
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

259 | P a g e  

www.ijacsa.thesai.org 

Unsupervised Chest X-ray Opacity Classification 

using Minimal Deep Features 

Mohd Zulfaezal Che Azemin
1
, Mohd Izzuddin Mohd Tamrin

2
, Mohd Adli Md Ali

3
, Iqbal Jamaludin

4
 

Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
1, 4

 

Kulliyyah of ICT, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
2
 

Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
3
 

 

 
Abstract—Data privacy has been a concern in medical 

imaging research. One important step to minimize the sharing of 

patient’s information is by limiting the use of original images in 

the workflow. This research aimed to use minimal deep learning 

features in detecting anomaly in chest X-ray (CXR) images. A 

total of 3,504 CXRs were processed using a pre-trained deep 

learning convolutional neural network to output ten 

discriminatory features which were then used in the k-mean 

algorithm to find underlying similarities between the features for 

further clustering. Two clusters were set to distinguish between 

“Opacity” and “Normal” CXRs with the accuracy, sensitivity, 

specificity, and positive predictive value of 80.9%, 86.6%, 71.5% 

and 83.1%, respectively. With only ten features required to build 

the unsupervised model, this would pave the way for future 

federated learning research where actual CXRs can remain 

distributed over multiple centers without sacrificing the 

anonymity of the patients. 
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I. INTRODUCTION 

A key ingredient of anonymity in the development of 
machine learning models does not have to use original data in 
the learning process. Chest X-ray (CXR) is one of the most 
common modalities used in deep learning research where the 
images need to be labelled for further classification steps [1]. 
While the identity of the subjects is normally stripped from the 
data, it was shown that the CXRs may still contain details that 
could be used to identify the patients [2]. 

Supervised learning in radiology has grown rapidly in 
recent years. The applications, among others, include 
identifying abnormalities only from radiology reports [3], 
pneumonia detection using deep neural network ensemble [4], 
transfer learning for COVID19 classification [5], and 
multimodal strategy to increase the model performance [6]. 
Models constructed using supervised methodology requires 
labels annotated by experts as ground truth during training and 
testing phases. The problem is aggravated when the 
concordance rate among the radiologists is not optimal [7]. 

To address the problems with lack of ground truth, 
unsupervised approach has been proposed in recent research. 
The works range from the use of feature engineering based on 
pixel values and texture features [8] to the use of generative 
adversarial network (GAN) to detect anomaly in the CXRs [9]. 
GAN-based methods have shown promising results in 

identifying abnormal images but disease-free CXRs are still 
required in the training stage where the confirmation of experts 
is still needed. 

This research work aims to address the problems of 
hyperparameters fine-tuning and lack of labels inherent in a 
supervised learning architecture by using minimal deep 
features from a pre-trained deep learning convolutional neural 
network applied on the k-means algorithm, which is used to 
find underlying similarities in the features for classification of 
CXRs. 

II. MATERIALS AND METHODS 

The images were downloaded from ChestX-ray14 [1], a 
representative collection of CXRs for thoracic disorders for a 
general population, curated by the National Institutes of Health 
(NIH) Clinical Centre, USA, which primarily consist of all 
frontal CXRs in the centre. A total of 2,166 “airspace opacity” 
labels were obtained from previously published Google Health 
study [7]. This abnormality constitutes the most common 
finding in the dataset. “No findings” were assigned to the 1,388 
CXRs when the original NIH and Google Health labels did not 
reveal any abnormality. Fig. 1 summarizes the classification 
used in this study. 

As shown in Fig. 2, a pre-trained GoogLeNet deep learning 
convolutional neural network (CNN) was adopted to extract 
features from the CXRs [10]. The CNN was pretrained on 
more than a million images publicly available data set 
(http://www.image-net.org) which can classify image classes 
of everyday objects including pencil, coffee mug, keyboard, 
and animals. Each CXR resulted in 1,024 deep features which 
uniquely characterized the image. The features were extracted 
using MATLAB R2021a (MathWorks Inc., MA). 

The deep features were fed into RapidMiner Studio 
Educational Version 9.10 (RapidMiner Inc., MA) as illustrated 
in Fig. 3. Forward selection was employed to increase the 
relevance and minimize features redundancy, which reduced 
the features to ten. k-Means algorithm was applied on the 
feature pool to determine a set of 2 clusters (i.e., “Opacity” vs 
“No Findings”) and assigned each CXR to a cluster. Opacity is 
the term used in radiology to describe the presence of 
whiteness region in the lungs. It was chosen because this type 
of anomaly is considered as one the most prevalent in CXRs 
[11]. The clusters comprised CXRs with similar features with 
the similarity determined based on a distance measure between 
them. “Map Clustering on Labels” module estimates a 
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mapping between the given clustering and prediction by 
adjusting the given clusters with the given labels to estimate 
the best fitting pairs. Table I summarizes the algorithms used 
for the distance measure. The algorithms were chosen based on 
their availability in RapidMiner. 

 

Fig. 1. CXR Images used in this Study, “Opacity” = 2,166 vs “No findings” 

= 1,388. 

 

Fig. 2. Deep Features Extracted from GoogLeNet Convolution Neural 

Network Implemented in MATLAB. 

 

Fig. 3. Unsupervised Clustering using Deep Features on RapidMiner. 

TABLE I. BRIEF DESCRIPTION OF THE DISTANCE MEASURES USED WITH 

THE K-MEANS ALGORITHMS 

Distance 

Measure 
Brief Description 

Euclidean 
Distance 

The Euclidean distance, d between the CXR image and 

centroid, x and y are represented by this formula: 

 (   )   √∑(     )
 

  

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

Camberra 
Distance 

The Camberra distance, d between the CXR image and 

centroid, x and y are represented by this formula: 

 (   )   ∑
       

       

  

   

 

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 

respectively. 

ChebychevDist

ance 

The Chebychev distance, d between the CXR image and 

centroid, x and y are represented by this formula: 

 (   )      
           

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 
respectively. 

Correlation 

Similarity 

The correlation similarity between CRX image and 

centroid, x and y are represented by this formula: 

    (   )  
∑ (    ̅) (    ̅)
  
   

√∑ (    ̅)
   

   √∑ (    )
   

   

 

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 

respectively. 

Cosine 

Similarity 

The cosine similarity between CRX image and centroid, x 

and y are represented by this formula: 

   (   )  
∑      
  
   

∑   
   

    ∑   
   

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

Dice 

Similarity 

The dice similarity between CRX image and centroid, x 

and y are represented by this formula: 

   (   )  
  ∑      

  
   

∑   
   

    ∑   
   

   

 

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 
respectively. 
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Inner 

Product 
Similarity 

The inner product similarity between CRX image and 

centroid, x and y are represented by this formula: 

   (   )   ∑    

  

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

Jaccard 

Similarity 

The Jaccard similarity between CRX image and centroid, x 

and y are represented by this formula: 

   (   )  
∑      
  
   

∑   
   

    ∑   
   

     ∑   
   

   
   

 

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 
respectively. 

Kernel 

Euclidean 
Distance 

The kernel Euclidean distance, k between the CXR image 

and centroid, x and y are represented by this formula: 

 (   )       (   )
 
 

Where gamma is a parameter that can be configured and 

D(x,y)2 is the squared Euclidean distance between CXR 

image and the centroid. 

Manhattan 

Distance 

The Manhattan distance, d between the CXR image and 

centroid, x and y are represented by this formula: 

 (   )   ∑       

  

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

Max 

Product 

Similarity 

The maximum product similarity between CRX image and 

centroid, x and y are represented by this formula: 

   (   )       
       

Where 10 is the total number of features, whereby xk and 

yk, are the kth feature of the CXR image and the centroid 

respectively. 

Overlap 
Similarity 

The overlap similarity between CRX image and centroid, x 

and y are represented by this formula: 

   (   )  
∑      
  
   

    (∑   
   

    ∑   
   

   )
 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

KL 

Divergence 

The Kullback-Leibler divergence, DKL between the CXR 

image and centroid, x and y are represented by this 

formula: 

   (   )   ∑     
  
  

  

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

Mahalanobis 

Distance 

The Mahalanobis distance between the CXR image and 

centroid, x and y are represented by this formula: 

           (   )  (   )    (   ) 

Where x is the vector of CXR image, y is the vector of the 

centroid, and C-1 is the inverse covariance matrix of the 

CXR image and the centroid. 

Squared 
Euclidean 

Distance 

The squared Euclidean distance, d2 between the CXR 

image and centroid, x and y are represented by this 

formula: 

 (   )   ∑(     )
 

  

   

 

Where 10 is the total number of features, whereby xk and 
yk, are the kth feature of the CXR image and the centroid 

respectively. 

III. RESULT AND DISCUSSION 

The performance of classification model was evaluated by 
its accuracy, sensitivity, specificity, and precision. The analysis 
of performance was expressed in true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). The 
measurements of each performance parameter were calculated 
as follows: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Sensitivity = TP / (TP + FN) 

Specificity = TN / (TN + FP) 

Positive Predictive Value (PPV) = TP / (TP + FP) 

Table II provides the summary of the performance of the k-
Means algorithm implemented using various distance 
measures. Generally, Mahalanobis Distance outperforms all 
other distance metrics with an accuracy, sensitivity, specificity, 
PPV of 80.9%, 86.6%, 71.5%, and 83.1%, respectively. This 
can be due to its ability to handle outliers and consideration of 
correlation between the features [12]. 

The unsupervised model with the highest accuracy shows 
higher sensitivity compared to specificity, which implies fewer 
opacity cases would be missed with the trade-off of higher 
false-positive results. Having a higher sensitivity is arguably 
more important than a higher specificity in the context of a 
disease screening. This is because the missed disease cases are 
more severe than falsely diagnosed with the disease, which can 
be further ruled out with a more accurate modality. 

TABLE II. PERFORMANCE OF THE UNSUPERVISED CXR OPACITY 

CLASSIFICATION USING DEEP FEATURES WITH VARIOUS DISTANCE 

MEASURES 

Distance Measure Accuracy Sensitivity Specificity PPV 

Euclidean Distance 75.3 81.6 65.2 79.1 

Camberra Distance 71 63.7 82.9 85.8 

Chebychev Distance 73.9 80.1 63.8 78.2 

Correlation Similarity 61.8 45.3 88.4 86.4 

Cosine Similarity 71.7 64.9 82.7 85.8 

Dice Similarity 51.3 24.4 94.8 88.3 

Inner Product 

Similarity 
61.8 100 0 61.8 

Jaccard Similarity 61.8 100 0 61.8 

Kernel Euclidean 
Distance 

75.2 81.3 65.4 79.2 

Manhattan Distance 76.6 79.4 72 82.1 

Max Product 

Similarity 
52.4 77.1 12.2 58.7 

Overlap Similarity 68.7 57.2 87.4 88 

KL Divergence 60.8 44.6 87 84.7 

Mahalanobis 

Distance 
80.9 86.6 71.5 83.1 

Squared Euclidean 

Distance 
75.2 81.6 64.9 79 
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It is evident that without any training data for parameters 
fine-tuning, unsupervised approach results in a decent 
performance compared to the previously published state-of-
the-art supervised classification method with the sensitivity, 
specificity and PPV of 86.1%, 89.7% and 91.6%, respectively 
[7]. It is important to highlight that while the supervised 
approach yields better performance, it requires dataset labelled 
by experts which is less cost effective. 

Dice Similarity shows the lowest overall performance with 
an accuracy of 51.3%. Even though the specificity and PPV 
imply a good performance with more than 80%, the specificity 
is significantly lower than the average results of all distance 
measures. 

For unsupervised opacity classification, previously 
published work based on GAN reported an area under the 
receiver operating characteristic of 0.838 [9]. However, this 
unsupervised algorithm still requires training dataset from 
normal CXRs to determine the anomaly score by calculating 
the pixel variation between the original and reconstructed 
images. 

Deep features enable the use of standard patterns and image 
features with a high degree of correlation with human 
perception in a different context [10]. In this paper, we have 
shown that using unsupervised classification, the features with 
similar characteristics could be grouped to classify x-ray 
images. 

Irrelevant features were effectively discarded using a 
feature selection technique, with less than 1% of the total of 
1,024 features were eventually used in the classification. The 
high compression rate demonstrates the possibility of a high 
throughput screening with lower hardware requirements. 

Another advantage of using minimal features is the privacy 
preservation of the patients. It is almost impossible to 
reconstruct the original images using compact features. The 
importance of using minimum information is highlighted in the 
previous research [2]. The study demonstrated a potential 
attack might cross-reference the CXR images to obtain 
classified information even when all the personal identifiers 
were removed. 

IV. CONCLUSION 

To the best of our knowledge, this is the first attempt to 
report the use of unsupervised CXR opacity classification with 
minimal deep features. With only ten features required to build 
the unsupervised model without hyperparameters fine-tuning, 
this would pave the way for future federated learning research 

where actual CXRs can remain distributed over multiple 
centers without sacrificing the patients' anonymity. 
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