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Abstract—Heavy rainfall as a consequence of climate change 

have immensely impacted the ecology, the economy, and the lives 

of many. With the variety of available predictive tools, it is 

imperative that performance analysis of rainfall forecasting 

models is properly conducted as a measure for disaster 

preparedness and mitigation. Support Vector Regression 

Machine (SVRM) was utilized in predicting the rainfall of a city 

in a tropical country using a 4-year and 17-month rainfall dataset 

captured from an automated rain gauge (ARG) in Southern 

Philippines, involving parameter cost and gamma identification 

to determine the relationship between past and present values, 

determining optimal cost and gamma parameters to improve 

prediction accuracy, and forecasting model evaluation. The 

SVRM model that utilized Radial Basis Function (RBF) kernel 

function having the parameters of c=100; g=1; e=0.1; p=0.001 

and the lag variable which used 12-hour report with lags up to 

672-timesteps (i-672) demonstrated a Mean Square Error (MSE) 

of 3.461315. With close to accurate forecast between the 

predicted values and the actual rainfall values, the results of this 

study showed that SVRM has the potential to be a viable rainfall 

forecasting model given the proper data preparation, model 

kernel function selection, model parameter value selection and 

lag variable selection. 

Keywords—Support vector regression machines; support vector 
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I. INTRODUCTION 

Climate change is a widespread and growing threat to 
biodiversity and ecosystems globally. One of the disasters 
caused by climate change is heavy rainfall and its frequency is 
noticeable among tropical countries resulting to catastrophic 
disasters such as landslides and flood which led to loss of lives, 
property, and livestock. Rainfall forecasting has received 
immense attention in recent years due to heightened emphasis 
on minimizing life and property losses through proper conduct 
of mitigation and preparedness in disaster risk reduction [1]–
[3]. Rainfall forecasting models need to be evaluated and 
optimized for efficient performance in order for these 
predictive models to be utilized as disaster risk management 
tools that can serve as decision-making tools to alert 
individuals on incoming natural disasters through advance 
notice for the tactical planning of activities and approach [2].  
Support Vector Machines (SVM) with a specific forecasting 
variant known as Support Vector Regression Machines 
(SVRM) is an emerging high performing machine learning 
algorithm used for natural phenomena such as rainfall 
forecasting [4], [5]. SVRM finds a hyperplane in a n-

dimensional space with n-number of features that specifically 
classifies the data points into classes, applying structural risk 
minimization elementary principles to obtain quality 
generalization on a finite number of learning patterns [3], [5]–[8] 
. Since SVRM first plots the inputs into a high-dimensional 
space and looks for a parting hyperplane that maximizes the 
margin between the classes which then uses kernels to find the 
optimal hyperplane, various SVRM models can be developed, 
evaluated and optimized in order to be efficiently used as 
forecasting models to be effectively used disaster risk 
reduction. 

Iligan City in Southern Philippines, has recently been in the 
pathway of typhoons due to climate change. Local authorities 
led by the Iligan City Disaster Risk Reduction Management 
Council (CDRRMC) need to develop decision support tools in 
disaster mitigation, preparedness, response and recovery. 
Despite availability of historical rainfall data, there is a lack of 
a forecasting model to determine rainfall which is essential in 
the resource and mitigation planning in times of disasters. 
Additionally, proper rainfall data preprocessing as well as 
optimal parameter configuration of forecasting models are 
needed to utilize rainfall forecasting tools that yields reliable 
predictive results [2], [7]. This study attempted to conduct 
performance analysis of SVRM models by conducting rainfall 
data preparation, kernel selection, SVRM parameter selection, 
lag variable selection, and implementation of SVRM models. 
Through model verification in terms of error computation, an 
assessment on the predictive performance of these SVRM 
models was conducted to determine the reliability of the 
forecasting model. By conducting performance analysis, this 
study hopes to contribute in the on-going efforts to evaluate 
and optimize efficient performance of rainfall forecasting 
models that can be used as decision-making tools to save both 
lives and property. 

II. METHODOLOGY 

A. Rainfall Data Preparation 

The rainfall data preparation phase of this study involves 
three activities namely data selection, data correction and data 
representation. Data selection is the process of determining the 
appropriate dataset input variable along with its corresponding 
time-range as input layer data [3], [9]. The researchers 
considered rain, rain rate, air temperature, humidity, air 
pressure, water level and solar radiation as candidate 
meteorological data that can be possible datasets to be selected 
[1], [2], [9]. Input data for this study were obtained from the 
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Philippine Department of Science and Technology - Advance 
Science and Technology Institute (DOST-ASTI) which were 
collected rainfall data from Automated Rain Gauges (ARG) 
having 15-minute intervals with a unit of measurement in 
millimeters. The acquired dataset may have incomplete, 
inconsistent, and noisy values which can be due to incomplete 
data lacking attribute values, lacking certain attributes of 
interest. Thus, data correction by finding, checking, or 
eliminating corrupt and inaccurate records from the rainfall 
dataset was then conducted to discriminate incomplete, 
incorrect, or irrelevant parts of the dataset. Manual visual 
inspection of the raw rainfall data from the obtained 
spreadsheet file was initially conducted to determine the extent 
of the data cleaning as well as data recording anomalies such as 
missing rainfall data brought about by ARG limitations. 
Further examination of the dataset was performed that 
examined aggregate data, noisy data containing errors or 
outliers, and inconsistent data containing discrepancies in 
codes or names [3], [10]. 

As shown in Fig. 1, the acquired rainfall data is device-
dependent that is why data representation which involved 
representation processing of key variables and attributes was 
then conducted. The raw dataset also contains the location of 
the ARG (LOCATION), latitude of the ARG (LATITUDE), 
longitude of the ARG (LONGITUDE), elevation of the ARG 
(ELEVATION), date of installation of the ARG (DATE 
INSTALLED) and date of reading and amount of rainfall 
(DATE/TIME READ; RAINFALL AMOUNT). The rainfall 
data captured in 15-minute observations in terms of millimeters 
along with its date of reading was considered in this study as 
the training, testing and validation data sets following the data 
partitioning process. 

 

Fig. 1. Sample Raw Data from the ARG. 

B. SVRM Model Design 

The design of an SVRM forecasting models depends on a 
set of specific selection processes which includes kernel 
selection, parameter selection, and architecture selection [2], 
[3], [6], [10]–[12]. As shown in Fig. 2, SVRM utilizes kernel 
functions to transform and map training data from an input 
space into a high dimensional feature space in which it 
searches for an optimal classification hyperplane that separates 
the data into different categories [10], [12]–[14]. Configured by 
the researchers, the kernel function is the component of the 
SVRM that plays a central part in the assimilation of data and 
transforming such data for pattern discovery and general types 
of relations such as classifications, rankings, cluster, and 
regressions [13], [14]. Kernel selection as conducted by the 
researchers involves the testing of different kernel functions to 
determine the optimal parameters needed to build the SVRM 
model. The data set was tested with Linear Function Kernel– 
which excels in linearly separable data, and Radial Basis 

Function (RBF) Kernel–which is excellent with nonlinear data 
sets. The study followed proposed the methodology to come up 
with the best fitted kernel function for an SVRM rainfall 
forecasting model [15]. The process involved utilizing the grid 
search method to produce an optimal parameter which was 
used as a reference parameter for the kernel selection process 
in an integrated development environment (IDE) using the 
entire training set and evaluated on the testing set. The kernel 
functions were then observed for their forecasting accuracy and 
behavior with the model having the lowest Mean Squared Error 
(MSE) adopted and used in the parameter selection phase. 

 

Fig. 2. Model Design Flow. 

As supported by studies which used the MSE error metric 
in assessing the accuracy of the SVRM models, the selection 
for which parameters was included in model revolved around 
the selected kernel [16], [17]. The researchers then conducted 
parameter selection where optimal values of key parameters 
are selected for forecasting unknown data [4], [11], [12], [16], 
[17]. The process involves utilizing the Grid Search method to 
find an optimal combination value of the key parameters Cost 
(C), Gamma (g), and Epsilon (e). Table I shows that the key 
parameter (C) defines the penalty for errors, the parameter (g) 
influences the hyper-line flexibility, while the parameter (e) 
defines the upper and lower bound of the fractions of the 
support vectors relative to the total number of training 
examples [3], [6], [10]–[12], [17]. 

Utilizing the selected kernel from the kernel selection 
process, testing of different parameter values were determined 
with the use of Grid Search and an Exhaustive Parameter 
Search methodology using the data training and testing sets. 
This is to validate the reliability of Grid Search in searching for 
optimal parameter values and to also find the best fitted 
parameters for the final model [3], [15]. The study also utilized 
a feature space which was used in both Grid Search and 
Exhaustive Parameter Search methodologies. The parameter 
values were evaluated and observed for their forecasting 
accuracy. Parameter values with the lowest MSE were selected 
as the optimal parameter values for the kernel function and 
final forecasting model. The kernel adopted along with the 
selected parameter values were used to select the lag variable 
that were used in the final model. 

TABLE I. PARAMETERS AND ITS FUNCTION 

PARAMETERS FUNCTION 

Cost Penalty (C) Defines the penalty for errors 

Gamma (g) Influences the hyper-line flexibility 

Insensitive Loss Function (e) Width of ε-insensitive zone/tube 

Epsilon (p) The set of epsilon function in epsilon SVR 
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Lag variable selection, where optimal value for the lagged 
variables were selected, was used by the researchers to 
determine the relationship between past and current values of 
the series which can be captured by a propositional learning 
algorithm like the SVRM algorithm. Fundamentally, the value 
of the lagged variables created regulates the size of the time 
window [6], [10]. This step involves evaluating 2 lag variable 
values wherein each lag value utilized 4 years, 7 months, and 
30 days’ worth of rainfall data in periods of 15 minutes. The 
first lag variable value (Lag Variable I) had a per-12-hour 
report with lags up to 672-time steps (i-672) in the past, 
wherein i represents the current date of the model. The 
configuration of the first lag variable value was considered 
since the heuristic standard for weather forecasting is on a 
weekly basis. The second lag variable value (Lag Variable II) 
had a per-12-hour report with lags up to 2976-time steps (i-
2976) in the past. The configuration of the second lag variable 
value was considered since rainy season in countries like the 
Philippines starts in June and last till November, wherein the 
months of September and October are often the typhoon season 
in the entire archipelago. The forecasted values were validated 
using the remaining month of the data. Using the selected 
kernel function, kernel parameter values, and the data set, 
architectures determined were used through a determined IDE. 
The lag variables were observed for its forecasting accuracy 
and behavior with the lag variable having the lowest MSE was 
selected for the final model. 

C. SVRM Model Evaluation 

The researchers integrated and constructed an SVRM 
model utilizing the LIBSVM library for SVRM processes to 
improve efficient and effective management of the rainfall 
forecasting process. It is necessary that the computing 
environment settings befit for developing SVRM model and 
the needed libraries and IDE should be ready before the 
development start. Computer running on Mac OS, Windows, 
or Ubuntu is necessary, with an IDE, preferably the Waikato 
Environment for Knowledge Analysis (WEKA). Few WEKA 
packages or extension were installed like grid search that 
handled optimization of the parameters and enhance the 
specific values for the parameters. The SVRM programme 
stimulates the training, validating, and forecasting of the data 
after creating the data and environment in which the system 
was constructed. The specification of parameters, kernel, lag 
variable, and training of the prepared dataset was then referred 
to as training. Furthermore, the trained model was validated by 
using an error metric until an output was finally generated. 

Using the testing set, SVRM model evaluation examined 
each model in the training process for its accuracy in 
forecasting 12 hour-ahead rainfall values in 672-time or 2976-
time lagged steps in the past. The predicted result was 
compared to the testing set's actual rainfall data. For the rainfall 
forecasting system, the model with the lowest MSE was then 
chosen as the final model. The computation of the measure of 
error is an important aspect of evaluating a forecasting model's 
prediction accuracy. The forecasting error, which is the 
difference between the anticipated and actual rainfall levels, is 
a measure of a forecasting model's accuracy [17]. The MSE 
shown in Equation (1) was used in this study since the actual 
values of the data are in the denominator of the equation and 

will produce undefined or infinite results when the actual 
demand is zero. 
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where Yi are the observed values of the variable being 
predicted and Ŷi are the predicted values. 

The MSE, the model's consistency will be indicated by a 
minimal error. The rainfall data from the testing set was then 
used to test the selected SVRM models. The data was fed into 
the chosen SVRM models, which generated anticipated results 
for the next 12 hours. In a 15-minute cycle, 80% of the rainfall 
data was loaded into the selected models to anticipate rainfall 
for the next 12 hours. The predicted values were then 
compared to the testing set's actual rainfall value. The 
anticipated rainfall values were evaluated using MSE after the 
evaluation phase was completed. Error assessment was then 
conducted where the validation results were converted and 
compared to the actual results to see if they are accurate in 
terms of the actual rainfall data [3], [11] . In this process, the 
validation set was utilized to generate validation findings 
throughout the month of October in 2017. The accuracy of the 
forecasting was then tested by comparing these findings. 
Following the selection of the best performing model, the 
forecasted values were graphed into a line graph and compared 
to the actual rainfall levels. For charting, the values of each 
iteration of each model were aligned with the real values of the 
same week. Visual inspection was then carried out by watching 
it on a weekly basis. Every day in October, for example, the 
next seven days were gathered and graphed. As a result, the 
full validation set was observed for a total of 31 days. The t-
score shows the differences of the two groups, the larger values 
specify the difference between the two samples while the 
smaller values specify the similarity of the two samples. The t-
score t, gave the means of the first and second samples, X1 and 
X2, with n being the sizes of both X1 and X2 with Sp the pooled 
standard deviation is shown in Equation (2). 
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In this study, X1 and X2 are the means of the forecasted and 
actual values for rainfall in each week. The pooled standard 
deviation Sp provided the standard deviations in samples 
  
  and   

 , with n1 and n2 representing the sample size of the 
first and second group as provided by Equation (3). 
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III. RESULTS AND DISCUSSION 

A. Rainfall Data Preparation Results 

In the preparation of the rainfall data for the SVRM model 
design, the rainfall data used in the study was selected, cleaned, 
represented and partitioned. Rainfall Data from 2013 to 2017 
was exported as a .csv file from the ARG installed in 
Rogongon, Iligan City (Latitude: 8.232697, Longitude: 
124.419372) on February 12, 2013. The attributes referring to 
location (LOCATION), latitude (LATITUDE), longitude 
(LONGITUDE), elevation (ELEVATION), and date of 
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installation (DATE INSTALLED) were removed since it plays 
insignificant contribution to the learning process. A delimiter 
on semicolon was then used to separate the attribute of a single 
data unit for the date, time of reading and the rainfall amount 
(DATE/TIME READ; RAINFALL AMOUNT). Shown in 
Table II is the format for the 163, 777 rows of data having its 
respective date, time, and rainfall. The dataset was partitioned 
into 80% training set and 20% testing set and was then 
converted into .arff to be suited for WEKA. 

TABLE II. FORMAT OF THE DATASET 

DATE / TIME  RAINFALL 

NN/NN/NNNN 00:15 NN 

NN/NN/NNNN 00:30 NN 

NN/NN/NNNN 00:45 NN 

NN/NN/NNNN 01:00 NN 

B. SVRM Model Design Results 

Kernel functions plays a central part in the assimilation of 
data and transforming such data for pattern discovery. Thus, 
which kernel would be most suitable depends upon the data 
that the kernel would use [13], [18]. The study evaluated the 
Linear Function kernel, which is an excellent kernel function 
for linearly separable data sets, and the RBF kernel, which 
excels with nonlinear data sets [3], [6], [13]. To determine if a 
Linear or RBF kernel function will be used in the final model, 
the researchers evaluated the MSE value the function kernels 
were ableyield. Table III shows the results of the kernel 
selection process which the study utilized the parameter values 
produced by Grid Search as reference parameter values. 

TABLE III. GRID SEARCH RESULT 

COST GAMMA ACCURACY 

100 10 91% 

As shown in Table IV, the Cost value of 100 and the 
Gamma value of 10 were obtained through the Grid Search 
procedure. The accuracy was calculated using an 80/20 split, 
with 80% of the training set and 20% of the testing set yielding 
a 91% accuracy on the testing set. To calculate the MSE of the 
Linear and RBF kernels, the Cost and Gamma values obtained 
during the Grid Search procedure were then used as reference 
parameter values. 

TABLE IV. COMPARISON BETWEEN LINEAR AND RBF KERNELS 

LINEAR 

PARAMETER 

LINEAR 

MSE 

VALUE 

RBF PARAMETERS 
RBF  

MSE VALUE 

Cost ( C) = 100 MSE > 100 

Cost ( C) = 100 
Gamma (g) = 10 

Loss Function (e) = 0.1 

Epsilom ( p) 0.001 

3.6377 

Kernel parameters were employed in nonlinear feature 
mapping to govern the trade-off between margin maximization 
and error minimization. The hyper parameters regulate the 
model's training process and have a significant impact on the 
SVRM forecasting model's development and test performance 
[12], [18]. The hyper parameters control the training process of 
the model and have an extensive effect in the development and 

resulting test performance of the SVRM forecasting model. 
The results shows that RBF kernel yielded an MSE of 3.6377 
while the linear kernel yielded an extensive MSE value of 
greater than 100. This could only mean that the data set was 
not linearly separable but is nonlinear in nature. In the behavior 
of the data used in this study, RBF was found to be more 
accurate. As such, RBF kernel function was the choice for the 
SVRM modelling. 

This study compared Grid Search and Exhaustive Search 
methodologies to determine the best fit parameter combination 
and to validate Grid Search methodology's reliability and 
compatibility with the LibSVM library and WEKA forecasting 
software. After conducting Grid Search and Exhaustive Search 
testing, the parameter combination values MSE’s were 
recorded, and the results are presented in Table V and VI. The 
performance of an SVRM forecasting model relies on three key 
parameters. The key parameter (C) is a parameter that allows 
the trade-off between training error and model complexity, 
parameter (C) defines the penalty for errors. If the value of 
parameter (C) is too big there would be the likelihood of 
overfitting a model. Whilst having a smaller (C) parameter 
value may result to the underfitting of a model and increase the 
number of training errors. The parameter (g) influences the 
hyper-line flexibility while parameter (e) controls the width of 
the ε-insensitive zone, used to fit the training data. If the value 
of parameter (e) is big, this will result in having fewer support 
vectors selected, and will result in a flatter or less complex 
regression estimates. Results of the Grid Search produced a 
Cost of 100 and a Gamma of 10 and yielded an MSE of 3.637. 
While Exhaustive Search produced a Cost of 100 and a 
Gamma of 1 and yielded an MSE of 3.6377 as observed in 
Table IV. Although Exhaustive Search yielded the lower MSE 
among the two methodology’s the difference between the two 
is only 0.0004, a small difference. From the tested models 
shown, it can be noted that both parameters set values can be 
applied in the final model. The researchers opted for the 
parameter results yielded by the exhaustive search with c=100; 
g=1; e=0.1; p=0.001 for the final model. 

TABLE V. CONSTANT PARAMETER VALUES 

INSENSITIVE LOSS (e) EPSILON (p) 

0.1 0.001 

TABLE VI. GRID SEARCH RESULT 

COST GAMMA MSE 

100 10 3.637 

The researchers provided a feature range of exponents for 
the Grid Search. For Cost (C) = {0.0001, 0.001, 0.01, 0.1, 1, 
10, 100} and for Gamma (g) = {0.0001, 0.001, 0.01, 0.1, 1, 10, 
100, 1000}. The search was tested for all 56 combinations of 
Cost and Gamma. Grid Search is tested for each combination, 
evaluating for each of the combinations MSE. The Grid Search 
process ended with the parameter combination of Cost (C) = 
100 and Gamma (g) = 10, with an MSE of 3.637, the lowest 
MSE determined by the Grid Search process out of the 56 
possible combinations. The researchers also tested tuning the 
parameter using a more practical approach to the process. Like 
Grid Search, the researchers tested all 56 combinations for 
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Cost and Gamma (C={10-4, 10-3…101,102}; g={10-4, 10-
3…102,103}) manually using MSE to find the combination 
with the lowest MSE. The search ended with parameter 
combination of Cost (C) = 100 and Gamma (g) = 1, with an 
MSE of 3.6366. The procedure entails analyzing two lag 
variable values, each of which will use rainfall data from the 
previous four years, seven months, and thirty days in 15-
minute intervals. The first lag variable value (Lag Variable I) 
produced a per-12-hour report with lags up to 672-time steps 
(i-672) in the past, with I representing the model's current date. 
The second lag variable value (Lag Variable II) provided a per-
12-hour report with lags as far back as 2976-time steps (i-
2976). The testing set was used to determine the lag values. 
The MSE result for each lag variable value in each 15-minute 
cycle is shown in Table VII for each 12-hour report. The 
accuracy of Lag Variable I is better. Although Lag Variable I 
had the lower MSE score, it is worth noting that the difference 
between it and Lag Variable II is only about 0.00247. 

TABLE VII. 12 HOUR-AHEAD MSE VALUES 

DATE / TIME LAG VARIABLE I LAG VARIABLE II 

10/31/2017 0:00 3.6387 3.6388 

10/31/2017 0:15 3.6387 3.6389 

10/31/2017 0:30 3.6387 3.639 

10/31/2017 0:45 3.639 3.6391 

--- --- --- 

--- --- --- 

10/31/2017 23:15 3.6436 3.6436 

10/31/2017 23:30 3.6437 3.6437 

10/31/2017 23:45 3.6438 3.6439 

MSE 3.64129 3.64154 

C. SVRM Model Evaluation 

The optimal lagged variable was chosen after thorough test 
and comparison. The results show that Lag Variable I with the 
value of i-672 yields slightly better results than Lag Variable II 
(i-2976) making it a viable option for a model. The lowest 
MSE is achieved after tuning the cost value to 100 and gamma 
value to 1 which is optimal based on the training set used. The 
test shows a 0.0247 difference between Grid Search using RBF 
kernel with 3.6377 MSE value compared to 3.6366 MSE value 
of manual tuning. The training set produced an average of 
3.641315 MSE value with minimum and maximum value 
3.6387 and 3.6439 respectively using Lag Variable I. The 
values produced were relatively high for MSE due to the nature 
of the training set. As shown in Table VIII, the data yielded a t-
value of 3.95426E-74. The p-value p = 0.05 by default which 
means the forecasted data is acceptable if the margin of error is 
less than 5%. The researchers used a total of 58 data points by 
using 29 data points from forecasted and actual data sets. The 
degrees of freedom df = 56 (degrees of freedom is number of 
datapoints minus 2) with its critical value 1.673 is used in 
assessing the H0 where is H0 is not rejected since the t-value is 
less than the critical value. This shows that the predicted values 
have no statistically significant difference from the actual 
values. The low t-value also means that the difference between 
the actual and forecasted values is extremely small and the 
error becomes insignificant. 

TABLE VIII. SNAPSHOT OF THE STUDENT’S T-TEST 

DATE / TIME ACTUAL PREDICTED 

10/01/2017 0:00 2.434331 2.3236 

10/01/2017 0:15 2.434833 2.3235 

10/01/2017 0:30 2.435335 2.3235 

10/01/2017 0:45 2.435837 2.3234 

Visual representation of the rainfall data exhibits the 
minimal differences between the actual and forecasted values 
from the validation set with the lines of the graphs overlapping 
except for the time intervals with the values equal to 0. The 
pattern being generated in Fig. 3 shows that the average 
predicted rainfall values were close to the actual rainfall values. 
This indicates that the model was able to create an accurate 
prediction result for the average rainfall value for the validation 
set [3], [9], [10], [15]. However, having an accurate prediction 
result in the first and middle half of the data set does not mean 
that the prediction accuracy will not drop. It is worth noting the 
fact that regardless of the magnitude of the error, an error will 
still propagate further errors which will eventually drop the 
prediction accuracy further down the timeline, especially when 
the number of units of the predicted values are overstretched. 
Shown in Fig. 4, the pattern generated shows that a significant 
error ensued in the beginning of the prediction result. The error 
continued along the timeline further dropping the accuracy of 
the result. The model was not able to accurately predict the 
maximum rainfall value for the data set. This indicate that the 
model was not able to predict certain change in the data value 
which in this case are the sudden increase in the value of 
rainfall due to sudden heavy rain down pour. 

 

Fig. 3. Average Actual and Forecasted Rainfall. 

 

Fig. 4. Maximum Actual and Forecasted Rainfall. 
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IV. CONCLUSION AND RECOMMENDATIONS 

This study attempted to implement a rainfall forecasting 
strategy using SVRM by performing data preparation, SVRM 
model design, model implementation and testing the forecasted 
results for performance evaluation and model validation. On 
the data preparation process, data correction and representation 
of the dataset greatly affects the outcome of the data being 
predicted. Manual vision inspections were conducted and were 
able to remove irrelevant dates with missing values which 
results into a number of 163,777 rows. In SVRM model design, 
it was found out that in order to produce a good forecasting 
outcome, the right values must be identified for parameters 
cost and gamma, along with a kernel function that will fit the 
data set along with a lag variable value that can optimally 
determine the relationship between the past and current values 
of the data set. The rainfall dataset was tested with both linear 
and RBF kernel functions. The data set was first tested with 
RBF kernel function with temporary base parameter values for 
cost and gamma identified with the use of Grid Search, the 
temporary base parameter values were Cost (C) = 100 and 
Gamma (g) = 10 with an accuracy of 91% resulting to a MSE 
value of 3.6377. The data set was then tested with the linear 
kernel function using the same base parameter values and 
resulted in an MSE value greater than 100. The researchers 
concluded that the data set was non-linear in nature and is not 
linearly separable. Thus, the model utilized RBF as its selected 
kernel function. The second phase of the selection involved 
selecting the best parameter values for cost and gamma. The 
study utilized two tuning techniques for the selection process; 
the following were the Grid Search and Exhaustive Search 
techniques. Tuning was first tested using Grid Search, the 
search produced values of Cost (C) = 100 and Gamma (g) = 10 
with an MSE value of 3.637. The second tuning was then 
tested using Exhaustive Search with a feature space range for 
Cost (C) = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and Gamma 
(g) = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}. Exhaustive 
search produced the lower MSE value of 3.6366 with values 
for Cost (C) = 100 and Gamma (g) = 1. The results yielded in 
only an MSE value difference of 0.0004, a very small 
difference. It can be concluded that both tuning techniques can 
be utilized for tuning parameters in the creation of the SVRM 
model design. However, the researchers opted for the 
parameter set values yielded by Exhaustive Search parameter 
tuning in the final model. The last phase of the selection 
process involved the selection of a lag variable value. The lag 
variable determines the past and current relationship of a data 
series in a particular timeframe. The study tested two variable 
values; Lag Variable I and Lag Variable II. Lag Variable I 
have a per-12-hour report with lags up to 672-timesteps (i-672) 
in the past, while Lag variable II has a per-12-hour report with 
lags up to 2976-time steps (i-2976) in the past. Lag variable I 
was first tested and produced an MSE value of 3.641315, while 
Lag variable II produced an MSE value of 3.651315 in the 
second test. Though Lag Variable I yielded the lower MSE 
score, it is also worth noticing that it only differs by a small 
variance of approximately 0.00247 when compared with Lag 
Variable II. This is an indication that Lag Variable II is also a 
promising Lag Variable value for the SVRM forecasting 
model. The final model utilized Lag variable I for the final 
model. 

It is recommended that a different rainfall dataset from a 
non-tropical country be used to validate the SVRM models 
presented in this study. Having datasets with a vast difference 
of rainfall values is expected affect the performance of the 
model which in turn affects the accuracy, behavior and 
performance of the SVRM. Tropical climate like that of the 
Philippines having only wet and dry seasons anytime within 
the year records a different rainfall behavior from geographies 
having four seasons. The researchers would also like to 
recommend for further studies on the aspect of kernel, lag 
variable and architecture selection. Further studies on these 
processes will help optimize the performance of the SVRM in 
rainfall forecasting. Aside from WEKA, other SVRM 
development frameworks could also be used to expand model 
performance analysis conducted in this research. One or more 
SVRM development frameworks can be compared with the 
model results of presented in this study as well as conducting a 
contrast if other development frameworks have better or the 
same performance with that of WEKA. Overall, the results of 
this study showed that SVRM has the potential to be a viable 
rainfall forecasting model given the proper data preparation, 
model kernel function selection, model parameter value 
selection and lag variable selection. 
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