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Abstract—The goal of this study is to discover a solution to 

two problems: first, the signature-based intrusion detection 

system SNORT can identify a new attack signature without 

human intervention; and second, signature-based IDS cannot 

detect multi-stage attacks. The interesting aspect of this study is 

the growing ways to address the aforementioned issues. We 

introduced a multi-layer classification strategy in this study, in 

which we employ two layers, the first of which is based on a 

decision tree, and the second of which includes machine learning 

technique fuzzy logic and neural networks. If the first layer fails 

to identify fresh attacks, the second layer takes over and detects 

new signature assaults, updating the SNORT signature 

automatically. 
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I. INTRODUCTION 

According to information technology, a network intrusion 
is a sequence of attacks against network-based security 
measures [13]. Network traffic is monitored by the Intrusion 
Detection System (IDS), which alerts information security 
personnel when harmful activity is discovered [10]. 

Because of their effectiveness in blocking assaults on 
network resources, IDSs are not able to adapt to scenarios 
where new attacks are being carried out, requiring human 
intervention [13]. On the other hand, if the IDS is used on an 
overloaded network, it might constitute a bottleneck. For the 
IDS to be launched to production, it needs time to analyse 
network data [13]. 

Using an existing IDS, SNORT would be used to compare 
packet signatures to the criteria set out by SNORT. Packets 
that are thought to be malicious will be run through an 
intelligent model that has been trained to look for harmful 
content [14][9]. Using an intelligent model, SNORT might be 
used as the initial step of a strainer to limit traffic for 
unnecessary exploration, to put it another way: SNORT's 
workload is reduced, which in turn reduces human mediation 
since the intelligently trained model is responsible for 
determining whether or not a certain group of packets is 
harmful. SNORT will establish an automatic signature if a 
malicious group of packets is detected. 

For the first time, a training model is being combined with 
a reasoning model to detect abuse of network data packets [9]. 
IDS on a production level device may then utilize the rule 
generated by the justification model to identify and block 
malicious data packets of the kind just described. 

To address some of SNORT's inadequacies, this study 
proposes a new technique to intrusion detection that works in 
combination with it. In order to address these issues, a variety 
of data mining approaches are being presented in the answer. 
The following goals must be accomplished in order to attain 
the goal: 

 Make sure the data set for training and assessment is 
appropriate since certain machine learning techniques 
are involved in the solution. 

 For new threats, the first line of defence will be a 
classifier module, built using machine learning 
algorithms. 

 The second layer of classification is needed for traffic 
that cannot be accurately classified by the first layer, is 
based on a reasoning module. 

II. METHODOLOGY AND RESULTS 

The goal of the comparison research for algorithm 
classification is to develop a training model for detecting 
abuse. The results of this comparative study are offered in the 
form of a perplexity matrix and metrics such as true-positives, 
false-positives, true-negatives, and false-negatives. It also 
provided links between expected and predicted classes of 
KDD'99 intrusion detection data, with an arbitrary split of 
66% for training model development and 34% for training 
model testing for abuse detection 

A. Data Set: KDD’99  

KDD'99's intrusion detection data collecting is employed. 
Researchers have tested several intrusion detection methods 
using this data collection, which is based on a DARPA 
programme from 1998. Using raw TCP/IP dumps, Sniffer was 
able to capture all network traffic. 

Each instance in the dataset has been assigned to one of 22 
assault classes or 1 normal class based on the data set's 41 
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distinct and continuous properties [6]. This includes the DoS 
attack, which is also known as a "user of root attack," as well 
as the "remote to user attack" (Probe). 

Feature Selection (CFS) was used to identify the most 
important data points in the network. The value of each 
feature is determined by the search algorithm and the classifier 
function, and a subset of features is provided by CFS (Hall 
1999). 

B. Classifier Module 

Both Nave Bayes and Decision Tree may be used to build 
a training model that can be used to identify abuse. 

1) Naïve Bayes: Using probabilistic inference, Bayesian 

reasoning may be used in decision-making in situations where 

previous occurrences are utilised to predict future events [2]. 

Using the Bayes Theorem, we can calculate the posterior 

likelihood using the formulas P(q|c), P(c), and P(s|y). 

According to the Naive Bayesian Classifier, one predictor's 

influence on a given class (c) is independent of the effect of 

another predictor (y) [12]. Conditional freedom is granted in 

this way. 

The Bayes algorithm explains the following: 

P(s|y) = 
 ( | ) ( )

 ( )
               (1) 

P(s|Y) = P(q1 |c)*P(q2 |c)*...P(qn |c)*P(c)           (2) 

2) Decision tree: In a decision tree, the current node's 

choice promotes the next node's decision in a sequence of 

decisions [4] Open-source version of the C4.5 decision tree 

method – J48 [4]– is accessible through Weka [7]. J48 accepts 

a wide range of data kinds as input, including nominal, 

textual, and numeric, but it is also quite inefficient. 

The algorithm constructs a decision tree starting from a 
training set T S, which is a set of cases, or tuples in the 
database terminology. Each case specifies a value for a 
collection of attributes and for a class [5]. Each attribute may 
have either discrete or continuous values. Moreover, the 
special value unknown is allowed, to denote unspecified 
values. The class may have only discrete values.” 

The algorithm works as 

 The algorithm operates over a collection of training 
instances, T. 

 If all occurrences of T is in class K. 

o Then create a T and an end node. 

o Select a characteristic S. Create a division node as 
well. 

 Instant T's value for attribute S is divided into a subset 
(U1..n). 

 Recursively apply the method to each of the T 
subgroups. 

3) Experiment: Data from the KDD'99 intrusion detection 

training set was utilised in our investigation, and a complete 

KDD dataset was supplied. 34% of the data gathering, 

approximated at 150,000 of the famed classified insistences, 

was utilised for the persistence of these prototypes' 

effectiveness testing. 

Using a two-model development technique, we created the 
training mode 

 All classes in the IDS have been considered as a 
training model in this approach. 

 Malicious and natural classifications are created for the 
data set of training models in this method. 

a) All-Classes Based Model Creation Strategy: [4] 

Bhargava claim that Decision Tree findings outperform Naive 

Bayes [2]. Table I shows a Naive Bayes and Decision Trees 

training model. 

The Decision Tree classifiers and Naive Bayes 
respectively, provide different projected and expected classes, 
as seen in the Fig. 1 and Fig. 2. 

Table II displays the cumulative relative impacts for each 
classifier using TP and FP measures. The FP findings skew 
Naive Bayes' TP. However, the Decision Tree regularly 
produces low FP and high TP. 

TABLE I. INCLUDES ALL CLASS MODEL BASED ON THE RESULT OF 

NAIVE BAYES AND DECISION TREE 

Instances Classified  Naïve Bayes  Decision Tree 

Correctly 92.45 % (145321) 99.95% (146756) 

Incorrectly 7.17% (12543) 0.04% (66) 

 

Fig. 1. Shows Naïve Bayes all Class Model Strategy, Predicted vs. Expected 

Class, Variances. 

 

Fig. 2. Shows Decision Tree all Class Model Strategy, Predicted vs. 

Expected Class, Variances. 
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TABLE II. ALL-CLASSES MODEL CREATION STRATEGY FOR NAÏVE 

BAYES AND DECISION TREE 

 

True-Positive  False-Positive  

      

Bayes  

Decision 

Tree  

      

Bayes  

Decision 

Tree  

Normal  0.617  0.999  0  0  

BufferrOverfloww  0.462  0.615  0.001  0  

Load Module  0.4  0.2  0.001  0  

Perll 0  0  0  0  

Neptunee  0.999  1  0.001  0  

Smurff 0.998  1  0  0  

Guess Password 0.952  1  0.025  0  

Podd 0.987  1 0  0  

Teardropp 0.988  0.997  0  0  

Portsweepp 0.111  0.979  0.01  0  

IPsweep  0.97  0.993  0.007  0  

FTP Write  0  0.5  0.002  0  

Back  0.984  0.996  0  0  

IMAP  1  0.4  0  0  

Satann 0.894  0.986  0.002  0  

PHFF  1  0  0.011  0  

Rootkit  0.667  0  0.012  0  

Spy 0 0 0 0 

Land 0.75 1 0 0 

b) Two-Classes based Model Creation Strategy: For a 

two-class model approach, the results of the Naive Bayes and 

Decision Tree algorithms are shown in Table III. The usage of 

Decision Tree-generated training models has been shown to be 

superior than Naive Bayes. 

A comparison of Nave Bayes and Decision Tree 
Classifiers utilizing a two-class modelling technique shows 
the difference between predicted and anticipated classes. 

Fig. 3 shows the band in the top-left and bottom-right 
quadrants of the graph shows that the number of incorrectly 
categorised cases has decreased, resulting in a more reliable 
model for instance projection. 

TABLE III. RESULTS OF TWO-CLASSES MODEL FORMATION STRATEGY 

USING NAIVE BAYES AND DECISION TREE 

Instances Classified  Naïve Bayes Decision Tree 

Correctly  97.98% (148788)  99.97% (149888)  

Incorrectly 1.5 % (2430) 0.03% 70 

 

Fig. 3. Naïve Bayes Two Class Model Strategy, Predicted vs. Expected 

Class, Variances. 

 

Fig. 4. Shows Decision Tree Two Class Model Strategy, Predicted vs. 

Expected Class, Variances. 

Although the model construction technique changed, the 
Decision Tree was always attained. In Fig. 4, the number of 
erroneously identified occurrences decreases in the upper left 
and lower right quadrants. 

TABLE IV. TWO-CLASSES MODEL CREATION STRATEGY ACCURACY / 
CLASS FOR NAÏVE BAYES AND DECISION TREE 

Class  

True-Positive  False-Positive  

Naïve 

Bayes  
Decision Tree  

Naïve 

Bayes  
Decision Tree  

Normal  0.989 0.999  0.017  0  

Malicious  0.983 1 0.011  0.001 

Table IV displays the cumulative relative results per 
classifier for the TP and FP measurements. The Decision Tree 
has a high true-positive rate and a low false-positive rate. 

C. Reasoning Module 

In the event that the first stage of classification fails, this 
mechanism steps in to offer a backup classification stage. A 
hybrid model of neural network (MLP) and fuzzy logic is used 
in the reasoning process [8]. This module's output will be a 
signature, which will be included in the rule base as an 
addition. 

The suggested reasoning tool in this study categories 
network traffic into two categories: normal (1) and attack (0). 
To put it another way, the hybrid model is built around two 
modules neural networks and a fuzzy logic module. It will 
categorize network traffic as normal if both modules classify it 
as such, but it will classify it as an attack if either module does 
so. The neural network has the benefit of being able to operate 
with both poor and correct data [3]. Fig. 5 shows the hybrid 
model. When employed in the IDS context, this capability 
may be used to identify attack patterns that have been 
provided throughout the training. 

It is possible that certain assaults will not be detected by 
one of the modules, but they may be detected by the other one 
when utilizing a hybrid method. Furthermore, one module will 
compensate for weaknesses in other modules' anti-malware 
detection capabilities. As a result, the false-positive rate for 
malicious traffic might rise. 

1) Neural network: As a computational model of the 

central nervous system, it can learn and recognise patterns. It 

has been described as a system that adapts to overt or covert 

information flows during learning [1]. 
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Fig. 5. Hybrid Model Overview. 

This design has various tiers (one input layer, several 
hidden layers, and one output layer). Each layer has neurons, 
which are processing units. It connects to the mass of the next 
stratum. In the training phase, back-propagation is used. The 
input data is given to the neural network, and the output is 
compared to the intended output. This error is used to alter the 
weights. The error estimations and weight adjustments follow 
[1]. 

fj (n) = hj (n) – uj (n)              (3) 

 (n)= 
 

 
  j   

 (n)              (4) 

     ( )= -   
  ( )

     ( )
 ai(n)             (5) 

2) Fuzzy logic: To be a computer model based on human 

language concepts. Rule-based systems are converted to their 

mathematical equivalents by fuzzy systems [11]. The 

fuzzifier, interference engine, rule basis, and fuzzified are all 

represented in Fig. 6. The following is how fuzzy systems 

work: [11]. 

 

Fig. 6. Fuzzy Logic Components. 

 Each input is transformed into a fuzzy input set using 
the appropriate membership methods. 

 The interference engine creates a fuzzed performance 
based on the criteria supplied. 

 The defuzzification membership functions are used to 
turn the fuzzy output into a crisp value. 

Table V lists the inputs that the reasoning module gets 
from the ip info finder module. 

The rule base includes the reasoning for generating the 
output. The interference engine will employ this set of (if.... 
then) rules to get a fuzzier result. Table VI demonstrates the 
reasoning module's criteria for predicting malicious traffic. 

On the basis of information gathered, the reasoning 
module determines whether or not an IP address may be 

sending malicious traffic. This may be done using a data 
mining approach, such as clustering or regression. Many 
factors led to the selection of fuzzy logic for this module. The 
"if-then" rule form, which is supported by fuzzy logic, may be 
used to represent the analysis of the acquired data. Aside from 
that, determining whether or not an IP address is malicious 
might be tricky in certain cases. 

The final output will be considered malicious if it is higher 
than 0.5, otherwise, it will be considered normal. 

3) Experiment: A three-layer neural network module 

(MLP) is used in our experiment. Whereas the input layer has 

one neuron, the hidden layer has eight, and the output layer 

has 10. 10% of the whole KDD'99 IDS and the starting 

weights were used to train the neural network segment, and 

the module was trained by constraining the overall mean 

square to .01 and the maximum number of epochs to 3000. 

The KDD'99 IDData collection was used to construct the 
fuzzy module system: 

1) With the exception of 'support,' all of the specified 

features have been stabilized such that each property has the 

same range of values (between 0 and 1). This action 

contributes to the streamlining of the rule-generation process. 

2) We have defined three values: U1, U2, U3, where: 

U1=0.45, U2=0.376, U3=0.76. 

3) All features except service were transformed from 

numerical values into descriptions throughout the iteration 

through the training data. 

0 ≤ attribute value < U1 → Very Low (UL). 

U1 ≤ attribute value < U2 → Low (L). 

U2 ≤ attribute value < U3 → High (H). 

U3 ≤ attribute value ≤ 1 → Very High (UH). 

TABLE V. THE REASONING MODULE INPUTS 

Input Name Description 

IP Geographic Location Specifies which country the IP is based at 

Is IP in a block list 
Specifies whether the IP is found in a block 
list or not 

Is IP an anonymous proxy 
Specifies whether the IP is an anonymous 

proxy or not 

IP Rating 
An array that shows the IP rating on different 

DNSBL 

TABLE VI. IF THEN RULES USED IN THE REASONING MODULE 

If Condition Statement 

(IP in a block list) Possible malicious traffic 

(IP country in a black list) AND (IP 

is an anonymous proxy)  
Possible malicious traffic  

(IP country in a black list) AND (IP 

is a TOR exit node) 
Possible malicious traffic 

(IP Rating is low) Possible malicious traffic 
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The performance might be categorized as either normal or 
offensive. The rule was then written down as follows. The rule 
was then created in the following form: 

if (feature1 is feature_desc AND feature2 is feature2_desc 
AND ……. feature10 is feature10_desc) then output is 
output_desc 

4) If the previous phase's rule was added to the rule base, 

it will not be applied to the rule base again. There are a total of 

1248 rules applied to the fundamental rule. As illustrated in 

Fig. 7 and 8, the last stage in the implementation of the fuzzy 

module was to pick relationship functions for both inputs and 

outputs. 

 

Fig. 7. Shows Relationship Function Excluding „Service' Feature. 

 

Fig. 8. Shows the Output's Relationship. 

Table VII displays the hybrid model's assessment results 
after neural network training, rule development, and fuzzy 
module membership function selection. 

TABLE VII. INCLUDES A HYBRID MODEL WITH NEURAL NETWORK AND 

FUZZY LOGIC RESULTS 

Class 

True-Positive False-Positive 

Neural  

Network 

Fuzzy  

Logic 

Hybrid 

Model 

Neural  

Network 

Fuzzy  

Logic 

Hybrid 

Model 

Normal 0.972 0.978 0.952 0.029 0.022 0.048 

Malicious 0.966 0.9995 0.9997 0.034 0.0005 0.0003 

III. CONCLUSION 

Despite the fact that SNORT monitors and detects an 
attack, the reality is that it is not designed to identify new 
threats and, as a result, generates a large number of false 
alarms at a rapid pace. For the first time, data mining 
approaches have been employed to bring new stages into the 
solution of previously existing IDS. The suggested model's 
initial phase accurately detects the vast majority of data. 
According to Decision Tree, a comparison of two distinct 
training models using the Naive Bayes and the Decision Tree 
algorithms shows that the most effective outputs have a higher 
true-positive score and a greater degree of granularity. 

The second stage of the proposed model (reasoning 
mechanism) was built using a hybrid approach. used a neural 
network and fuzzy logic to identify new attacks. The rate of 
intrusion detection rose after deployment. 
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