
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

311 | P a g e

www.ijacsa.thesai.org

Supervised Learning Techniques for Intrusion

Detection System based on Multi-layer

Classification Approach
Machine Learning and Intrusion Detection System

Mansoor Farooq

Department of Management Studies

University of Kashmir

Srinagar, India

Abstract—The goal of this study is to discover a solution to

two problems: first, the signature-based intrusion detection

system SNORT can identify a new attack signature without

human intervention; and second, signature-based IDS cannot

detect multi-stage attacks. The interesting aspect of this study is

the growing ways to address the aforementioned issues. We

introduced a multi-layer classification strategy in this study, in

which we employ two layers, the first of which is based on a

decision tree, and the second of which includes machine learning

technique fuzzy logic and neural networks. If the first layer fails

to identify fresh attacks, the second layer takes over and detects

new signature assaults, updating the SNORT signature

automatically.

Keywords—IDS; SNORT; fuzzy logic; neural networks;

decision tree; Naïve Bayes

I. INTRODUCTION

According to information technology, a network intrusion
is a sequence of attacks against network-based security
measures [13]. Network traffic is monitored by the Intrusion
Detection System (IDS), which alerts information security
personnel when harmful activity is discovered [10].

Because of their effectiveness in blocking assaults on
network resources, IDSs are not able to adapt to scenarios
where new attacks are being carried out, requiring human
intervention [13]. On the other hand, if the IDS is used on an
overloaded network, it might constitute a bottleneck. For the
IDS to be launched to production, it needs time to analyse
network data [13].

Using an existing IDS, SNORT would be used to compare
packet signatures to the criteria set out by SNORT. Packets
that are thought to be malicious will be run through an
intelligent model that has been trained to look for harmful
content [14][9]. Using an intelligent model, SNORT might be
used as the initial step of a strainer to limit traffic for
unnecessary exploration, to put it another way: SNORT's
workload is reduced, which in turn reduces human mediation
since the intelligently trained model is responsible for
determining whether or not a certain group of packets is
harmful. SNORT will establish an automatic signature if a
malicious group of packets is detected.

For the first time, a training model is being combined with
a reasoning model to detect abuse of network data packets [9].
IDS on a production level device may then utilize the rule
generated by the justification model to identify and block
malicious data packets of the kind just described.

To address some of SNORT's inadequacies, this study
proposes a new technique to intrusion detection that works in
combination with it. In order to address these issues, a variety
of data mining approaches are being presented in the answer.
The following goals must be accomplished in order to attain
the goal:

 Make sure the data set for training and assessment is
appropriate since certain machine learning techniques
are involved in the solution.

 For new threats, the first line of defence will be a
classifier module, built using machine learning
algorithms.

 The second layer of classification is needed for traffic
that cannot be accurately classified by the first layer, is
based on a reasoning module.

II. METHODOLOGY AND RESULTS

The goal of the comparison research for algorithm
classification is to develop a training model for detecting
abuse. The results of this comparative study are offered in the
form of a perplexity matrix and metrics such as true-positives,
false-positives, true-negatives, and false-negatives. It also
provided links between expected and predicted classes of
KDD'99 intrusion detection data, with an arbitrary split of
66% for training model development and 34% for training
model testing for abuse detection

A. Data Set: KDD’99

KDD'99's intrusion detection data collecting is employed.
Researchers have tested several intrusion detection methods
using this data collection, which is based on a DARPA
programme from 1998. Using raw TCP/IP dumps, Sniffer was
able to capture all network traffic.

Each instance in the dataset has been assigned to one of 22
assault classes or 1 normal class based on the data set's 41

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

312 | P a g e

www.ijacsa.thesai.org

distinct and continuous properties [6]. This includes the DoS
attack, which is also known as a "user of root attack," as well
as the "remote to user attack" (Probe).

Feature Selection (CFS) was used to identify the most
important data points in the network. The value of each
feature is determined by the search algorithm and the classifier
function, and a subset of features is provided by CFS (Hall
1999).

B. Classifier Module

Both Nave Bayes and Decision Tree may be used to build
a training model that can be used to identify abuse.

1) Naïve Bayes: Using probabilistic inference, Bayesian

reasoning may be used in decision-making in situations where

previous occurrences are utilised to predict future events [2].

Using the Bayes Theorem, we can calculate the posterior

likelihood using the formulas P(q|c), P(c), and P(s|y).

According to the Naive Bayesian Classifier, one predictor's

influence on a given class (c) is independent of the effect of

another predictor (y) [12]. Conditional freedom is granted in

this way.

The Bayes algorithm explains the following:

P(s|y) =
 (|) ()

 ()
 (1)

P(s|Y) = P(q1 |c)*P(q2 |c)*...P(qn |c)*P(c) (2)

2) Decision tree: In a decision tree, the current node's

choice promotes the next node's decision in a sequence of

decisions [4] Open-source version of the C4.5 decision tree

method – J48 [4]– is accessible through Weka [7]. J48 accepts

a wide range of data kinds as input, including nominal,

textual, and numeric, but it is also quite inefficient.

The algorithm constructs a decision tree starting from a
training set T S, which is a set of cases, or tuples in the
database terminology. Each case specifies a value for a
collection of attributes and for a class [5]. Each attribute may
have either discrete or continuous values. Moreover, the
special value unknown is allowed, to denote unspecified
values. The class may have only discrete values.”

The algorithm works as

 The algorithm operates over a collection of training
instances, T.

 If all occurrences of T is in class K.

o Then create a T and an end node.

o Select a characteristic S. Create a division node as
well.

 Instant T's value for attribute S is divided into a subset
(U1..n).

 Recursively apply the method to each of the T
subgroups.

3) Experiment: Data from the KDD'99 intrusion detection

training set was utilised in our investigation, and a complete

KDD dataset was supplied. 34% of the data gathering,

approximated at 150,000 of the famed classified insistences,

was utilised for the persistence of these prototypes'

effectiveness testing.

Using a two-model development technique, we created the
training mode

 All classes in the IDS have been considered as a
training model in this approach.

 Malicious and natural classifications are created for the
data set of training models in this method.

a) All-Classes Based Model Creation Strategy: [4]

Bhargava claim that Decision Tree findings outperform Naive

Bayes [2]. Table I shows a Naive Bayes and Decision Trees

training model.

The Decision Tree classifiers and Naive Bayes
respectively, provide different projected and expected classes,
as seen in the Fig. 1 and Fig. 2.

Table II displays the cumulative relative impacts for each
classifier using TP and FP measures. The FP findings skew
Naive Bayes' TP. However, the Decision Tree regularly
produces low FP and high TP.

TABLE I. INCLUDES ALL CLASS MODEL BASED ON THE RESULT OF

NAIVE BAYES AND DECISION TREE

Instances Classified Naïve Bayes Decision Tree

Correctly 92.45 % (145321) 99.95% (146756)

Incorrectly 7.17% (12543) 0.04% (66)

Fig. 1. Shows Naïve Bayes all Class Model Strategy, Predicted vs. Expected

Class, Variances.

Fig. 2. Shows Decision Tree all Class Model Strategy, Predicted vs.

Expected Class, Variances.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

313 | P a g e

www.ijacsa.thesai.org

TABLE II. ALL-CLASSES MODEL CREATION STRATEGY FOR NAÏVE

BAYES AND DECISION TREE

True-Positive False-Positive

Bayes

Decision

Tree

Bayes

Decision

Tree

Normal 0.617 0.999 0 0

BufferrOverfloww 0.462 0.615 0.001 0

Load Module 0.4 0.2 0.001 0

Perll 0 0 0 0

Neptunee 0.999 1 0.001 0

Smurff 0.998 1 0 0

Guess Password 0.952 1 0.025 0

Podd 0.987 1 0 0

Teardropp 0.988 0.997 0 0

Portsweepp 0.111 0.979 0.01 0

IPsweep 0.97 0.993 0.007 0

FTP Write 0 0.5 0.002 0

Back 0.984 0.996 0 0

IMAP 1 0.4 0 0

Satann 0.894 0.986 0.002 0

PHFF 1 0 0.011 0

Rootkit 0.667 0 0.012 0

Spy 0 0 0 0

Land 0.75 1 0 0

b) Two-Classes based Model Creation Strategy: For a

two-class model approach, the results of the Naive Bayes and

Decision Tree algorithms are shown in Table III. The usage of

Decision Tree-generated training models has been shown to be

superior than Naive Bayes.

A comparison of Nave Bayes and Decision Tree
Classifiers utilizing a two-class modelling technique shows
the difference between predicted and anticipated classes.

Fig. 3 shows the band in the top-left and bottom-right
quadrants of the graph shows that the number of incorrectly
categorised cases has decreased, resulting in a more reliable
model for instance projection.

TABLE III. RESULTS OF TWO-CLASSES MODEL FORMATION STRATEGY

USING NAIVE BAYES AND DECISION TREE

Instances Classified Naïve Bayes Decision Tree

Correctly 97.98% (148788) 99.97% (149888)

Incorrectly 1.5 % (2430) 0.03% 70

Fig. 3. Naïve Bayes Two Class Model Strategy, Predicted vs. Expected

Class, Variances.

Fig. 4. Shows Decision Tree Two Class Model Strategy, Predicted vs.

Expected Class, Variances.

Although the model construction technique changed, the
Decision Tree was always attained. In Fig. 4, the number of
erroneously identified occurrences decreases in the upper left
and lower right quadrants.

TABLE IV. TWO-CLASSES MODEL CREATION STRATEGY ACCURACY /
CLASS FOR NAÏVE BAYES AND DECISION TREE

Class

True-Positive False-Positive

Naïve

Bayes
Decision Tree

Naïve

Bayes
Decision Tree

Normal 0.989 0.999 0.017 0

Malicious 0.983 1 0.011 0.001

Table IV displays the cumulative relative results per
classifier for the TP and FP measurements. The Decision Tree
has a high true-positive rate and a low false-positive rate.

C. Reasoning Module

In the event that the first stage of classification fails, this
mechanism steps in to offer a backup classification stage. A
hybrid model of neural network (MLP) and fuzzy logic is used
in the reasoning process [8]. This module's output will be a
signature, which will be included in the rule base as an
addition.

The suggested reasoning tool in this study categories
network traffic into two categories: normal (1) and attack (0).
To put it another way, the hybrid model is built around two
modules neural networks and a fuzzy logic module. It will
categorize network traffic as normal if both modules classify it
as such, but it will classify it as an attack if either module does
so. The neural network has the benefit of being able to operate
with both poor and correct data [3]. Fig. 5 shows the hybrid
model. When employed in the IDS context, this capability
may be used to identify attack patterns that have been
provided throughout the training.

It is possible that certain assaults will not be detected by
one of the modules, but they may be detected by the other one
when utilizing a hybrid method. Furthermore, one module will
compensate for weaknesses in other modules' anti-malware
detection capabilities. As a result, the false-positive rate for
malicious traffic might rise.

1) Neural network: As a computational model of the

central nervous system, it can learn and recognise patterns. It

has been described as a system that adapts to overt or covert

information flows during learning [1].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

314 | P a g e

www.ijacsa.thesai.org

Fig. 5. Hybrid Model Overview.

This design has various tiers (one input layer, several
hidden layers, and one output layer). Each layer has neurons,
which are processing units. It connects to the mass of the next
stratum. In the training phase, back-propagation is used. The
input data is given to the neural network, and the output is
compared to the intended output. This error is used to alter the
weights. The error estimations and weight adjustments follow
[1].

fj (n) = hj (n) – uj (n) (3)

 (n)=

 j

 (n) (4)

 ()= -
 ()

 ()
 ai(n) (5)

2) Fuzzy logic: To be a computer model based on human

language concepts. Rule-based systems are converted to their

mathematical equivalents by fuzzy systems [11]. The

fuzzifier, interference engine, rule basis, and fuzzified are all

represented in Fig. 6. The following is how fuzzy systems

work: [11].

Fig. 6. Fuzzy Logic Components.

 Each input is transformed into a fuzzy input set using
the appropriate membership methods.

 The interference engine creates a fuzzed performance
based on the criteria supplied.

 The defuzzification membership functions are used to
turn the fuzzy output into a crisp value.

Table V lists the inputs that the reasoning module gets
from the ip info finder module.

The rule base includes the reasoning for generating the
output. The interference engine will employ this set of (if....
then) rules to get a fuzzier result. Table VI demonstrates the
reasoning module's criteria for predicting malicious traffic.

On the basis of information gathered, the reasoning
module determines whether or not an IP address may be

sending malicious traffic. This may be done using a data
mining approach, such as clustering or regression. Many
factors led to the selection of fuzzy logic for this module. The
"if-then" rule form, which is supported by fuzzy logic, may be
used to represent the analysis of the acquired data. Aside from
that, determining whether or not an IP address is malicious
might be tricky in certain cases.

The final output will be considered malicious if it is higher
than 0.5, otherwise, it will be considered normal.

3) Experiment: A three-layer neural network module

(MLP) is used in our experiment. Whereas the input layer has

one neuron, the hidden layer has eight, and the output layer

has 10. 10% of the whole KDD'99 IDS and the starting

weights were used to train the neural network segment, and

the module was trained by constraining the overall mean

square to .01 and the maximum number of epochs to 3000.

The KDD'99 IDData collection was used to construct the
fuzzy module system:

1) With the exception of 'support,' all of the specified

features have been stabilized such that each property has the

same range of values (between 0 and 1). This action

contributes to the streamlining of the rule-generation process.

2) We have defined three values: U1, U2, U3, where:

U1=0.45, U2=0.376, U3=0.76.

3) All features except service were transformed from

numerical values into descriptions throughout the iteration

through the training data.

0 ≤ attribute value < U1 → Very Low (UL).

U1 ≤ attribute value < U2 → Low (L).

U2 ≤ attribute value < U3 → High (H).

U3 ≤ attribute value ≤ 1 → Very High (UH).

TABLE V. THE REASONING MODULE INPUTS

Input Name Description

IP Geographic Location Specifies which country the IP is based at

Is IP in a block list
Specifies whether the IP is found in a block
list or not

Is IP an anonymous proxy
Specifies whether the IP is an anonymous

proxy or not

IP Rating
An array that shows the IP rating on different

DNSBL

TABLE VI. IF THEN RULES USED IN THE REASONING MODULE

If Condition Statement

(IP in a block list) Possible malicious traffic

(IP country in a black list) AND (IP

is an anonymous proxy)
Possible malicious traffic

(IP country in a black list) AND (IP

is a TOR exit node)
Possible malicious traffic

(IP Rating is low) Possible malicious traffic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

315 | P a g e

www.ijacsa.thesai.org

The performance might be categorized as either normal or
offensive. The rule was then written down as follows. The rule
was then created in the following form:

if (feature1 is feature_desc AND feature2 is feature2_desc
AND ……. feature10 is feature10_desc) then output is
output_desc

4) If the previous phase's rule was added to the rule base,

it will not be applied to the rule base again. There are a total of

1248 rules applied to the fundamental rule. As illustrated in

Fig. 7 and 8, the last stage in the implementation of the fuzzy

module was to pick relationship functions for both inputs and

outputs.

Fig. 7. Shows Relationship Function Excluding „Service' Feature.

Fig. 8. Shows the Output's Relationship.

Table VII displays the hybrid model's assessment results
after neural network training, rule development, and fuzzy
module membership function selection.

TABLE VII. INCLUDES A HYBRID MODEL WITH NEURAL NETWORK AND

FUZZY LOGIC RESULTS

Class

True-Positive False-Positive

Neural

Network

Fuzzy

Logic

Hybrid

Model

Neural

Network

Fuzzy

Logic

Hybrid

Model

Normal 0.972 0.978 0.952 0.029 0.022 0.048

Malicious 0.966 0.9995 0.9997 0.034 0.0005 0.0003

III. CONCLUSION

Despite the fact that SNORT monitors and detects an
attack, the reality is that it is not designed to identify new
threats and, as a result, generates a large number of false
alarms at a rapid pace. For the first time, data mining
approaches have been employed to bring new stages into the
solution of previously existing IDS. The suggested model's
initial phase accurately detects the vast majority of data.
According to Decision Tree, a comparison of two distinct
training models using the Naive Bayes and the Decision Tree
algorithms shows that the most effective outputs have a higher
true-positive score and a greater degree of granularity.

The second stage of the proposed model (reasoning
mechanism) was built using a hybrid approach. used a neural
network and fuzzy logic to identify new attacks. The rate of
intrusion detection rose after deployment.

REFERENCES

[1] Anthony, M. and Bartlett, P. “Neural Network Learning: Theoretical
Foundations” 2009, Cambridge University.

[2] Altwaijry, H., Bayesian-based intrusion detection system, in IAENG
Transactions on Engineering Technologies 2013, Springer. p. 29-44.

[3] Borah, S. and A. Chakraborty, Towards the Development of an
Efficient Intrusion Detection System. International Journal of Computer
Applications, 2014. 90.

[4] Bhargava, N., et al., Decision Tree Analysis on J48 Algorithm for Data
Mining. International Journal, 2013. 3(6).

[5] Davis, J.J., and A.J. Clark, Data preprocessing for anomaly-based
network intrusion detection: A review. Computers & Security, 2011.
30(6): p. 353-375.

[6] Hall, M. (1999) Correlation-based Feature Selection for Machine
Learning. The University of Waikato.

[7] Hall, M., et al., The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 2009. 11(1).

[8] Kukiełka, P. and Kotulski, Z. (2010) "Adaptation of the neural network-
based IDS to new attacks detection," Available from
http://arxiv.org/abs/1009.2406 (Access Date: 17 Oct 2014).

[9] Kim, G., S. Lee, and S. Kim, A novel hybrid intrusion detection method,
integrated anomaly detection with misuse detection. Expert Systems
with Applications, 2014. 41(4): p. 1690-1700.

[10] Kang, D.-K., D. Fuller, and V. Honavar. "Learning misuse and anomaly
detection classifiers using a bag of device calls representation." In
Information Assurance Workshop, 2005. IAW'05. Proceedings from the
Sixth Annual IEEE SMC. 2005. IEEE.

[11] Rajasekaran, S. and Pai, G. "Neural Networks, Fuzzy |Logic, and
Genetic Algorithm: Synthesis and Applications" 2003, PHI Learning
Pvt. Ltd.

[12] Rawat, R. and A. Jain, Review: Boosting Classifiers for Intrusion
Detection. International Journal of Scientific & Engineering Research,
2013. 4(7): p. 1-5.

[13] Roesch, M. SNORT: Lightweight Intrusion Detection for Networks. in
LISA. 1999.

[14] Shanmugam, B. “Improved Intrusion Detection System Using Fuzzy
Logic for Detecting Anamoly and Misuse Type of Attacks" in
Proceedings of the Conference of Soft Computing Pattern Recognition.
2009, pp.212-217.

