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Abstract—Twitter is habitually exploited now-a-days to 

propagate torrents of hate speeches, misogynistic, and misandry 

tweets that are written in slang. Machine learning methods have 

been explored in manifold studies to address the inherent 

challenges of hate speech detection in online spaces. Nevertheless, 

language has subtleties that can make it stiff for machines to 

adequately comprehend and disambiguate the semantics of 

words that are heavily dependent on the usage context. Deep 

learning methods have demonstrated promising results for 

automatic hate speech detection, but they require a significant 

volume of training data. Classical machine learning methods 

suffer from the innate problem of high variance that in turn 

affects the performance of hate speech detection systems. This 

study presents a voting ensemble machine learning method that 

harnesses the strengths of logistic regression, decision trees, and 

support vector machines for the automatic detection of hate 

speech in tweets. The method was evaluated against ten widely 

used machine learning methods on two standard tweet data sets 

using the famous performance evaluation metrics to achieve an 

improved average F1-score of 94.2%. 
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I. INTRODUCTION 

Twitter is a popular microblogging social networking 
service platform invented for the central purpose of connecting 
geographically dispersed people to seamlessly collaborate, 
communicate, microblog, network, socialise and share 
information. It is recently used for fostering business entities as 
a way of reaching out to a throng of clients and retaining them. 
However, despite its popularity and usefulness, there is a rapid 
rise in its usage for propagating hateful speeches and aiding 
torrents of invectives against innocent people. The level of 
anonymity of the accounts granted by social media networking 
platforms has made them havens for promoting hateful, 
discriminating, and vulgar speeches. Considering that Twitter 
generates a high volume of tweets daily, hate speech 
propagation should be curbed to avoid people deactivating 
their accounts and quitting the network platform. Human 
annotators are currently employed by Twitter and Facebook to 
delete nocuous tweets perceived to be hateful in curtailing the 
excessiveness of hate speech propaganda on social media 
platforms. In addition, the public is requested to report nocuous 
tweets to the service providers. However, these manual 
methods are laborious, sentimental, and susceptible to a 
subjective human judgement of what truly constitutes hate 
speech [1]. 

The repercussions of hateful tweets, limitation of 
legislation, and ineffectiveness of human annotators have 
created the necessity to apply machine learning methods for 
automatic hate speech detection. Classical and deep machine 
learning methods can be employed to automatically detect hate 
speech in text documents. The classical machine learning 
methods mostly use the vector-based representation of 
handcrafted features, which is time-consuming to craft and is 
typically incomplete [2]. Moreover, the vector space model 
often fails to effectively capture the semantic and syntactic 
representations of text. Deep learning methods generally allow 
for more accurate prediction through auto-generation of 
suitable feature representations. Recurrent neural networks 
(RNN) are deep learning methods that can preserve the 
sequence information over time. The contextual information 
can be considered in the task of object classification using deep 
learning methods [3]. However, deep learning requires a large 
chunk of data to obtain accurate results. Furthermore, the end-
to-end mechanism through which deep learning methods make 
decisions may not be suitable for text processing in the 
discipline of natural language processing because of the lack of 
interpretability. This is particularly pertinent to hate speech 
detection, where a manual appeal process is needed for a 
system that censors the speech of a person [4]. 

Research studies in machine learning have evolved to 
ensemble learning methods that agglutinate multiple learning 
methods to improve the performance of a detection system. 
This allows for harnessing the strengths of multiple learning 
methods and optimisation of classical machine learning 
methods in an object classification task. In general, ensemble 
learning methods can be classified appositely into four main 
categories of bagging, boosting, stacking, and voting [5]. The 
predictions from many decision trees are combined in a 
bagging ensemble learning method. Boosting involves 
correcting the performances of prior classifiers and adding 
them sequentially to the ensemble. Since every classifier is 
obliged to fix the errors in the predecessors, boosting is 
sensitive to outliers which are considered a disadvantage. 
Learning how to best combine the predictions from several 
inducers is achieved through a stacking meta-learning method. 
Like all meta-model ensemble methods, stacking is simply not 
feasible in many real-world situations because of a lot of 
reasons [6]. Predicting a class with the most votes by adding 
the votes of crisp class labels is called a voting ensemble that 
works by combining the predictions from multiple classifiers. 
The majority vote in the task of classification is predicted by 
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summing the prediction for each label, which makes it suited 
for complex multiclass problems [7]. 

Different ensemble machine learning methods have been 
effectively applied to diverse application domains such as 
speech emotion recognition [8, 9], product image classification 
[10], and lung cancer prediction [11]. However, it is more 
challenging to process highly unstructured text documents with 
the orthodox machine learning methods that are well developed 
for numerical data processing. Consequently, a voting 
ensemble machine learning method that agglutinates logistic 
regression, support vector machines, and decision trees is 
proposed in this study for hate speech detection in tweets. 
Logistic regression has shown positive results on binary text 
classification because of its ability to be easily tuned to 
accommodate new data. Support vector machines are widely 
used for many types of classification problems because of their 
ability to work in high dimensional spaces to address the 
overfitting logjam. Decision trees have shown promising 
results in dealing with highly unstructured data because they do 
not require data scaling. 

In general, tweets are short messages, and their meanings 
are often rife with idioms, onomatopoeias, homophones, 
phonemes, and acronyms [12]. Hence, the work reported in this 
paper agglutinates the strengths of logistic regression, support 
vector machines, and decision trees in a voting ensemble 
learning method for hate speech detection in tweets. It is 
envisaged that support vector machines will bring stability to 
the voting ensemble because it is not influenced by outliers in a 
data set. The process of carefully choosing and configuring the 
parameters for an ensemble learning method is still an open 
area. The parameter configuration in the proposed voting 
ensemble learning was carefully fine-tuned for optimal 
performance. This research study is aimed at enhancing the 
performance of hate speech detection systems using the 
method of voting ensemble learning and testing its 
performance against numerous baseline methods. 

This paper is compactly structured as follows. In Section II, 
the related literature on hate speech detection is briefly 
reviewed. In Section III, the materials and methods of the study 
are discussed. In Section IV, the experimental results and 
discussion are explicated. The concluding statements are 
delineated in Section V of this paper. 

II. RELATED LITERATURE 

Hate speech detection is an automated task of determining 
whether a given piece of text content contains hateful 
utterances or not. It is a difficult problem in the fields of 
natural language processing (NLP) and artificial intelligence 
(AI) for which the classical or deep learning methods 
experimented. The classical machine learning methods heavily 
depend on a complex process of feature engineering where 
features from an input text are rigorously extracted. Deep 
learning methods eliminate the need for feature engineering by 
automatically learning features from the input text [7]. There is 
ongoing research to increase the accuracy of text classification 
methods owing to the unstructured and complex nature of NLP 
problems. The review of related literature is planned under the 
themes of classical learning, deep learning, and ensemble 
learning as explicated in this section. 

A. Classical Learning 

The classical machine learning approach uses the 
established vector-based model such as n-grams and bag of 
words for text representation, while support vector machine 
(SVM), decision tree (DT), and logistic regression (LR) are 
traditionally deployed for text classification. The SVM was 
originally designed for binary classification tasks [7], but its 
usage has long been extended to a multiclass classification 
problem by breaking a given classification problem into 
several binary sub problems. The binary classification method 
divides n-dimensional space features into distinct regions that 
correspond to two specified output classes [13]. Its 
performance is attributed to the ability to model nonlinear 
decision boundaries and it is robust against overfitting [14]. DT 
can achieve a good performance in several classification tasks 
while producing easily interpretable decisions. The knowledge 
learned by a DT during the training session is represented in a 
hierarchical structure that allows for easy comprehension and 
interpretation by non-experts. LR method uses a probability 
function or a sigmoid cost function whose output is limited to 
values between 0 and 1 to make it well suited for binary 
classification problems. Davidson et al. [15] used a crowd-
sourced hate speech lexicon to collect and label tweets 
containing hate speech. They trained six classical learning 
methods to distinguish three classes of hate speech as 
contained in their data set. Their best result was an F1-score of 
90.00%. 

B. Deep Learning 

Deep learning methods learn through a series of 
interconnected network layers wherein each layer receives 
input from a prior layer and provides input to a subsequent 
layer [2]. The raw data in a deep learning text classification 
task are vectorised to produce the desired input sequence [14]. 
The size of the input layer is defined by the number of inputs. 
The additional layers improve the learning capability to obtain 
a stable output. The output layer provides a result in the form 
of probabilities of the output classes and has the same number 
of neurons as the output classes [16]. The long-short term 
memory (LSTM) can model an ordered sequential input such 
as textual data [17]. The LSTM was specifically developed to 
address the vanishing gradient problem faced by the vanilla 
version of recurrent neural network (RNN) [14] and it has been 
used in many classification tasks [1, 16, 18, 19]. It has been 
proven to work well with text data, but it requires a large 
amount of data for training and validation [17]. Convolution 
neural network (CNN) uses the pooling technique to minimise 
the outputs of network layers, but it is prone to high 
dimensionality in a text processing task. Mutanga et al. [20] 
explored the use of a transformer method to detect hate speech 
to obtain the best accuracy of 92.00% and F1-score of 75.00% 
using DistilBERT. 

C. Ensemble Learning 

 It is promising to harness the strengths of different 
machine learning methods through the framework of ensemble 
learning for improving the performance of hate speech 
detection systems. Popular ensemble learning methods include 
bagging, boosting, and stacking. Bagging minimises variance 
by combining the verdicts from different decision trees [21, 
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22]. It has led to the development of many other decision tree-
based ensemble learning methods. The idea behind the bagging 
ensemble is to create numerous subsets of data from the 
training sample picked arbitrarily with replacement. Each of 
the subsets created is used to train its decision trees, resulting 
in an ensemble of different models. However, the bagging 
approach does not necessarily lead to improved performance. It 
can result in performance declination, for example, when a 
model already has low variance. In addition, empirical 
evidence has suggested that bagging can push an unstable 
method towards an optimal performance [23-25]. Conversely, 
it may lead to a declination in the performance of stable 
methods. Models are sequentially added to an ensemble in 
boosting, where each model rectifies the error made by the 
prior method in the sequence [26, 27]. However, one apparent 
hiccup of boosting is that it is highly responsive to outliers 
because each method is required to address errors in the 
predecessor method. The stacking ensembles are generally 
used to learn how to best combine predictions from multiple 
inducers. Stacking ensembles, like all meta-model ensemble 
learning methods, are not feasible in many real-world 
applications because they can be expensive to train, deploy and 
maintain. 

There are relatively few studies conducted on hate speech 
detection using ensemble machine learning methods. In their 
work, MacAvaney et al. [4] evaluated the efficacy of support 
vector machines, bidirectional encoder representations from 
transformers, and an ensemble of neural networks for detecting 
hate speech. They trained their model on four hate speech data 
sets to achieve the best F1-score of 91.18% obtained using an 
ensemble of neural networks on a hate speech tweet data set. 
Ahluwalia et al. [19] used an ensemble learning method of LR, 
SVM, random forest (RF), and gradient boosting machine 
(GBM) to detect English hate speech against women. They 
trained their model on a data set of binary classes and a data set 
of multiple classes to achieve the best accuracy of 65.10% for 
binary classification and an F1-score of 40.60% for multiclass 
classification. The said works have employed ensemble 
learning methods for hate speech detection, but it should be 
noted that none of them has combined logistic regression, 
decision trees, and support vector machines in an ensemble 
architecture despite the efficacy shown by the algorithms when 
used solitarily [4, 15, 19]. The contribution of this paper is the 
development of a new robust voting ensemble method that 
harnesses the capabilities of LR, DT, and SVM [14, 15] to 
address overfitting, accommodate new data, and allow for 
interpretability of a hate speech detection system. 

The review of the related literature has generally indicated 
that relatively few studies have focused on using ensemble 
learning for hate speech detection in online spaces. Most of 
these few studies have reported performance results that 
require further improvement. The current method based on 
voting ensemble learning gave the state-of-the-art results of 
94.20% accuracy and an F1-score of 94.21% surpassing the 
results of earlier studies that used the same data set. The results 
have reflected an improvement over the F1-score of 90.00% 
reported in [15] and the highest benchmarked accuracy result 
of 92.00% reported in [20]. 

III. MATERIALS AND METHODS 

The materials and methods used in this study are lucidly 
presented in this section based on experimental data sets with 
baseline methods, and essential steps of the proposed voting 
ensemble method. 

A. Experimental Materials 

The publicly available data sets of hate speech offensive 
(HSO) language and Kaggle were used for experimentation in 
this study. The HSO data set comprised of 11310 tweets that 
were labelled as ‘Hate’ or ‘Neutral’ as made available on the 
GitHub repository [15]. The Kaggle data set is made up of 
8778 neutral tweets and 1155 hate tweets. The data set was 
grossly imbalanced, and it was important to measure the 
performance of machine learning methods on a smaller data 
set. Consequently, the data set was reduced programmatically 
to 2300 tweets to test the performance of the experimental 
methods on a smaller data set. The balanced version of the data 
set consisted of 1150 hate tweets and 1150 neutral tweets that 
were used for experimentation in this study. 

The baseline experimental methods and the proposed 
voting ensemble method were all implemented using the 
Python programming language. The Keras library was used to 
implement the deep learning methods, while the scikit-learn 
Python library was used to implement the baseline classical 
and ensemble learning methods. Specifically, sklearn.tree, 
sklearn.linear_model, and SVM submodules were used to 
implement DT, LR, and SVM respectively. All the baseline 
ensemble learning methods were implemented using the 
sklearn.ensemble submodule. The Keras library was used to 
implement the CNN and LSTM deep learning methods. 
Several experiments were faithfully conducted on a computer 
machine running Windows 10 operating system with 
configuration of Intel (R) Core (TM) i5-8250U CPU @ 
1.60GHz (8 CPUs), 1.8GHz, 8 GB RAM, and 500 Gigabytes 
of a hard disk drive. 

B. Proposed Method 

The proposed voting ensemble method comprises the 
phases of pre-processing, feature representation, and feature 
classification. The essential steps of the pre-processing include 
the removal of special characters and punctuations, 
normalisation of hashtags, lowercasing of the characters of the 
input text, removal of short words, and text tokenisation. The 
feature representations were based on the widely used bag of 
words and word embedding. They were applied after pre-
processing to convert the raw tweets data into a useful form 
amenable to machine learning processing. The bag of words 
representation converts a text document into a fixed-length 
vector of occurrence of words in the input text and it was used 
to implement the classical learning methods. The regularity 
presented by specific keywords has provided a solid foundation 
for a bag of words representation to focus on specific words in 
a data set [28]. Since hate speech is generally expressed 
through largely homogenous words, it is envisaged that a bag 
of words representation can effectively capture and represent 
the vocabulary of known hate words such as black, white, 
Indian, Jews, foreigners, strangers, enemies, and so on. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

334 | P a g e  

www.ijacsa.thesai.org 

Word embedding is a more promising text vocabulary 
representation that is used by deep learning methods to encode 
meanings of words into a real value vector such that highly 
similar words are closer in the vector space. It is a foundation 
for sentence embedding that presents a huge advantage over 
the bag of words vector model. It can capture word context, 
syntactic and semantic relationships with words in a text 
document. Moreover, it eliminates the sparse representation 
hiccup often associated with the bag of words representation. 
The word embedding approach follows the distributional 
hypothesis, where semantically similar words are found in the 
same context [2]. The word embedding layer for text 
classification is usually the first data processing layer of a deep 
learning model and word embedding methods have been 
demonstrated to perform well in different NLP tasks [29-31]. 
In this study, word embedding was implemented using the 
Keras embedding layer of deep learning because of its ability 
to capture contextual words and syntactic similarities to 
enhance the interpretation of tweet meanings. 

The basic idea behind the proposed method of this study 
lies in the selection of an optimal bias-variance trade-off. The 
presence of high variance can lead to the problem of 
overfitting, while high bias may result in underfitting. Due to 
the nature of tweets, variance is likely to occur, particularly in 
fora that focus on a specific type of hate speech. The 
Islamophobic for instance may express hate speech in largely 
similar terms that are difficult to detect using a learning 
method. The proposed voting ensemble method aggregates the 
decisions from three classical inducers, which are LR, DT, and 
SVM to obtain accurate classification decisions. Fig. 1 shows 
the architecture to illustrate the steps of the proposed voting 
ensemble learning method. 

 

Fig. 1. The Architecture of the Proposed Voting Ensemble Learning 

Method. 

The base inducer of DT is used when the dependent 
variable is qualitative as in the episode of a text classification 
task. DT is highly interpretable, fast to train, and works well 
with decision boundaries [14]. The inclusion of the DT method 
in the proposed ensemble is based on its appropriateness when 
dealing with categorical data such as distinguishing hate tweets 
from innocuous tweets. Earlier studies have investigated the 
use of DT methods in hate speech detection tasks and recorded 
satisfactory performance [32]. The important parameters in DT 
to perform the grid search cross-validation technique are 
max_depth and random_state. The max_depth parameter 
determines the depth of a tree. The deeper the tree, the more 
splits it has, and it captures more information about the data. In 
our experiments, the max_depth value for optimal searching 
was 10 trees. The depth parameter is also used as a 
regularisation scheme to prevent overfitting. This step is 
crucial in our study because tweets are generally regarded as 
noisy and highly dimensional. The random_state parameter 
that controls the random choices for the training sample was 
set at 42. 

The LR inducer attempts to find a probability-based 
relationship between the independent variable and class label 
in each data set. It aims to create a probability function that 
uses features as inputs and returns the probability of that 
instance belonging to a given class [33, 34]. The LR does not 
require scaling of input features and it requires comparatively 
fewer computation resources [14]. The regularisation 
parameter (L2), and ’squared magnitude’ of coefficient as a 
penalty to the loss function were used for optimisation. The 
‘fit_intercept’ parameter was set to ‘True’ to incorporate the 
intercept value to the LR method. The ‘Solver’ parameter that 
defines the method to be used in the optimisation problem was 
set to ‘sag’ which is compatible with the L2 penalty. 

The optimisation of the SVM inducer employed the grid 
search cross-validation scheme to come up with the best 
parameters for model fitting. The optimal value for parameter 
C that defines the tolerance threshold for misclassification was 
set at 0.1. Moreover, the linear kernel that works on the 
assumption that input data is linear was applied. Thereafter, the 
auto deprecated gamma setting, which is the recommended 
default value was used in conjunction with the linear kernel. 
The optimal value of the degree parameter was set at 3. The 
learning rate for the proposed ensemble learner was specified 
in the Python program before training. The low learning rate 
specified in Table I was used for preventing the ensemble 
model from converging to an undesirable optimum [35]. The 
tolerance setting is a stopping technique that stops the iteration 
process once the specified value is reached and it affects the 
training time of a model [36]. The parameters for the inducers 
and voting ensemble (VE) method are succinctly summarised 
in Table I. 

The results computed by the voting ensemble learning 
method can be based on either hard or soft voting. The class 
probability score for each classification method that the current 
sample belongs to, is considered soft voting [34]. At that point, 
soft voting criteria determine the class with the highest 
probability by averaging the individual values of the inducers 
[37]. Hard voting involves summing the votes for crisp class 
labels from the other inducers and predicting the class with the 
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most votes. The class label Y can be decided by the majority 
voting of each classifier C as in the following example. 

Y = mode(c1(x), c2(x), … , cm(x))            (1) 

If the predictions from c1, c2, and c3 are ‘hate’, ‘neutral’, 
and ‘hate’, respectively, the final prediction will be ’hate’ 
according to the principle of majority voting. Consequently, 

𝑌 = 𝑚𝑜𝑑𝑒[ℎ𝑎𝑡𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, ℎ𝑎𝑡𝑒] = ℎ𝑎𝑡𝑒            (2) 

The hard voting scheme is suited for predicting distinct 
class labels, while soft voting is appropriate for predicting 
continuous values. This study was based on tweets labelled 
under distinct categories. Hence, it implies that hard voting is 
more desirable for this study as compared to soft voting. 

TABLE I. CONFIGURATION SETTINGS FOR THE PROPOSED VOTING 

ENSEMBLE METHOD 

Parameter DT LR SVM VE 

max_ depth 10   10 

learning_ rate    0.4 

n_ estimators    3 

random_ state 42  None  

C  0.1 0.1 1.0 

cache_ size   200 200 

degree   3 3 

gamma   auto_ deprecated  

kernel   linear linear 

max_ iterations  100 −1 −1 

shrinking   True True 

tolerance (tol)  0.0001 0.001 0.001 

penalty  L2   

fit_ intercept  True   

solver  sag   

IV. RESULTS AND DISCUSSION 

This section presents a discussion of the comparative 
results of the proposed voting ensemble learning method 
against ten widely used machine learning methods. The 
baseline methods are AdaBoost, AdaBoost-DT, Bagging, 
Bagging-SVM, CNN, DT, LR, LSTM, RF, and SVM. The 
experimental data sets of Kaggle and HSO were each split into 
training and testing data in the ratios of 80:20 and 70:30. 
Although the proposed voting ensemble learning method is 
comprised of LR, SVM, and DT inducers, each inducer was 
implemented separately to establish a comparison with the 
proposed voting ensemble learning method. In addition, other 
widely used machine learning methods were evaluated against 
the proposed method. The performances of the learning 
methods were analysed and discussed in terms of four 
functional metrics of accuracy, precision, recall, and F1-score. 
In addition, the performances of the learning methods were 
evaluated and discussed in terms of non-functional metrics of 
kappa, hamming loss, Jaccard similarity, and execution time. 

A. Accuracy Results 

This section presents the analysis of the accuracy of the 
experimental results of the proposed voting ensemble method 
along with several baseline methods. The accuracy scores 
calculated for the two experimental data sets are listed in 
Table II. It can be observed that accuracy scores computed by 
the proposed voting ensemble learning method are consistently 
higher than the scores computed by other learning methods 
across the two experimental data sets. The proposed ensemble 
learning method recorded the highest average accuracy score 
of 94.212% across both data sets, irrespective of the test split. 
It is worth mentioning that the voting ensemble learning 
method had the highest accuracy scores across the two data 
sets under the different train and test splits. Expectedly, all 
methods performed better with the larger HSO data set as 
compared to the smaller Kaggle data set, with the proposed 
voting ensemble learning method giving the highest accuracy 
score of 96.739% under the bigger data set using the 80:20 
train test split. This trend is attributable to the fact that bigger 
data sets allow methods to learn data patterns more 
comprehensively during training, thereby impacting overall 
performance, particularly in the case of deep learning methods, 
which generally require large data sets to perform well. 

TABLE II. ACCURACY SCORES OF LEARNING METHODS USING 

DIFFERENT TRAIN-TEST SPLITS 

Data set Kaggle HSO  

Train: test split 80:20 70:30 80:20 70:30 Average 

AdaBoost 87.887 87.883 91.304 90.870 89.486 

AdaBoost-DT 90.539 90.448 93.043 89.855 90.972 

Bagging  90.318 90.566 92.174 89.275 90.583 

Bagging-SVM 91.468 90.654 95.217 94.493 92.958 

CNN 88.240 88.031 95.000 94.493 91.441 

Decision Tree 90.097 90.301 91.739 89.275 90.353 

Logistic Regression 91.689 91.509 95.435 94.493 93.281 

LSTM 91.202 90.890 95.435 94.638 93.041 

Random Forest 89.434 90.065 93.478 93.478 91.614 

Support Vector Machine 89.788 88.709 92.391 92.464 90.838 

Voting Ensemble 92.042 91.834 96.739 96.232 94.212 

Fig. 2 shows the plot of average accuracy scores computed 
by the learning methods across the experimental data sets to 
visually illustrate the extent to which one learning method 
gives better accuracy than another. This result implies that the 
voting ensemble method can detect all the correct cases better 
than any other method, while AdaBoost performed worst in 
this case. The voting ensemble method is therefore the most 
useful when all classes are equally important while AdaBoost 
is not useful in this scenario. 

B. Precision Results 

This section presents the precision scores computed by the 
proposed voting ensemble learning method against the baseline 
learning methods explored in this study. It can be observed in 
Table III that the voting ensemble learning method 
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outperformed other learning methods across the two 
experimental data sets. The proposed voting ensemble learning 
method recorded the highest average precision score of 
93.779%. The LSTM performed relatively well, scoring the 
second-highest precision score of 93.457%. The exceptional 
performance of the LSTM may be linked to its ability to 
capture long-term dependencies. This property makes it 
suitable for text classification tasks such as hate speech 
detection, where the semantics of a tweet can be derived from 
the arrangement of words in the tweeted document. 

 

Fig. 2. The Average Accuracy of Learning Methods. 

TABLE III. PRECISION SCORES OF LEARNING METHODS USING DIFFERENT 

TRAIN-TEST SPLITS 

Data set Kaggle 
 

HSO 
 

Train: Test 

Split 
80:20 70:30:00 80:20 70:30 

Averag

e 

AdaBoost 88.093 88.011 91.686 91.182 89.743 

AdaBoost-DT 90.523 90.436 93.096 89.970 91.006 

Bagging  90.306 90.562 92.495 89.550 90.728 

Bagging-SVM 91.519 90.723 95.248 94.489 92.995 

CNN 88.495 88.315 95.042 94.674 91.631 

Decision Tree 90.083 90.288 91.790 89.342 90.376 

Logistic 

Regression 
91.680 91.508 95.539 94.538 93.316 

LSTM 91.207 90.919 95.477 96.224 93.457 

Random Forest 89.418 90.053 93.508 93.478 91.614 

Support Vector 
Machine 

89.804 88.702 92.488 92.475 90.868 

Voting 

Ensemble 
92.030 91.830 96.747 94.507 93.779 

The least average precision score of 89.743% was recorded 
by the AdaBoost method with the default parameter setting. 
The combination of AdaBoost with another classifier in 
ensemble learning improves the system performance. The 
AdaBoost method with DT as base learner outperformed the 
default AdaBoost because it gave an average precision of 
91.006%, which is higher than 89.743% recorded by the 
default AdaBoost method. Most methods performed better with 
the 80:20 train test split as compared to the 70:30 split. 
However, only RF and DT performed better with a 70:30 split. 
The precision computed by DT and RF fell when the training 
data set was increased by 10% on the larger HSO data set. The 
drop-in performance may be the result of overfitting because 
both DT and RF are susceptible to overfitting [17]. Table III 
shows the precision scores of all the learning methods 
experimentally compared in this study. 

Fig. 3 shows the plot of the average precision scores 
computed by the learning methods across the experimental data 
sets to visually illustrate the extent to which one method gives 
better precision than another. This result implies that the voting 
ensemble method can correctly detect hate speeches from the 
predicted class of hate speeches better than any other method, 
while AdaBoost performed worst in this case. The voting 
ensemble method is therefore the most useful when the cost of 
false positives is high while AdaBoost is not useful in this 
scenario. 

 

Fig. 3. The Precision of Learning Methods. 
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C. Recall Results 

This section presents an evaluation of the learning methods 
investigated in this study based on the recall metric. Results 
from Table IV show that the proposed voting ensemble 
learning method gave an average recall value of 94.210%, 
which is superior to that of baseline learning methods used in 
this study. In addition, it can be noted that default meta 
classifiers of Bagging and AdaBoost were outperformed by 
their ensemble variants, which used different learning methods 
as base learners. The recall score for the default AdaBoost is 
89.408%, while the recall score for the AdaBoost-DT is 
90.959%. In addition, the recall score for the bagging method 
is 90.552%, while bagging-SVM had a recall score of 
92.937%. It is obvious from these results that combining meta 
classifiers with different learning methods can lead to 
improved performance as shown in Table IV. 

TABLE IV. RECALL SCORES OF LEARNING METHODS USING DIFFERENT 

TRAIN-TEST SPLITS 

Data set Kaggle HSO 
 

Train: Test split 80:20 70:30 80:20 70:30 Average 

AdaBoost 87.767 87.801 91.304 90.761 89.408 

AdaBoost-DT 90.549 90.457 93.043 89.788 90.959 

Bagging 90.312 90.553 92.174 89.170 90.552 

Bagging-SVM 91.414 90.599 95.217 94.519 92.937 

CNN 88.384 88.160 95.000 94.534 91.520 

Decision Tree 90.119 90.310 91.739 89.223 90.348 

Logistic Regression 91.680 91.496 95.435 94.550 93.290 

LSTM 91.177 90.854 95.435 94.691 93.039 

Random Forest 89.447 90.068 93.478 93.508 91.625 

Support Vector Machine 89.749 88.695 92.391 92.444 90.820 

Voting Ensemble 92.040 91.823 96.739 96.237 94.210 

Fig. 4 shows the plot of average recall scores computed by 
the learning methods across the experimental data sets to 
visually illustrate the extent to which one learning method 
gives a better recall than another. This result implies that the 
voting ensemble method can correctly detect cases of hate 
speeches from all the actual classes of hate speeches better than 
any other learning method, while AdaBoost performed worst in 
this case. The voting ensemble method is therefore the most 
useful when the cost of false negatives is high while AdaBoost 
is not useful in this scenario. 

D. F1-score Results 

This section presents the results of the overall F1-score for 
the learning methods explored in this study. Table V shows 
that the proposed voting ensemble method consistently 
outperformed the baseline learning methods investigated by 
recording the highest average F1-score of 94.208%. The 
solitary bagging ensemble learning method recorded an 
average F1-score of 90.564%, while the bagging-SVM 
ensemble method recorded an average F1-score of 92.948%. 
Furthermore, the mean score of 89.897% of the average F1-
scores for both AdaBoost and Decision tree learning methods 
is inferior to the average F1-score of 90.692% for AdaBoost–

DT ensemble learning method. The analysis of the F1-score for 
LSTM and CNN deep learning methods has shown that LSTM 
consistently outperforms CNN. It can be perceived in Table V 
that LSTM recorded an average F1-score of 93.035%, while 
CNN recorded an average F1-score of 91.439%. This 
difference in performance may come from the capability of 
LSTM to capture long-term dependencies that are necessary 
when extracting word meanings in a text. The superior 
performance of the ensemble learning methods as compared to 
any solitary methods, including deep learning has illustrated 
that agglutinating multiple learning methods through ensemble 
learning is highly promising for reducing the error rate of the 
final learner in a hate speech detection system. 

 

Fig. 4. The Average Recall of Learning Methods. 
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Train: Test Split 80:20 70:30 80:20 70:30 Average  
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Fig. 5. The Average F-Measure Score of Learning Methods. 

Fig. 5 shows the plot of average F1-scores computed by the 
learning methods across the experimental data sets to visually 
illustrate the extent to which one method gives a better F1-
score than another. This result implies that the proposed voting 
ensemble method can better detect incorrectly classified cases 
better than any other learning method, while AdaBoost 
performed worst in this case. The voting ensemble is therefore 
the most useful when the classes are imbalanced while 
AdaBoost is not useful in this scenario. 

Results from the functional metrics used in this study 
indicate that the voting ensemble outperformed the benchmark 
algorithms used in the study. It is worth noting that the 
individual performance of the meta classifiers was inferior to 
that of the proposed voting ensemble model. This superior 
performance of the proposed model may be attributed to the 
minimal overfitting, model extensibility, and interpretability 
features from each of the base learners [14, 15]. These results 
confirm the literature position that ensemble learning 
outperformed individual classifier algorithms in hate speech 
detection [38, 39]. 

E. Non-functional Results 

This section presents the evaluation of all the learning 
methods investigated using the non-functional metrics of 
Hamming loss, Jaccard, Kappa, and execution time. The 
proposed voting ensemble method recorded the best Hamming 
loss, Jaccard, and Kappa scores as shown in Table VI. This 
result shows that the proposed ensemble learning method can 
maximise predictive capability while concomitantly 
minimising misclassification errors better than any of the 
baseline learning methods investigated. However, the proposed 
voting ensemble learning method recorded the second-highest 

training time of 0.095 hours, which is a tradeoff decision to 
consider between efficiency versus accuracy. The long 
execution time taken by the proposed ensemble method was 
because each inducer was trained separately, and the final 
aggregated decision was achieved through the principle of 
majority voting. 

It can be observed from Table VI that SVM recorded the 
lowest Kappa score indicating a low level of inter-annotator 
agreement. This may be the result of minimal parameter tuning 
applied to the SVM method. The learning method recorded the 
worst Hamming loss of 10% to suggest a poor selection of 
parameters for the method. It is interesting to observe that 
ensemble learning methods such as bagging-SVM and voting 
ensemble took more time to train than the deep learning 
methods. This implies that although they perform better, 
ensemble learning methods are computationally expensive. 
However, the benefits of an improved performance can 
outweigh the need for increased resources in critical 
applications like hate speech detection. 

TABLE VI. NON-FUNCTIONAL PERFORMANCE OF LEARNING METHODS 

Method 
Hamming 

loss 
Jaccard Kappa 

Execution 

Time 

AdaBoost 8.696 91.304 82.609 0.013 

AdaBoost-DT  7.174 92.826 85.652 0.010 

Bagging  6.739 93.261 86.522 0.064 

Bagging-SVM 4.565 95.435 90.870 0.353 

CNN 5.000 95.000 90.000 0.001 

Decision Tree 6.087 93.913 87.826 0.009 

Logistic 

Regression 
4.565 95.435 90.870 0.003 

LSTM 4.565 95.435 90.870 0.082 

Random Forest 6.522 93.478 86.957 0.076 

Support Vector 

Machine 
10.000 90.000 80.000 0.011 

Voting 

Ensemble 
3.261 96.739 93.478 0.095 

V. CONCLUSION 

The primary contribution of this study is the construction 
and validation of a voting ensemble learning method to 
improve the automatic detection of hate speech in tweets. This 
is challenging open research because of the anaphoric, 
synonymy, and polysemy nature of the slang of tweets that 
make the interpretation of hate speech ambiguous, difficult, 
and controversial. The voting ensemble learning method has 
been demonstrated in this study to yield the best performance 
when compared to other learning methods. 

However, one apparent curb of this study is the bag of 
words representation of features that suffers from the 
anaphoric, synonymy, and polysemy nature of words. In 
addition, a bag of words representation presents the inability to 
capture important information about interdependencies that 
exist among words. Moreover, word embedding representation 
can fall short in making machines draw adequate inferences 
from certain classes of sentences. 
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In the future, a knowledge-based method with sentence 
embedding will be introduced for tweet hate speech detection 
and compared the results against those of the existing word 
embedding learning methods. This envisioned novel method 
will circumvent the intrinsic curbs of the bag of words and 
word embedding representations. It will significantly increase 
the confidence level of social media prosecutors to genuinely 
regulate whether a given tweet is of hate speech or not. 
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