMA method has been well developed 
which made this method used in many research fields. 
Recently, many researchers developed nonARIMA methods 
with artificial intelligence [5, 6]. ARIMA model has some back 
draws such as it is computationally costly. It has poor 
performance in Long-term forecasting. Also, seasonal time 
series are not supported by ARIMA model. Today, the use of 
deep learning (DL) techniques has become the most popular 
approach for many machine learning problems, including time 
series forecasting. Deep neural networks have shown a great 
potential to map complex non-ARIMA feature interactions. 
Deep learning models are an alternative solution for forecasting 
because of their accuracy [7, 8]. 

Other researcher used support vector machine in regression 
analysis despite of it has some major disadvantages such as it is 
ineffective for large datasets. The SVM will underperform if 
the number of features for each data point exceeds the number 
of training data samples [9]. 

C. Recurrent Neural Network 

A recurrent neural network (RNN) is a class of artificial 
neural networks (ANN) connections between nodes. RNN is 
made up of a set of nodes connected by edges, where the edges 
have a direction associated with them along with a temporal 
sequence. This allows it to exhibit temporal dynamic behavior. 
Derived from feed forward neural networks, RNNs can use 
their internal state (memory) to process variable length 
sequences of inputs [3]. RNNs are one of the most frequently 
utilized ANN architectures for time series prediction problems. 
They also become popular in natural language processing 
research. RNNs feedback architecture allows cells inherent the 
temporal sequence order and variables dependencies [9]. Long 
Short-Term Memory (LSTM) cell, Elman RNN cell, and the 
Gated Recurrent Unit (GRU) are the most popular RNN 
network architectures in time series modeling and forecasting 
[10]. 

D. Convolutional Neural Networks 

A convolutional neural network (CNN, or ConvNet) is a 
type of deep neural network that is most commonly used for 
image analysis [11]. Based on the shared-weight architecture of 
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the convolution kernels that scan the hidden layers and 
translation invariance properties, they are also known as shift 
invariant or space invariant artificial neural networks (SIANN). 
Multilayer perceptron are regularized variants of CNNs. 
Multilayer perceptron are completely linked networks in which 
each neuron in one layer communicates with all neurons in the 
subsequent layer. These networks' "complete connectivity" 
makes them vulnerable to data over fitting. Regularization 
methods commonly used include adjusting weights as the loss 
function is minimized and randomly trimming connections. 
CNNs take a different method to regularization: they take 
advantage of the hierarchical pattern in data and use smaller 
and simpler patterns embossed in the filters to assemble 
patterns of increasing complexity. As a result, CNNs are at the 
bottom end of the connectedness and complexity spectrum 
[12].This is accomplished by running a filter (or weight matrix) 
over the input and computing the dot product between the two 
at each location (i.e. a convolution between the input and 
filter). Because of this structure, the model can learn filters that 
recognise specific patterns in the incoming data. The idea 
behind using CNNs to anticipate time series values is to learn 
filters that reflect certain recurrent patterns in the series and use 
them to forecast future values. CNNs may function well on 
noisy series because of their layered structure, which allows 
them to eliminate noise in each subsequent layer and extract 
just the important patterns, comparable to neural networks that 
use wavelet transformed time series [13]. 

III. PROPOSED FRAMEWORK 

This framework consists of three phases. The first phase is 
data collection and preprocessing. In this task the framework 
collects, integrates, and preprocesses all the previous inbound 
transactions that have been made in the πhub. This task checks 
the data stationary. If the data is non-stationary data, the 
framework will use the difference technique to convert the data 
to be in stationary status. Section 4 discusses this phase. Deep 
learning is the second phase with 70% of the inbound 
transactions. In this phase the framework feeds the stationary 
data to the learning network (NN, RNN, and CNN) and 
computes the learning rate. The training happens with two 
approaches (univariate, multi-variate). The univariate approach 
is suitable for independent variables. The multi-variate is 
suitable for highly dependent dimensions. Testing and 
validation are the third phase. This phase tests and validates the 
inbound flow prediction against 30% off the collected data. 
Therefore, the framework calculates the accuracy of each 
learning network using mean absolute error technique. Fig. 1 
illustrates the phases of the proposed framework. 

As in Fig. 1, the entire data values must be stationary data 
to avoid the impact of the abnormal and outliers. Also, the 
framework calculates the statistical auto-correlation function 
(ACF) and partial auto-correlation function (PACF) to find out 
the target lag length. Those lags indicate the most appropriate 
forecasting window size, for example predicts 10 days flow 
ahead. Also, the framework ignores the calculation of variables 
independency by making the training in two techniques using 
univariate or multivariate analysis. Despite of the time 
consuming, the use of both techniques make the framework 
suitable for any time series analysis. 

 

Fig. 1. Physical Internet Hubs Inbound Containers Forecasting Proposed 

Framework. 

IV. DATA PRE-PROCESSING 

Regarding the lack of real-life πhubs, we use a store item 
demand forecasting challenge dataset offered by Kaggle [14]. 
Then we select 6 random variables from the dataset to be 
present container volume. Some data preprocessing has been 
made to meet the proposed design of [3] which proposed a 
design for railway πhub. The inbound containers in their 
proposed πhub had 6 main volumes. The container volumes are 
(1.2, 2.4, 3.6, 4.8, 6 and 12 meters). These containers are the 
current intermodal containers. Table I shows the number of 
data points (count), the arithmetic mean, the standard 
deviation, the 1st quartile, the 2nd quartile, the 3rd quartile, the 
minimum, the maximum, interquartile range (IQR) and outlier 
values for each container volume used in this study. 
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TABLE I. THE INBOUND ΠHUB CONTAINERS TIME SERIES DATASET 

SUMMARY (NUMBERS IN 1000S) 

 
Container size in meter  

1.2 m 2.4 m  3.6 m  4.8 m  6 m  12 m  

Count 2922  2922  2922  2922  2922  2922  

Mean 30.95  57.43  36.99  35.6  32.4  55.23  

S.D  17.38  16.67  11.96  23.2  22.9  15.46  

Min  4  13  8  4  3  17  

Q1  18  45  28  18  15  44  

Q2  25  56  36  25  21  55  

Q3  42  68  44  54  52  65  

Max  100  115  81  120  113  108  

IQR 24 23 16 36 37 21 

outlier >78 >102.5 >68 >108 >107.5 >96.5 

As shown in Table I, the training data set contains time 
series data for 6 different containers. Each container has 2922 
observations. It also, shows that the training data is normally 
distributed for all variables with different IQRs and outlier 
values. Although the training dataset is normally distributed, it 
is non-stationary data. Fig. 2 illustrates the non-stationary 
status of the training dataset. 

 

Fig. 2. Non-stationary Time Series Historical Inbound Containers Data. 

As shown in Fig. 2, some fluctuations were observed in the 
training data. It also shows that some repeat behavior (cycle) in 
the data especially for the 2.4 meters, 3.6 meters and 12 meters 
volume containers. 

 

Fig. 3. Time Series Stationary Training Dataset. 

Fig. 2 illustrates regular and predictable changes that recur 
every calendar year (seasonality) in the time series dataset. It 
also shows trend fluctuation at some data point. The difference 
technique has been used to convert the time series to stationary 
status. Fig. 3 shows the stationary data which has been used for 
training the proposed framework. The data was converted to 
the stationary status using the difference method. This phase 
was essential to avoid any bias in the training data, which gives 
better judgment of the forecasting output. 

The proposed framework uses an 8 years stationary dataset 
to perform the learning phase. The network uses 70% of the 
dataset for training, 20% for testing and 10% for validation. 
Furthermore, the autocorrelation function and partial 
autocorrelation function had been used to determine the lags 
length. Although this step can be dispensed with, the researcher 
believes that it may be a good start and is governed by a 
statistical basis that enables the proposed framework to start 
the training process effectively. According to the results of 
ACF and PACF, the lags length of our training was 7, 24 days 
for narrow and wide window forecasting, respectively. The 
next section discusses the network learning, testing and 
validation experiments for CNN and RNN in two approaches. 
These approaches are univariate and multivariate time series 
forecasting. 

V. EXPERIMENTS AND RESULTS 

This section discusses in detail the performed experiments. 
The framework has been implemented using python and 
TensorFlow. The learning networks have been developed for 
both univariate and multivariate with two different input sizes 
to maximize the forecasting outcomes of the proposed 
framework. Also, this section discusses the different shapes of 
the implemented neural networks for narrow and wide input 
window as deep learning univariate and multivariate time 
series forecasting. 

A. Narrow Window Univariate Inbound Containers 

Forecasting 

Univariate time series refers to a time series that consists of 
single (scalar) observations recorded sequentially over equal 
time increments. The proposed implementation of CNN uses 
the previous 6 days to predict the 7th day in the time series 
inbound transaction. Fig. 4 and 5 show the building structure of 
CNN and RNN in the proposed framework experiments. 

As shown in Fig. 4, the implemented CNN consists of 4 
fully connected dense layers and 1 convolutional layer. Each 
layer uses the relu activation function. The relu function has 
been used to maximize the non-linearity behavior of the 
proposed network. This implementation forecasts the 
container's flow for each container volume one by one 
independently. The proposed implementation of RNN uses the 
long-short term memory (LSTM) for prediction. Fig. 5 
illustrates the 6 layers RNN structure. 

As shown in Table II, the total absolute error for the 4 
algorithms is almost the same. But RNN (LSTM) outperforms 
with total MAE 5.0236. It also performs the training of 6 
meters volume container better than SVR by 6 % and CNN by 
10%. 
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Fig. 4. CNN Structure for Multi Layers Forecasting Model. 

 

Fig. 5. RNN Proposed Multilayer Model Implementation. 

TABLE II. UNIVARIATE INDEPENDENT INBOUND NARROW WINDOW 

FORECASTING NETWORKS MEAN ABSOLUTE ERROR 

Container 

volume 

Algorithm  

ARIMA SVR  CNN  RNN (LSTM)  

1.2m  1.2321 0.9522 0.9073 1.0219 

2.4m  1.1201 0.7816 0.8157 0.8055 

3.6m  1.3210 0.8194 0.8504 0.8207 

4.8m  1.2421 0.9451 0.9316 0.8458 

6m  1.4124 0.8414 0.8794 0.7902 

12m  1.3410 0.7470 0.7110 0.7395 

Sum of 

(MAE) error  
7.6687 5.0867 5.0954 5.0236 

B. Univariate Wide Window Inbound Containers Forecasting 

In this series of experiments, the framework uses multi-
steps output forecasting. Those experiments had been carried 
out with the same CNN and RNN previous architecture as in 
Fig. 4 and 5. The only difference in these experiments is that 
we predict 24 days in future rather than one day. The network 
shape is (32, 24, 1). Where 32 are number of neurons is the 
input layers, 24 is output size and 1 is number of features to be 
predicted. These experiments use the historical inbound 
transaction of the 6 container sizes independently to predict the 
flow of each container size individually. Table III illustrates the 
forecasting accuracy measurement. 

C. Multivariate Narrow Window Inbound Containers 

Forecasting 

The possibility of a dependency relationship that could 
exist between different container volumes, especially as stated 
in the proposed design of railway warehouses and the method 
of transporting containers using trains. In order to, give the 
proposed framework realistic and relevant real-life applications 
and our desire to improve the forecast. In these experiments 
series, we used a multivariate time series analysis technique. 
We used the same lag length of narrow univariate forecasting 
window and the structure of CNN and as in Fig. 6. The only 
difference here was using the entire day observations of the 6 
containers volume as one input vector. Also, the output was a 
vector of 6 features each feature represent one of the containers 
volume. The experiments showed that, MAEs were 0.8921, 
0.7934 & 0.9231 for CNN, RNN and SVR model respectively. 

D. Multivariate Wide Window Inbound Containers 

Forecasting 

The framework has been trained to forecast the future flow 
dependently at the same time. The output shape for both CNN 
and RNN is (32, 24, 6). Fig. 7 shows the structure of RNN-
LSTM network. 

As shown in Fig. 7, the RNN (LSTM) network consists of 
6 hidden fully connected feed forward layers. The performed 
experiments proved that CNN outperformed. The mean 
absolute error for SVR, CNN and RNN (LSTM) multivariate 
forecasting is 0.9176, 0.7978 and 0.9151, respectively. These 
experiments showed that CNN proposed architecture performs 
multivariate forecasting better than RNN. 

TABLE III. UNIVARIATE INDEPENDENT WIDE WINDOW INBOUND 

FORECASTING NETWORKS MEAN ABSOLUTE ERROR 

Container volume 
Algorithm 

ARIMA SVR  CNN  RNN (LSTM)  

1.2m  1.3251 0.9904 0.89105 0.8802 

2.4m  1.2134 1.014 0.9003 0.8605 

3.6m  1.3421 0.9948 0.9102 0.7912 

4.8m  1.1012 0.9853 0.8807 0.8014 

6m  1.2115 0.9947 0.8904 0.8114 

12m  1.2341 0.9862 0.8926 0.7812 

Sum of (MAE) error  7.4274 5.9654 5.36525 4.9259 

 

Fig. 6. CNN Multivariate Inbound Forecasting Structure. 
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Fig. 7. Multivariate RNN (LSTM) Forecasting Network Structure. 

VI. CONCLUSION 

The proposed framework forecasts πhub inbound 
containers using CNN and RNN deep learning networks for 
both univariate and multivariate forecasting approaches. ACF 
and PACF have been used to determine better forecasting 
window size based on the status of the training data. The 
difference technique has been used to overcome the non-
stationary training data. All the forecasting results have been 
compared to time series forecasting ARIMA and SVR 
algorithms. It has been found that RNN forecasts the univariate 
independent container flow for short term rather than CNN. 
While CNN performs univariate independent containers flow 
better than RNN and SVR for long term forecasting. On other 
hand in has been found that CNN outperforms forecasting for 
multivariate analysis for both short and long time forecasting. 
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