
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

331 | P a g e

www.ijacsa.thesai.org

Detecting Hate Speech on Twitter Network Using

Ensemble Machine Learning

Raymond T Mutanga1, Nalindren Naicker2, Oludayo O Olugbara3

Department of Information Technology, Durban University of Technology, Durban, South Africa1, 3

Department of Information Systems, Durban University of Technology, Durban, South Africa2

Abstract—Twitter is habitually exploited now-a-days to

propagate torrents of hate speeches, misogynistic, and misandry

tweets that are written in slang. Machine learning methods have

been explored in manifold studies to address the inherent

challenges of hate speech detection in online spaces. Nevertheless,

language has subtleties that can make it stiff for machines to

adequately comprehend and disambiguate the semantics of

words that are heavily dependent on the usage context. Deep

learning methods have demonstrated promising results for

automatic hate speech detection, but they require a significant

volume of training data. Classical machine learning methods

suffer from the innate problem of high variance that in turn

affects the performance of hate speech detection systems. This

study presents a voting ensemble machine learning method that

harnesses the strengths of logistic regression, decision trees, and

support vector machines for the automatic detection of hate

speech in tweets. The method was evaluated against ten widely

used machine learning methods on two standard tweet data sets

using the famous performance evaluation metrics to achieve an

improved average F1-score of 94.2%.

Keywords—Classical learning; deep learning; ensemble

learning; hate speech; social media; twitter network; voting

ensemble

I. INTRODUCTION

Twitter is a popular microblogging social networking
service platform invented for the central purpose of connecting
geographically dispersed people to seamlessly collaborate,
communicate, microblog, network, socialise and share
information. It is recently used for fostering business entities as
a way of reaching out to a throng of clients and retaining them.
However, despite its popularity and usefulness, there is a rapid
rise in its usage for propagating hateful speeches and aiding
torrents of invectives against innocent people. The level of
anonymity of the accounts granted by social media networking
platforms has made them havens for promoting hateful,
discriminating, and vulgar speeches. Considering that Twitter
generates a high volume of tweets daily, hate speech
propagation should be curbed to avoid people deactivating
their accounts and quitting the network platform. Human
annotators are currently employed by Twitter and Facebook to
delete nocuous tweets perceived to be hateful in curtailing the
excessiveness of hate speech propaganda on social media
platforms. In addition, the public is requested to report nocuous
tweets to the service providers. However, these manual
methods are laborious, sentimental, and susceptible to a
subjective human judgement of what truly constitutes hate
speech [1].

The repercussions of hateful tweets, limitation of
legislation, and ineffectiveness of human annotators have
created the necessity to apply machine learning methods for
automatic hate speech detection. Classical and deep machine
learning methods can be employed to automatically detect hate
speech in text documents. The classical machine learning
methods mostly use the vector-based representation of
handcrafted features, which is time-consuming to craft and is
typically incomplete [2]. Moreover, the vector space model
often fails to effectively capture the semantic and syntactic
representations of text. Deep learning methods generally allow
for more accurate prediction through auto-generation of
suitable feature representations. Recurrent neural networks
(RNN) are deep learning methods that can preserve the
sequence information over time. The contextual information
can be considered in the task of object classification using deep
learning methods [3]. However, deep learning requires a large
chunk of data to obtain accurate results. Furthermore, the end-
to-end mechanism through which deep learning methods make
decisions may not be suitable for text processing in the
discipline of natural language processing because of the lack of
interpretability. This is particularly pertinent to hate speech
detection, where a manual appeal process is needed for a
system that censors the speech of a person [4].

Research studies in machine learning have evolved to
ensemble learning methods that agglutinate multiple learning
methods to improve the performance of a detection system.
This allows for harnessing the strengths of multiple learning
methods and optimisation of classical machine learning
methods in an object classification task. In general, ensemble
learning methods can be classified appositely into four main
categories of bagging, boosting, stacking, and voting [5]. The
predictions from many decision trees are combined in a
bagging ensemble learning method. Boosting involves
correcting the performances of prior classifiers and adding
them sequentially to the ensemble. Since every classifier is
obliged to fix the errors in the predecessors, boosting is
sensitive to outliers which are considered a disadvantage.
Learning how to best combine the predictions from several
inducers is achieved through a stacking meta-learning method.
Like all meta-model ensemble methods, stacking is simply not
feasible in many real-world situations because of a lot of
reasons [6]. Predicting a class with the most votes by adding
the votes of crisp class labels is called a voting ensemble that
works by combining the predictions from multiple classifiers.
The majority vote in the task of classification is predicted by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

332 | P a g e

www.ijacsa.thesai.org

summing the prediction for each label, which makes it suited
for complex multiclass problems [7].

Different ensemble machine learning methods have been
effectively applied to diverse application domains such as
speech emotion recognition [8, 9], product image classification
[10], and lung cancer prediction [11]. However, it is more
challenging to process highly unstructured text documents with
the orthodox machine learning methods that are well developed
for numerical data processing. Consequently, a voting
ensemble machine learning method that agglutinates logistic
regression, support vector machines, and decision trees is
proposed in this study for hate speech detection in tweets.
Logistic regression has shown positive results on binary text
classification because of its ability to be easily tuned to
accommodate new data. Support vector machines are widely
used for many types of classification problems because of their
ability to work in high dimensional spaces to address the
overfitting logjam. Decision trees have shown promising
results in dealing with highly unstructured data because they do
not require data scaling.

In general, tweets are short messages, and their meanings
are often rife with idioms, onomatopoeias, homophones,
phonemes, and acronyms [12]. Hence, the work reported in this
paper agglutinates the strengths of logistic regression, support
vector machines, and decision trees in a voting ensemble
learning method for hate speech detection in tweets. It is
envisaged that support vector machines will bring stability to
the voting ensemble because it is not influenced by outliers in a
data set. The process of carefully choosing and configuring the
parameters for an ensemble learning method is still an open
area. The parameter configuration in the proposed voting
ensemble learning was carefully fine-tuned for optimal
performance. This research study is aimed at enhancing the
performance of hate speech detection systems using the
method of voting ensemble learning and testing its
performance against numerous baseline methods.

This paper is compactly structured as follows. In Section II,
the related literature on hate speech detection is briefly
reviewed. In Section III, the materials and methods of the study
are discussed. In Section IV, the experimental results and
discussion are explicated. The concluding statements are
delineated in Section V of this paper.

II. RELATED LITERATURE

Hate speech detection is an automated task of determining
whether a given piece of text content contains hateful
utterances or not. It is a difficult problem in the fields of
natural language processing (NLP) and artificial intelligence
(AI) for which the classical or deep learning methods
experimented. The classical machine learning methods heavily
depend on a complex process of feature engineering where
features from an input text are rigorously extracted. Deep
learning methods eliminate the need for feature engineering by
automatically learning features from the input text [7]. There is
ongoing research to increase the accuracy of text classification
methods owing to the unstructured and complex nature of NLP
problems. The review of related literature is planned under the
themes of classical learning, deep learning, and ensemble
learning as explicated in this section.

A. Classical Learning

The classical machine learning approach uses the
established vector-based model such as n-grams and bag of
words for text representation, while support vector machine
(SVM), decision tree (DT), and logistic regression (LR) are
traditionally deployed for text classification. The SVM was
originally designed for binary classification tasks [7], but its
usage has long been extended to a multiclass classification
problem by breaking a given classification problem into
several binary sub problems. The binary classification method
divides n-dimensional space features into distinct regions that
correspond to two specified output classes [13]. Its
performance is attributed to the ability to model nonlinear
decision boundaries and it is robust against overfitting [14]. DT
can achieve a good performance in several classification tasks
while producing easily interpretable decisions. The knowledge
learned by a DT during the training session is represented in a
hierarchical structure that allows for easy comprehension and
interpretation by non-experts. LR method uses a probability
function or a sigmoid cost function whose output is limited to
values between 0 and 1 to make it well suited for binary
classification problems. Davidson et al. [15] used a crowd-
sourced hate speech lexicon to collect and label tweets
containing hate speech. They trained six classical learning
methods to distinguish three classes of hate speech as
contained in their data set. Their best result was an F1-score of
90.00%.

B. Deep Learning

Deep learning methods learn through a series of
interconnected network layers wherein each layer receives
input from a prior layer and provides input to a subsequent
layer [2]. The raw data in a deep learning text classification
task are vectorised to produce the desired input sequence [14].
The size of the input layer is defined by the number of inputs.
The additional layers improve the learning capability to obtain
a stable output. The output layer provides a result in the form
of probabilities of the output classes and has the same number
of neurons as the output classes [16]. The long-short term
memory (LSTM) can model an ordered sequential input such
as textual data [17]. The LSTM was specifically developed to
address the vanishing gradient problem faced by the vanilla
version of recurrent neural network (RNN) [14] and it has been
used in many classification tasks [1, 16, 18, 19]. It has been
proven to work well with text data, but it requires a large
amount of data for training and validation [17]. Convolution
neural network (CNN) uses the pooling technique to minimise
the outputs of network layers, but it is prone to high
dimensionality in a text processing task. Mutanga et al. [20]
explored the use of a transformer method to detect hate speech
to obtain the best accuracy of 92.00% and F1-score of 75.00%
using DistilBERT.

C. Ensemble Learning

 It is promising to harness the strengths of different
machine learning methods through the framework of ensemble
learning for improving the performance of hate speech
detection systems. Popular ensemble learning methods include
bagging, boosting, and stacking. Bagging minimises variance
by combining the verdicts from different decision trees [21,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

333 | P a g e

www.ijacsa.thesai.org

22]. It has led to the development of many other decision tree-
based ensemble learning methods. The idea behind the bagging
ensemble is to create numerous subsets of data from the
training sample picked arbitrarily with replacement. Each of
the subsets created is used to train its decision trees, resulting
in an ensemble of different models. However, the bagging
approach does not necessarily lead to improved performance. It
can result in performance declination, for example, when a
model already has low variance. In addition, empirical
evidence has suggested that bagging can push an unstable
method towards an optimal performance [23-25]. Conversely,
it may lead to a declination in the performance of stable
methods. Models are sequentially added to an ensemble in
boosting, where each model rectifies the error made by the
prior method in the sequence [26, 27]. However, one apparent
hiccup of boosting is that it is highly responsive to outliers
because each method is required to address errors in the
predecessor method. The stacking ensembles are generally
used to learn how to best combine predictions from multiple
inducers. Stacking ensembles, like all meta-model ensemble
learning methods, are not feasible in many real-world
applications because they can be expensive to train, deploy and
maintain.

There are relatively few studies conducted on hate speech
detection using ensemble machine learning methods. In their
work, MacAvaney et al. [4] evaluated the efficacy of support
vector machines, bidirectional encoder representations from
transformers, and an ensemble of neural networks for detecting
hate speech. They trained their model on four hate speech data
sets to achieve the best F1-score of 91.18% obtained using an
ensemble of neural networks on a hate speech tweet data set.
Ahluwalia et al. [19] used an ensemble learning method of LR,
SVM, random forest (RF), and gradient boosting machine
(GBM) to detect English hate speech against women. They
trained their model on a data set of binary classes and a data set
of multiple classes to achieve the best accuracy of 65.10% for
binary classification and an F1-score of 40.60% for multiclass
classification. The said works have employed ensemble
learning methods for hate speech detection, but it should be
noted that none of them has combined logistic regression,
decision trees, and support vector machines in an ensemble
architecture despite the efficacy shown by the algorithms when
used solitarily [4, 15, 19]. The contribution of this paper is the
development of a new robust voting ensemble method that
harnesses the capabilities of LR, DT, and SVM [14, 15] to
address overfitting, accommodate new data, and allow for
interpretability of a hate speech detection system.

The review of the related literature has generally indicated
that relatively few studies have focused on using ensemble
learning for hate speech detection in online spaces. Most of
these few studies have reported performance results that
require further improvement. The current method based on
voting ensemble learning gave the state-of-the-art results of
94.20% accuracy and an F1-score of 94.21% surpassing the
results of earlier studies that used the same data set. The results
have reflected an improvement over the F1-score of 90.00%
reported in [15] and the highest benchmarked accuracy result
of 92.00% reported in [20].

III. MATERIALS AND METHODS

The materials and methods used in this study are lucidly
presented in this section based on experimental data sets with
baseline methods, and essential steps of the proposed voting
ensemble method.

A. Experimental Materials

The publicly available data sets of hate speech offensive
(HSO) language and Kaggle were used for experimentation in
this study. The HSO data set comprised of 11310 tweets that
were labelled as ‘Hate’ or ‘Neutral’ as made available on the
GitHub repository [15]. The Kaggle data set is made up of
8778 neutral tweets and 1155 hate tweets. The data set was
grossly imbalanced, and it was important to measure the
performance of machine learning methods on a smaller data
set. Consequently, the data set was reduced programmatically
to 2300 tweets to test the performance of the experimental
methods on a smaller data set. The balanced version of the data
set consisted of 1150 hate tweets and 1150 neutral tweets that
were used for experimentation in this study.

The baseline experimental methods and the proposed
voting ensemble method were all implemented using the
Python programming language. The Keras library was used to
implement the deep learning methods, while the scikit-learn
Python library was used to implement the baseline classical
and ensemble learning methods. Specifically, sklearn.tree,
sklearn.linear_model, and SVM submodules were used to
implement DT, LR, and SVM respectively. All the baseline
ensemble learning methods were implemented using the
sklearn.ensemble submodule. The Keras library was used to
implement the CNN and LSTM deep learning methods.
Several experiments were faithfully conducted on a computer
machine running Windows 10 operating system with
configuration of Intel (R) Core (TM) i5-8250U CPU @
1.60GHz (8 CPUs), 1.8GHz, 8 GB RAM, and 500 Gigabytes
of a hard disk drive.

B. Proposed Method

The proposed voting ensemble method comprises the
phases of pre-processing, feature representation, and feature
classification. The essential steps of the pre-processing include
the removal of special characters and punctuations,
normalisation of hashtags, lowercasing of the characters of the
input text, removal of short words, and text tokenisation. The
feature representations were based on the widely used bag of
words and word embedding. They were applied after pre-
processing to convert the raw tweets data into a useful form
amenable to machine learning processing. The bag of words
representation converts a text document into a fixed-length
vector of occurrence of words in the input text and it was used
to implement the classical learning methods. The regularity
presented by specific keywords has provided a solid foundation
for a bag of words representation to focus on specific words in
a data set [28]. Since hate speech is generally expressed
through largely homogenous words, it is envisaged that a bag
of words representation can effectively capture and represent
the vocabulary of known hate words such as black, white,
Indian, Jews, foreigners, strangers, enemies, and so on.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

334 | P a g e

www.ijacsa.thesai.org

Word embedding is a more promising text vocabulary
representation that is used by deep learning methods to encode
meanings of words into a real value vector such that highly
similar words are closer in the vector space. It is a foundation
for sentence embedding that presents a huge advantage over
the bag of words vector model. It can capture word context,
syntactic and semantic relationships with words in a text
document. Moreover, it eliminates the sparse representation
hiccup often associated with the bag of words representation.
The word embedding approach follows the distributional
hypothesis, where semantically similar words are found in the
same context [2]. The word embedding layer for text
classification is usually the first data processing layer of a deep
learning model and word embedding methods have been
demonstrated to perform well in different NLP tasks [29-31].
In this study, word embedding was implemented using the
Keras embedding layer of deep learning because of its ability
to capture contextual words and syntactic similarities to
enhance the interpretation of tweet meanings.

The basic idea behind the proposed method of this study
lies in the selection of an optimal bias-variance trade-off. The
presence of high variance can lead to the problem of
overfitting, while high bias may result in underfitting. Due to
the nature of tweets, variance is likely to occur, particularly in
fora that focus on a specific type of hate speech. The
Islamophobic for instance may express hate speech in largely
similar terms that are difficult to detect using a learning
method. The proposed voting ensemble method aggregates the
decisions from three classical inducers, which are LR, DT, and
SVM to obtain accurate classification decisions. Fig. 1 shows
the architecture to illustrate the steps of the proposed voting
ensemble learning method.

Fig. 1. The Architecture of the Proposed Voting Ensemble Learning

Method.

The base inducer of DT is used when the dependent
variable is qualitative as in the episode of a text classification
task. DT is highly interpretable, fast to train, and works well
with decision boundaries [14]. The inclusion of the DT method
in the proposed ensemble is based on its appropriateness when
dealing with categorical data such as distinguishing hate tweets
from innocuous tweets. Earlier studies have investigated the
use of DT methods in hate speech detection tasks and recorded
satisfactory performance [32]. The important parameters in DT
to perform the grid search cross-validation technique are
max_depth and random_state. The max_depth parameter
determines the depth of a tree. The deeper the tree, the more
splits it has, and it captures more information about the data. In
our experiments, the max_depth value for optimal searching
was 10 trees. The depth parameter is also used as a
regularisation scheme to prevent overfitting. This step is
crucial in our study because tweets are generally regarded as
noisy and highly dimensional. The random_state parameter
that controls the random choices for the training sample was
set at 42.

The LR inducer attempts to find a probability-based
relationship between the independent variable and class label
in each data set. It aims to create a probability function that
uses features as inputs and returns the probability of that
instance belonging to a given class [33, 34]. The LR does not
require scaling of input features and it requires comparatively
fewer computation resources [14]. The regularisation
parameter (L2), and ’squared magnitude’ of coefficient as a
penalty to the loss function were used for optimisation. The
‘fit_intercept’ parameter was set to ‘True’ to incorporate the
intercept value to the LR method. The ‘Solver’ parameter that
defines the method to be used in the optimisation problem was
set to ‘sag’ which is compatible with the L2 penalty.

The optimisation of the SVM inducer employed the grid
search cross-validation scheme to come up with the best
parameters for model fitting. The optimal value for parameter
C that defines the tolerance threshold for misclassification was
set at 0.1. Moreover, the linear kernel that works on the
assumption that input data is linear was applied. Thereafter, the
auto deprecated gamma setting, which is the recommended
default value was used in conjunction with the linear kernel.
The optimal value of the degree parameter was set at 3. The
learning rate for the proposed ensemble learner was specified
in the Python program before training. The low learning rate
specified in Table I was used for preventing the ensemble
model from converging to an undesirable optimum [35]. The
tolerance setting is a stopping technique that stops the iteration
process once the specified value is reached and it affects the
training time of a model [36]. The parameters for the inducers
and voting ensemble (VE) method are succinctly summarised
in Table I.

The results computed by the voting ensemble learning
method can be based on either hard or soft voting. The class
probability score for each classification method that the current
sample belongs to, is considered soft voting [34]. At that point,
soft voting criteria determine the class with the highest
probability by averaging the individual values of the inducers
[37]. Hard voting involves summing the votes for crisp class
labels from the other inducers and predicting the class with the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

335 | P a g e

www.ijacsa.thesai.org

most votes. The class label Y can be decided by the majority
voting of each classifier C as in the following example.

Y = mode(c1(x), c2(x), … , cm(x)) (1)

If the predictions from c1, c2, and c3 are ‘hate’, ‘neutral’,
and ‘hate’, respectively, the final prediction will be ’hate’
according to the principle of majority voting. Consequently,

𝑌 = 𝑚𝑜𝑑𝑒[ℎ𝑎𝑡𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, ℎ𝑎𝑡𝑒] = ℎ𝑎𝑡𝑒 (2)

The hard voting scheme is suited for predicting distinct
class labels, while soft voting is appropriate for predicting
continuous values. This study was based on tweets labelled
under distinct categories. Hence, it implies that hard voting is
more desirable for this study as compared to soft voting.

TABLE I. CONFIGURATION SETTINGS FOR THE PROPOSED VOTING

ENSEMBLE METHOD

Parameter DT LR SVM VE

max_ depth 10 10

learning_ rate 0.4

n_ estimators 3

random_ state 42 None

C 0.1 0.1 1.0

cache_ size 200 200

degree 3 3

gamma auto_ deprecated

kernel linear linear

max_ iterations 100 −1 −1

shrinking True True

tolerance (tol) 0.0001 0.001 0.001

penalty L2

fit_ intercept True

solver sag

IV. RESULTS AND DISCUSSION

This section presents a discussion of the comparative
results of the proposed voting ensemble learning method
against ten widely used machine learning methods. The
baseline methods are AdaBoost, AdaBoost-DT, Bagging,
Bagging-SVM, CNN, DT, LR, LSTM, RF, and SVM. The
experimental data sets of Kaggle and HSO were each split into
training and testing data in the ratios of 80:20 and 70:30.
Although the proposed voting ensemble learning method is
comprised of LR, SVM, and DT inducers, each inducer was
implemented separately to establish a comparison with the
proposed voting ensemble learning method. In addition, other
widely used machine learning methods were evaluated against
the proposed method. The performances of the learning
methods were analysed and discussed in terms of four
functional metrics of accuracy, precision, recall, and F1-score.
In addition, the performances of the learning methods were
evaluated and discussed in terms of non-functional metrics of
kappa, hamming loss, Jaccard similarity, and execution time.

A. Accuracy Results

This section presents the analysis of the accuracy of the
experimental results of the proposed voting ensemble method
along with several baseline methods. The accuracy scores
calculated for the two experimental data sets are listed in
Table II. It can be observed that accuracy scores computed by
the proposed voting ensemble learning method are consistently
higher than the scores computed by other learning methods
across the two experimental data sets. The proposed ensemble
learning method recorded the highest average accuracy score
of 94.212% across both data sets, irrespective of the test split.
It is worth mentioning that the voting ensemble learning
method had the highest accuracy scores across the two data
sets under the different train and test splits. Expectedly, all
methods performed better with the larger HSO data set as
compared to the smaller Kaggle data set, with the proposed
voting ensemble learning method giving the highest accuracy
score of 96.739% under the bigger data set using the 80:20
train test split. This trend is attributable to the fact that bigger
data sets allow methods to learn data patterns more
comprehensively during training, thereby impacting overall
performance, particularly in the case of deep learning methods,
which generally require large data sets to perform well.

TABLE II. ACCURACY SCORES OF LEARNING METHODS USING

DIFFERENT TRAIN-TEST SPLITS

Data set Kaggle HSO

Train: test split 80:20 70:30 80:20 70:30 Average

AdaBoost 87.887 87.883 91.304 90.870 89.486

AdaBoost-DT 90.539 90.448 93.043 89.855 90.972

Bagging 90.318 90.566 92.174 89.275 90.583

Bagging-SVM 91.468 90.654 95.217 94.493 92.958

CNN 88.240 88.031 95.000 94.493 91.441

Decision Tree 90.097 90.301 91.739 89.275 90.353

Logistic Regression 91.689 91.509 95.435 94.493 93.281

LSTM 91.202 90.890 95.435 94.638 93.041

Random Forest 89.434 90.065 93.478 93.478 91.614

Support Vector Machine 89.788 88.709 92.391 92.464 90.838

Voting Ensemble 92.042 91.834 96.739 96.232 94.212

Fig. 2 shows the plot of average accuracy scores computed
by the learning methods across the experimental data sets to
visually illustrate the extent to which one learning method
gives better accuracy than another. This result implies that the
voting ensemble method can detect all the correct cases better
than any other method, while AdaBoost performed worst in
this case. The voting ensemble method is therefore the most
useful when all classes are equally important while AdaBoost
is not useful in this scenario.

B. Precision Results

This section presents the precision scores computed by the
proposed voting ensemble learning method against the baseline
learning methods explored in this study. It can be observed in
Table III that the voting ensemble learning method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

336 | P a g e

www.ijacsa.thesai.org

outperformed other learning methods across the two
experimental data sets. The proposed voting ensemble learning
method recorded the highest average precision score of
93.779%. The LSTM performed relatively well, scoring the
second-highest precision score of 93.457%. The exceptional
performance of the LSTM may be linked to its ability to
capture long-term dependencies. This property makes it
suitable for text classification tasks such as hate speech
detection, where the semantics of a tweet can be derived from
the arrangement of words in the tweeted document.

Fig. 2. The Average Accuracy of Learning Methods.

TABLE III. PRECISION SCORES OF LEARNING METHODS USING DIFFERENT

TRAIN-TEST SPLITS

Data set Kaggle

HSO

Train: Test

Split
80:20 70:30:00 80:20 70:30

Averag

e

AdaBoost 88.093 88.011 91.686 91.182 89.743

AdaBoost-DT 90.523 90.436 93.096 89.970 91.006

Bagging 90.306 90.562 92.495 89.550 90.728

Bagging-SVM 91.519 90.723 95.248 94.489 92.995

CNN 88.495 88.315 95.042 94.674 91.631

Decision Tree 90.083 90.288 91.790 89.342 90.376

Logistic

Regression
91.680 91.508 95.539 94.538 93.316

LSTM 91.207 90.919 95.477 96.224 93.457

Random Forest 89.418 90.053 93.508 93.478 91.614

Support Vector
Machine

89.804 88.702 92.488 92.475 90.868

Voting

Ensemble
92.030 91.830 96.747 94.507 93.779

The least average precision score of 89.743% was recorded
by the AdaBoost method with the default parameter setting.
The combination of AdaBoost with another classifier in
ensemble learning improves the system performance. The
AdaBoost method with DT as base learner outperformed the
default AdaBoost because it gave an average precision of
91.006%, which is higher than 89.743% recorded by the
default AdaBoost method. Most methods performed better with
the 80:20 train test split as compared to the 70:30 split.
However, only RF and DT performed better with a 70:30 split.
The precision computed by DT and RF fell when the training
data set was increased by 10% on the larger HSO data set. The
drop-in performance may be the result of overfitting because
both DT and RF are susceptible to overfitting [17]. Table III
shows the precision scores of all the learning methods
experimentally compared in this study.

Fig. 3 shows the plot of the average precision scores
computed by the learning methods across the experimental data
sets to visually illustrate the extent to which one method gives
better precision than another. This result implies that the voting
ensemble method can correctly detect hate speeches from the
predicted class of hate speeches better than any other method,
while AdaBoost performed worst in this case. The voting
ensemble method is therefore the most useful when the cost of
false positives is high while AdaBoost is not useful in this
scenario.

Fig. 3. The Precision of Learning Methods.

89.49

90.97
90.58

92.96

91.44

90.35

93.2893.04

91.61

90.83

94.21

M
e

th
o

d

Learning Method

89.74

90.01
90.73

93.00

91.63

90.38

93.32
93.46

91.61

90.87

93.78

M
e

th
o

d

Learning Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

337 | P a g e

www.ijacsa.thesai.org

C. Recall Results

This section presents an evaluation of the learning methods
investigated in this study based on the recall metric. Results
from Table IV show that the proposed voting ensemble
learning method gave an average recall value of 94.210%,
which is superior to that of baseline learning methods used in
this study. In addition, it can be noted that default meta
classifiers of Bagging and AdaBoost were outperformed by
their ensemble variants, which used different learning methods
as base learners. The recall score for the default AdaBoost is
89.408%, while the recall score for the AdaBoost-DT is
90.959%. In addition, the recall score for the bagging method
is 90.552%, while bagging-SVM had a recall score of
92.937%. It is obvious from these results that combining meta
classifiers with different learning methods can lead to
improved performance as shown in Table IV.

TABLE IV. RECALL SCORES OF LEARNING METHODS USING DIFFERENT

TRAIN-TEST SPLITS

Data set Kaggle HSO

Train: Test split 80:20 70:30 80:20 70:30 Average

AdaBoost 87.767 87.801 91.304 90.761 89.408

AdaBoost-DT 90.549 90.457 93.043 89.788 90.959

Bagging 90.312 90.553 92.174 89.170 90.552

Bagging-SVM 91.414 90.599 95.217 94.519 92.937

CNN 88.384 88.160 95.000 94.534 91.520

Decision Tree 90.119 90.310 91.739 89.223 90.348

Logistic Regression 91.680 91.496 95.435 94.550 93.290

LSTM 91.177 90.854 95.435 94.691 93.039

Random Forest 89.447 90.068 93.478 93.508 91.625

Support Vector Machine 89.749 88.695 92.391 92.444 90.820

Voting Ensemble 92.040 91.823 96.739 96.237 94.210

Fig. 4 shows the plot of average recall scores computed by
the learning methods across the experimental data sets to
visually illustrate the extent to which one learning method
gives a better recall than another. This result implies that the
voting ensemble method can correctly detect cases of hate
speeches from all the actual classes of hate speeches better than
any other learning method, while AdaBoost performed worst in
this case. The voting ensemble method is therefore the most
useful when the cost of false negatives is high while AdaBoost
is not useful in this scenario.

D. F1-score Results

This section presents the results of the overall F1-score for
the learning methods explored in this study. Table V shows
that the proposed voting ensemble method consistently
outperformed the baseline learning methods investigated by
recording the highest average F1-score of 94.208%. The
solitary bagging ensemble learning method recorded an
average F1-score of 90.564%, while the bagging-SVM
ensemble method recorded an average F1-score of 92.948%.
Furthermore, the mean score of 89.897% of the average F1-
scores for both AdaBoost and Decision tree learning methods
is inferior to the average F1-score of 90.692% for AdaBoost–

DT ensemble learning method. The analysis of the F1-score for
LSTM and CNN deep learning methods has shown that LSTM
consistently outperforms CNN. It can be perceived in Table V
that LSTM recorded an average F1-score of 93.035%, while
CNN recorded an average F1-score of 91.439%. This
difference in performance may come from the capability of
LSTM to capture long-term dependencies that are necessary
when extracting word meanings in a text. The superior
performance of the ensemble learning methods as compared to
any solitary methods, including deep learning has illustrated
that agglutinating multiple learning methods through ensemble
learning is highly promising for reducing the error rate of the
final learner in a hate speech detection system.

Fig. 4. The Average Recall of Learning Methods.

TABLE V. F-MEASURE SCORES OF LEARNING METHODS USING

DIFFERENT TRAIN-TEST SPLITS

Data Set Kaggle HSO

Train: Test Split 80:20 70:30 80:20 70:30 Average

AdaBoost 87.835 87.848 91.284 90.831 89.449

AdaBoost-DT 90.533 90.443 93.041 89.830 90.962

Bagging 90.309 90.557 92.159 89.232 90.564

Bagging-SVM 91.449 90.635 95.217 94.492 92.948

CNN 88.238 88.026 94.999 94.492 91.439

Decision Tree 90.092 90.296 91.737 89.255 90.345

Logistic Regression 91.680 91.501 95.432 94.493 93.277

LSTM 91.190 90.877 95.434 94.638 93.035

Random Forest 89.427 90.059 93.477 93.477 91.610

Support Vector Machine 89.771 88.699 92.387 92.456 90.828

Voting Ensemble 92.035 91.826 96.739 96.230 94.208

89.41

90.96
90.55

92.94

91.52

90.35

93.2993.04

91.63

90.82

94.21

A
ve

ra
ge

 R
e

ca
ll

Learning Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

338 | P a g e

www.ijacsa.thesai.org

Fig. 5. The Average F-Measure Score of Learning Methods.

Fig. 5 shows the plot of average F1-scores computed by the
learning methods across the experimental data sets to visually
illustrate the extent to which one method gives a better F1-
score than another. This result implies that the proposed voting
ensemble method can better detect incorrectly classified cases
better than any other learning method, while AdaBoost
performed worst in this case. The voting ensemble is therefore
the most useful when the classes are imbalanced while
AdaBoost is not useful in this scenario.

Results from the functional metrics used in this study
indicate that the voting ensemble outperformed the benchmark
algorithms used in the study. It is worth noting that the
individual performance of the meta classifiers was inferior to
that of the proposed voting ensemble model. This superior
performance of the proposed model may be attributed to the
minimal overfitting, model extensibility, and interpretability
features from each of the base learners [14, 15]. These results
confirm the literature position that ensemble learning
outperformed individual classifier algorithms in hate speech
detection [38, 39].

E. Non-functional Results

This section presents the evaluation of all the learning
methods investigated using the non-functional metrics of
Hamming loss, Jaccard, Kappa, and execution time. The
proposed voting ensemble method recorded the best Hamming
loss, Jaccard, and Kappa scores as shown in Table VI. This
result shows that the proposed ensemble learning method can
maximise predictive capability while concomitantly
minimising misclassification errors better than any of the
baseline learning methods investigated. However, the proposed
voting ensemble learning method recorded the second-highest

training time of 0.095 hours, which is a tradeoff decision to
consider between efficiency versus accuracy. The long
execution time taken by the proposed ensemble method was
because each inducer was trained separately, and the final
aggregated decision was achieved through the principle of
majority voting.

It can be observed from Table VI that SVM recorded the
lowest Kappa score indicating a low level of inter-annotator
agreement. This may be the result of minimal parameter tuning
applied to the SVM method. The learning method recorded the
worst Hamming loss of 10% to suggest a poor selection of
parameters for the method. It is interesting to observe that
ensemble learning methods such as bagging-SVM and voting
ensemble took more time to train than the deep learning
methods. This implies that although they perform better,
ensemble learning methods are computationally expensive.
However, the benefits of an improved performance can
outweigh the need for increased resources in critical
applications like hate speech detection.

TABLE VI. NON-FUNCTIONAL PERFORMANCE OF LEARNING METHODS

Method
Hamming

loss
Jaccard Kappa

Execution

Time

AdaBoost 8.696 91.304 82.609 0.013

AdaBoost-DT 7.174 92.826 85.652 0.010

Bagging 6.739 93.261 86.522 0.064

Bagging-SVM 4.565 95.435 90.870 0.353

CNN 5.000 95.000 90.000 0.001

Decision Tree 6.087 93.913 87.826 0.009

Logistic

Regression
4.565 95.435 90.870 0.003

LSTM 4.565 95.435 90.870 0.082

Random Forest 6.522 93.478 86.957 0.076

Support Vector

Machine
10.000 90.000 80.000 0.011

Voting

Ensemble
3.261 96.739 93.478 0.095

V. CONCLUSION

The primary contribution of this study is the construction
and validation of a voting ensemble learning method to
improve the automatic detection of hate speech in tweets. This
is challenging open research because of the anaphoric,
synonymy, and polysemy nature of the slang of tweets that
make the interpretation of hate speech ambiguous, difficult,
and controversial. The voting ensemble learning method has
been demonstrated in this study to yield the best performance
when compared to other learning methods.

However, one apparent curb of this study is the bag of
words representation of features that suffers from the
anaphoric, synonymy, and polysemy nature of words. In
addition, a bag of words representation presents the inability to
capture important information about interdependencies that
exist among words. Moreover, word embedding representation
can fall short in making machines draw adequate inferences
from certain classes of sentences.

89.45

90.96
90.56

92.95

91.44

90.35

93.27
93.04

91.61

90.83

94.21

M
e

th
o

d

Learning Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

339 | P a g e

www.ijacsa.thesai.org

In the future, a knowledge-based method with sentence
embedding will be introduced for tweet hate speech detection
and compared the results against those of the existing word
embedding learning methods. This envisioned novel method
will circumvent the intrinsic curbs of the bag of words and
word embedding representations. It will significantly increase
the confidence level of social media prosecutors to genuinely
regulate whether a given tweet is of hate speech or not.

REFERENCES

[1] K. Pitsilis, H. Ramampiaro, and H. Langseth, "Effective hate-speech
detection in Twitter data using recurrent neural networks," Applied
Intelligence, vol. 48, no. 12, pp. 4730-4742, 2018.

[2] T. Young, D. Hazarika, S. Poria, and E. Cambria, "Recent trends in deep
learning based natural language processing," IEEE Computational
Intelligence Magazine, vol. 13, no. 3, pp. 55-75, 2018.

[3] S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, "Big
data: Deep learning for financial sentiment analysis," Journal of Big
Data, vol. 5, no. 1, p. 3, 2018.

[4] S. MacAvaney, H.-R. Yao, E. Yang, K. Russell, N. Goharian, and O.
Frieder, "Hate speech detection: Challenges and solutions," PloS one,
vol. 14, no. 8, 2019.

[5] R. Polikar, "Ensemble learning," in Ensemble Machine Learning:
Springer, pp. 1-34, 2012.

[6] M. Graczyk, T. Lasota, B. Trawiński, and K. Trawiński, "Comparison of
bagging, boosting and stacking ensembles applied to real estate
appraisal," in Asian Conference on Intelligent Information and Database
Systems, Springer, pp. 340-350, 2010.

[7] U. Abubakar, S. A. Bashir, M. B. Abdullahi, and O. S. Adebayo,
"Comparative study of various machine learning algorithms for tweet
classification," i-manager's Journal on Computer Science, vol. 6, no. 4,
p. 12, 2019.

[8] K. Zvarevashe and O. O. Olugbara, "Recognition of cross-language
acoustic emotional valence using stacked ensemble learning,"
Algorithms, vol. 13, no. 10, p. 246, 2020.

[9] K. Zvarevashe and O. Olugbara, "Ensemble learning of hybrid acoustic
features for speech emotion recognition," Algorithms, vol. 13, no. 3, p.
70, 2020.

[10] S. Oyewole and O. Olugbara, "Product image classification using Eigen
Colour feature with ensemble machine learning," Egyptian Informatics
Journal, vol. 19, no. 2, pp. 83-100, 2018.

[11] E. Adetiba and O. O. Olugbara, "Lung cancer prediction using neural
network ensemble with histogram of oriented gradient genomic
features," The Scientific World Journal, vol. 2, 2015.

[12] A. Modupe, O. O. Olugbara, and S. O. Ojo, "Filtering of mobile short
messaging service communication using latent Dirichlet allocation with
social network analysis," in Transactions on Engineering Technologies:
Springer, pp. 671-686, 2014,

[13] C. J. Burges, "A tutorial on support vector machines for pattern
recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121-167, 1998.

[14] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and
D. Brown, "Text classification algorithms: A survey," Information, vol.
10, no. 4, p. 150, 2019.

[15] T. Davidson, D. Warmsley, M. Macy, and I. Weber, "Automated hate
speech detection and the problem of offensive language," in Eleventh
International AAAI Conference on Web and Social Media, 2017.

[16] L. Gao and R. Huang, "Detecting online hate speech using context
aware models," arXiv preprint arXiv:1710.07395, 2017.

[17] Q. Liu, F. Zhou, R. Hang, and X. Yuan, "Bidirectional-convolutional
LSTM based spectral-spatial feature learning for hyperspectral image
classification," Remote Sensing, vol. 9, no. 12, p. 1330, 2017.

[18] I. Kwok and Y. Wang, "Locate the hate: Detecting tweets against
blacks," in Twenty-Seventh AAAI Conference on Artificial Intelligence,
2013.

[19] R. Ahluwalia, H. Soni, E. Callow, A. Nascimento, and M. De Cock,
"Detecting hate speech against women in English tweets," EVALITA

Evaluation of NLP and Speech Tools for Italian, vol. 12, pp. 194-199,
2018.

[20] R. T. Mutanga, N. Naicker, and O. O. Olugbara, "Hate speech detection
using transformer methods," International Journal of Advanced
Computer Science and Applications, vol. 11, no. 9, 2020.

[21] I. Siloko and C. Ishiekwene, "Boosting and bagging in kernel density
estimation," The Nigerian Journal of Science and Environment, vol. 14,
no. 1, pp. 32-37, 2016.

[22] A. Kadiyala and A. Kumar, "Applications of python to evaluate the
performance of bagging methods," Environmental Progress &
Sustainable Energy, vol. 37, no. 5, pp. 1555-1559, 2018.

[23] F. Li, J. Fan, L. Wang, H. Zhang, and R. Duan, "A method based on
manifold learning and Bagging for text classification," in 2011 2nd
International Conference on Artificial Intelligence, Management Science
and Electronic Commerce (AIMSEC), 2011.

[24] L. Xinqin, S. Tianyun, L. Ping, and Z. Wen, "Application of bagging
ensemble classifier based on genetic algorithm in the text classification
of railway fault hazards," in 2019 2nd International Conference on
Artificial Intelligence and Big Data (ICAIBD), 2019: IEEE, pp. 286-
290.

[25] H. ALSaif and T. Alotaibi, "Arabic text classification using feature-
reduction techniques for detecting violence on social media," Work, vol.
10, no. 4, 2019.

[26] J. Prusa, T. M. Khoshgoftaar, and D. J. Dittman, "Using ensemble
learners to improve classifier performance on tweet sentiment data," in
2015 IEEE International Conference on Information Reuse and
Integration, 2015.

[27] D.-S. Cao, Q.-S. Xu, Y.-Z. Liang, L.-X. Zhang, and H.-D. Li, "The
boosting: A new idea of building models," Chemometrics and Intelligent
Laboratory Systems, vol. 100, no. 1, pp. 1-11, 2010.

[28] K. Wang, Y. Wang, Q. Zhao, D. Meng, X. Liao, and Z. Xu, "SPLBoost:
An improved robust boosting algorithm based on self-paced learning,"
IEEE Transactions on Cybernetics, 2019.

[29] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, "Sentiment analysis
is a big suitcase," IEEE Intelligent Systems, vol. 32, no. 6, pp. 74-80,
2017.

[30] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, "Parsing natural scenes
and natural language with recursive neural networks," in Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pp.
129-136, 2011.

[31] P. D. Turney and P. Pantel, "From frequency to meaning: Vector space
models of semantics," Journal of Artificial Intelligence research, vol. 37,
pp. 141-188, 2010.

[32] P. Fortuna and S. Nunes, "A survey on automatic detection of hate
speech in text," ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1-
30, 2018.

[33] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
"LIBLINEAR: A library for large linear classification," Journal of
Machine Learning Research, vol. 9, no. Aug, pp. 1871-1874, 2008.

[34] A. Genkin, D. D. Lewis, and D. Madigan, "Large-scale Bayesian logistic
regression for text categorization," Technometrics, vol. 49, no. 3, pp.
291-304, 2007.

[35] A. Vaswani et al., "Attention is all you need," in Advances in Neural
Information Processing Systems, 2017, pp. 5998-6008.

[36] S. Liu, "A survey on fault-tolerance in distributed optimization and
machine learning," arXiv preprint arXiv:2106.08545, 2021.

[37] D. Agnihotri, K. Verma, P. Tripathi, and B. K. Singh, "Soft voting
technique to improve the performance of global filter based feature
selection in text corpus," Applied Intelligence, vol. 49, no. 4, pp. 1597-
1619, 2019.

[38] S. A. Kokatnoor and B. Krishnan, "Twitter hate speech detection using
stacked weighted ensemble (SWE) model," in 2020 Fifth International
Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN), 2020.

[39] M. K. A. Aljero and N. Dimililer, "A novel stacked ensemble for hate
speech recognition," Applied Sciences, vol. 11, no. 24, p. 11684, 2021.

