
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

381 | P a g e  

www.ijacsa.thesai.org 

Deep Learning Applications in Solid Waste 

Management: A Deep Literature Review 

Sana Shahab1, Mohd Anjum2, M. Sarosh Umar3 

Department of Business Administration, College of Business Administration1 

Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia1 

Department of Computer Engineering, Aligarh Muslim University, Aligarh, India2, 3 

 

 
Abstract—Solid waste management (SWM) has recently 

received more attention, especially in developing countries, for 

smart and sustainable development. SWM system encompasses 

various interconnected processes which contain numerous 

complex operations. Recently, deep learning (DL) has attained 

momentum in providing alternative computational techniques to 

determine the solution of various SWM problems. Researchers 

have focused on this domain; therefore, significant research has 

been published, especially in the last decade. The literature shows 

that no study evaluates the potential of DL to solve the various 

SWM problems. The study performs a systematic literature 

review (SLR) which has complied 40 studies published between 

2019 and 2021 in reputed journals and conferences. The selected 

research studies have implemented the various DL models and 

analyzed the application of DL in different SWM areas, namely 

waste identification and segregation and prediction of waste 

generation. The study has defined the systematic review protocol 

that comprises various criteria and a quality assessment process 

to select the research studies for review. The review demonstrates 

the comprehensive analysis of different DL models and 

techniques implemented in SWM. It also highlights the 

application domains and compares the reported performance of 

selected studies. Based on the reviewed work, it can be concluded 

that DL exhibits the plausible performance to detect and classify 

the different types of waste. The study also explains the deep 

convolutional neural network with the computational 

requirement and determine the research gaps with future 

recommendations. 
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I. INTRODUCTION 

In recent years, waste generation around the globe has 
increased multi-folds due to population growth, fast urban 
settlement, economic development, and advancement in 
lifestyle [1]. The World Bank statistics indicate that the 
worldwide solid waste (SW) generation was approximately 
2.01 billion tons per annum in 2016. It is predicted that the 
world will produce 2.01 and 3.40 billion tons annually by 2030 
and 2050 [2]. The statistics indicate the significant increase in 
the SW generation around the globe [3]. More than 33 per cent 
of the total generated MSW are not handled in an 
environmentally safer manner, with the waste dumped illegally 
on roadsides or abandoned lands [2]. This poorly handled and 
openly dumped waste directly affects the environment, 
constitutes health risks of inhabitants, and engenders water and 
air pollution and land deterioration [4]. Therefore, this massive 
quantity of SW has become a significant threat to the 

ecosystem of the city and surrounding areas [5]. It has also 
given birth to illegal dumping [6]. It also substantially obstructs 
the sustainable growth of the city/region [7]. Nowadays, 
countries are more serious about a healthier and more 
sustainable environment. Several studies evidence that the 
leading causes of poor SWM are inadequate planning and 
improper operations [8], [9]. SWM bodies lack funds, 
infrastructure, and advanced technology in most developing 
countries. After the emergence of smart cities and sustainable 
urban development, researchers have put a lot of effort into 
transforming the SWM industry using current technologies and 
intelligent systems [10]. SW is a natural product from daily life 
activities and per capita waste generation significantly more in 
urban regions than rural areas due to high income and urban 
lifestyle [11]. SWM has emerged as a crucial environmental 
issue around the globe, especially in developing countries [12], 
[13]. Therefore, it is strongly demanded to create an effective 
SWM system for conserving resources protecting 
environmental and public health [14]. The environ=mental 
problems of SWM are very complex to resolve because of their 
heterogeneous nature [15]. 

The background analysis concludes that the SWM has 
focused on utilizing cutting-edge technologies to improve and 
automate the services. Advanced technologies such as the 
internet of things (IoT), information technology, machine 
learning (ML) have drastically improved the efficiency of 
various SWM processes, namely waste forecasting, collection, 
transportation, sorting and recycling [16], [17]. DL subset of 
ML methods has been significantly implemented in diverse 
areas of the environment, such as pollution control, 
wastewater, SWM services [18]. The SWM system 
encompasses various interconnected processes which contain 
numerous complex operations. This system also involves many 
non-linear parameters, including highly inconstant influencing 
factors, namely socioeconomic and demographic [19]. It is 
challenging to optimize the performance of these systems 
without affecting the health of inhabitants and the environment 
[20]. Therefore, DL techniques are supposed to involve in all 
stages of the SWM system. In earlier review studies, Ye et al. 
(2020) has thoroughly analyzed the 85 papers published in 
2004 - 2019 and demonstrated the different applications of 
artificial intelligence (AI) models in the SWM service 
framework. In [21], the author has reviewed approximately 200 
studies published during the last two decades and summarized 
the applications of ML methods in different stages of SWM 
from waste inception to final disposal. In parallel with these 
extensive studies, this SLR study primarily concentrates on the 
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applications of DL models in SWM services and interpret it in 
view of overall process of SWM. 

The main goal of this SLR study is to motivate the 
researchers more to apply DL techniques for solving various 
SWM problems involving waste detection, classification, 
prediction etc. It compares the performance of DL models and 
uncovers the best models for different tasks. It also highlights 
some gaps in applications of DL for SWM tasks and discusses 
some aspects for future priority. This information will help the 
researchers to choose the better model for their studies. The 
overall benefits of DL are encouraging for its further use 
towards developing an innovative and sustainable SWM 
system. 

The survey study is structured in the following sections. 
Section II draws the picture of applications of various DL 
models in SWM. Section III comprises the methodology of the 
SLR architecture, which involves systematic review protocol, 
review questions, searching process and selection criteria, 
screening, article quality assessment, and data extraction. 
Section IV explains the overview of survey findings which 
includes descriptive statistics of review: country of the author 
academic’s affiliation, mainstream journals and their 
publishing areas, and thematic analysis: major DL models, 
their applications, data set used, performance evaluation and 
comparison with other DL/conventional method, and depicts 
the detail description of CNN models. Section V illustrates the 
concept of DL, the design of a CNN architecture and 
computational requirements to implement the CNN models. 
Section VI identifies the Research gaps and priorities, 
demonstrating data acquisition, data preprocessing, model 
selection and architecture definition, and model comparison. 
Section VII comprises the summary of the SLR, important 
observations with shortcomings and the reason for the 
popularity of DL in SWM. Finally, the conclusion of the SLR 
study is displayed in Section VIII. 

II. SKETCH OF DL IN CONTEXT OF SWM 

The literature demonstrates that emerging DL models can 
be effectively applied in the SWM field [17]. DL is a large 
subset of ML techniques that comprises various computational 
methods and algorithms that implements artificial neural 
networks (ANN) with feature learning. DL techniques have 
significantly transformed the field of computer vision and 
image processing. Therefore, DL has emerged as the most 
attention-drawing branch of ML in recent years and has 
gradually reached the top. The convolutional neural network 
(CNN) is an epoch-making category of deep neural networks 
with huge potential and tremendous image recognition growth 
with reliable outcomes. CNN can be recognized as 
fundamental building blocks in diverse tasks such as photo 
tagging, medical imaging, and self-driving cars. A typical 
workflow of the DL models is depicted in Fig. 1. Generally, it 
comprises four main steps: (1) Data collection and preparation 
(2) Choosing or designing model and hyperparameters (3) 
Training, testing, and performance evaluation (4) Tuning 
hyperparameters if needed and deployment. Table VII lists the 

DL models applied in the SWM with research objectives/goals. 

They are also exhibiting significant growth in everything 
from security to environment and waste management. Many 
eminent researchers around the globe have made remarkable 
contributions in SWM using DL. In SWM, DL models have 
been extensively implemented to solve various problems such 
as waste identification and segregation, real-time bin level 
detection, and prediction of waste generation. DL models have 
abilities to recognize and learn features directly from the 
image. This distinct feature has substantially enhanced image 
detection and classification. The transfer learning technique is 
implemented using a combination of three pre-existing CNNs, 
namely VGG19, DenseNet169, and NASNetLarge, to classify 
the waste into six categories [22]. Many CNN architectures 
have been proposed with different layers to categorize the 
different types of waste, such as recyclable: metal, paper, 
plastic, cardboard, nonrecyclable, medical, biodegradable, 
inorganic, trash, etc. [23], [24]. 

The pre-existing CNNs, namely enhanced ResNext [25], 
YOLOv2 and YOLOv3 [26], ResNet-50 and Auto Encoder 
network with support vector machine as classifier [27], [28], 
MobileNet-V2 [29] and Hybrid of CNN and multilayer 
perceptron [30] have also been performed above type 
classification tasks. Waste classification is an important 
activity to separate different types of waste, which significantly 
improves the recycling efficiency of the process. Various types 
of CNN with different layers have also been substantially used 
in many tasks of SWM other than waste detection and 
classification. A Long Short Term Memory (LSTM) CNN has 
been implemented to predict the amount of waste generation 
[31], [32], and carbon dioxide concentration in the waste bin 
[33]. Additionally, a deep CNN has been designed that 
consider various waste generation influencing factors to 
forecast the per capita waste generation [34] and demolition 
waste for three categories reusable, recyclable, and landfill 
[35]. A waste bin equipped with a camera, microcontroller, and 
servo motor has been built to separate the different types of 
waste materials automatically. The hardware of the bin is 
controlled by custom software based on the ResNet-34 
algorithm with multi-feature fusion and a new activation 
function [17], [36]. 

Moreover, different CNN models have been implemented 
to identify and locate the illegal dumps using street-level image 
data and high-resolution satellite imagery [37], [38]. Based on 
the analysis of selected research papers for SLR, DL models 
have been extensively utilized in SWM, from waste inception 
to final disposal. They have been implemented in SWM 
processes such as waste generation prediction, bin level 
detection, material identification, illegal dump detection and 
location identification, and waste classification (refer to 
Tables VII and VIII). This can help to develop sustainable 
SWM service infrastructure through efficient resource 
utilization. DL has significantly impacted the recycling process 
as it has the power to detect different types of material and 
items to segregate. This has made the recycling process very 
effective and efficient in material recovery. Fig. 2 displays the 
application of the DL models in different stages of the SWM 
processes. 
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Fig. 1. Schematic Picture of DL Models Workflow. 

 

Fig. 2. Application of DL Model in SWM Processes. 

To explore the potential applications of various CNNs 
models to provide the effective and efficient solution of 
different tasks involved in SWM, a thorough analysis of 
recently published studies is necessary to increase more 
advanced developments in this field. The survey demonstrates 
the comprehensive SLR and elaborates the various DL models 
implemented to enhance existing SWM techniques involved in 
its distinct stages, from inception to the final disposal. Some 
hybrid DL based approaches and performance comparison of 
implemented DL models with other DL/conventional models 
are explained to present an in-depth understanding of different 
models. The review study aims to provide SWM, and allied 
researchers are keen to apply DL approaches in their respective 
areas of study using major research aspects such as DL models, 
applications, efficiency, and accuracy. The major contribution 
of the survey study is to add the SLR of applications of DL in 
SWM, which was not previously figured out in the knowledge 
pool of existing literature. 

III. METHODOLOGY 

An SLR is carried out to examine the application of DL in 
SWM research published from 2019 to 2021. The SLR is 
defined as a systematic procedure to summarize the 

experimental results of the studies related to an investigation or 
technology, determine the gaps in current research, and 
develop the background for new research. The content of SLR 
is motivated and structured according to two systematic review 
studies, namely, [39], [40]. The SLR presents a 
comprehensible view of various DL techniques implemented in 
SWM. Following typical steps are conducted to enhance the 
creditability and reliability of the review. 

A. Systematic Review Protocol 

The SLR is performed to identify, evaluate, and interpret 
potential studies applying DL models in various SWM 
domains [40]. The study extensively follows the SLR 
methodology, which provides equitable review procedures, 
ensures quality to credibility, and understands results and 
conclusions. The SLR has a standard protocol comprising three 
phases: planning, execution, and reporting [40], [41]. The 
systematic review protocol defines the methodology of 
locating, studying, analyzing, and evaluating the research 
articles. Fig. 3 demonstrates the proposed review prototype 
based on the SLR guidelines. The SLR protocol describes the 
review process and is generally explained in technical reports. 
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Fig. 3. Flowchart Displaying the SLR Procedure. 

B. Review Questions 

The primary objective of the SLR is to recognize and assess 
the published literature that implements the DL model in 
SWM. The following typical review questions are formulated 
and addressed to execute the proposed methodology. 

RQ1: What are the different applications of the DL model 
in SWM? 

RQ2: What are the DL models implemented to solve SWM 
problems? 

RQ3: How is the performance of different models with 
respect to other algorithms and techniques? 

C. Searching Process and Selection Criteria 

The methodology considers an individual research paper or 
article as a review unit, called a document. All the documents 
are retrieved from a global digital libraries database, namely 
Scopus, Elsevier, Google Scholar, Springer, IEEE, Wiley, 
Emerald, and Web of Science. These are the top libraries that 
contain peer-reviewed global research from multiple 
disciplines and are widely accessed by authors to perform SLR. 
The preliminary search retrieved numerous articles associated 
with the SWM, DL and CNN but did not exhibit the direct 
implementation of the DL model in SWM. Additionally, many 
publications were also in top search, applying the conventional 
model (such as statistical model) in SWM. This initial search 
retrieved approximately 550 documents from 2019 to 2021 
from the digital search libraries. Then, structured query 
searches with inclusion and exclusion criteria were executed to 
retrieve relevant literature and restrict the number of 
documents. These search queries included some keywords for 
accepting and rejecting the documents [42]. In SLR, the 
application of DL was the main keyword, and SWM was the 
context in the query string. Therefore, all searched queries 
were around two aspects, (a) application of DL (b) context: 
SWM. Table I depicts the matrix of retrieved documents for 
chosen keywords from afore mentioned digital libraries. 

TABLE I. THE COUNT OF RELEVANT PAPERS FOR DIFFERENT SEARCH 

STRINGS FROM VARIOUS DIGITAL LIBRARIES 

Key-

word 
Waste MSW 

Gar-

bage 
Trash Litter 

Rub-

bish 
Dump 

CNN 149 87 17 12 3 1 2 

DL 163 78 20 8 2 5 3 

Additionally, the inclusion keywords were “waste 
management”, “garbage”, “litter”, “trash”, “dump”, “rubbish”, 
“deep learning”, “convolutional neural network”, and “deep 
neural network” while exclusion keywords were “waste 
recycling”, “wastewater treatment”, “waste-to-energy”, “sewer 
systems”, “waste incineration”, and “vehicle routing”. The 
gathered literature was analyzed and evaluated in a 
methodology context covering the studies that implemented the 
DL techniques to address the SWM issues. After executing the 
search as mentioned above procedure, 105 studies were 
uncovered as pertinent to the search topic for 2019-2021. 

D. Screening 

Manual scrutiny was carried out to ensure the 
completeness, reliability, and quality of SLR. Inclusion and 
exclusion criteria were set to make the scrutiny process 
straightforward, manageable, and objective. Table II displays 
the chosen inclusion and exclusion criteria to select the papers 
under four categories for further review. These categories were 
publication type, document language, accessibility, and 
subject/title. Then, all selected documents in the searching and 
data collection process were reviewed according to the 
attributes set in Table II. The journal or conference research 
was selected in the first screening, completely accessible and 
available in English. Generally, conference papers lack quality; 
therefore, their use in SLRs is uncommon [43]. But few good 
qualities conference papers were considered in the study. 
Moreover, their title / subject was also analyzed to determine 
and choose the most competent research. 
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TABLE II. ATTRIBUTES, INCLUSION AND EXCLUSION CRITERIA USED TO 

SELECT THE RELEVANT STUDIES FOR ANALYSIS OF SLR 

Attribute Inclusion criteria Exclusion criteria 

Publication 

type 

Journal articles and 

conference papers 

Book chapters, Patents, 

Magazines articles, Conference 

posters, Thesis, Editorials, 
Industry and Market reports etc. 

Document 
Language 

English 
Other than English such as 
Chines, Spanish, Russian etc. 

Accessibility 
Full text of document 

accessible 

Abstract, partially accessible, or 

inaccessible 

Title/Subject 

The main topic was solid 

waste management. 
The research applied 

pre-trained or designed 

CNN model 

The main topic was related to 

any technology or a specific area 
such as the IoT, AI, and ML. 

The research applied any ANN 

other than deep neural networks. 

Additionally, the abstract and conclusion were also 
rigorously inspected and analyzed in the context of the search 
topic to determine the more suitable papers and eliminate the 
duplicate documents having different titles but identical 
content. It was also investigated that the selected documents 
were concentrated on applying DL models in the context of 
SWM. After accomplishing the entire screening process, 65 
studies out of 105 were promoted for further process. 

E. Quality Assessment 

After conducting the screening process, a quality check was 
performed for all selected studies. The quality assessment 
checklist was formulated to assess individual research and 
prune the insignificant and irrelevant research [40]. Ten quality 
criteria were determined to develop the checklist, and each 
study was evaluated qualitatively. A questionnaire was 
formulated to represent the criteria in the form of questions 
answered on the Likert scale of 5. The Likert scale and 
designed questions are presented in Table III and Table IV. 
The overall score of each paper was calculated by adding the 
points achieved in all questions stated in Table IV. The article 
was chosen for review if it had an overall score of more than or 
equal to 25 points. The top 40 papers out of 105 were picked 
after performing the quality assessment process. 

F. Data Extraction 

The pertinent data is extracted from all selected studies and 
summarized in Tables VI and VII to determine the 
consolidated outcomes. This extracted data includes the items, 
namely implemented DL model/technique, study 
goal/objective, key findings, application domains, dataset 
utilized in model evaluation, and performance comparison with 
other benchmark studies. 

TABLE III. LIKERT SCALE TO EVALUATE QUALITY ASSESSMENT 

QUESTIONS 

Criteria 

fulfilled 
Completely Substantially Partially Poor Not 

Assigned 

Score 
5 4 3 2 1 

TABLE IV. QUALITY ASSESSMENT CRITERIA AND CORRESPONDING 

QUESTIONS TO SELECT THE HIGH-QUALITY RESEARCH STUDIES 

Criteria Questions 

Problem 

definition 

Q1: Examine that the problem is clearly stated and has 

well-defined objectives. 

Credibility 

Q2: Justify that the problem is well formulated and the 

proposed approach is practically implemented on actual 

and sufficient data.  

Methodology 
Q3: Determine the applicability of the research methods 
and software platform in the context of the study. 

Analysis and 

conclusion 

Q4: Investigate that the accuracy is computed and 

critically discussed in conclusion. 

Argumentation 
Q5: Determine those results are compared them with other 
benchmark studies.  

Scope 
Q6: Confirm that the application area and scope of 

research are figured out. 

Significance 
Q7: Validate that the research has a remarkable 
contribution to the knowledge pool and/or enhanced the 

technology. 

Structure and 

writing 

Q8: Verify that the study comprises smooth articulation 

among sections with appropriate academic writing 
language. 

Presentation  
Q9: Assess the clarity of the content in the context of 

research goals.  

Referencing 
Q10: Verify the reliability and relevance of the cited 

references in the context of the study. 

IV. OVERVIEW OF SURVEY FINDINGS 

A. Descriptive Statistics of Review 

In the SLR study, 40 research studies were considered 
published globally in the recent three years, i.e., 2019(7), 
2020(22) and 2021(11). All the studies were reviewed 
according to the country of the academic’s affiliation to 
analyze the contribution of various regions in the subject area. 
Asia published the most significant number of studies that 
focused on the review subject area (57.5%), and most of these 
studies were performed in China (22.5%). 35 % of total studies 
were contributed from the European region, and 7.5% were 
from Australia and Africa. Researchers from developing 
countries conducted 60% of the total studies. At the same time, 
the remaining 40% belonged to the developed countries, with 
the categorization of developing/developed countries according 
to the Human Development Report [44]. The statistics 
exhibited that researchers from developing countries focused 
more on SWM than developed countries. The literature 
evidenced that SWM was a crucial problem in developing 
countries; therefore, authors gave more attention to SWM 
research and published more studies. Motivated by the SLR 
study in [45], all the selected studies were analyzed by 
publication to determine the mainstream journals and their 
publishing areas. Table V depicts the list of journals and 
conferences. The best journals of studies subject with 
documents count were IEEE Access (5) and Waste 
Management (5). These results concluded that electronics and 
computer science researchers focused on applying the current 
state of the art of their field and invested more effort to solve 
the SWM issues by developing automatic and intelligent 
systems. Additionally, Waste Management was dedicated to 
SW Management, Disposal, Policy, Education, Economic and 
Environmental assessment. According to the analysis of 
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publishing areas of each journal, it was deduced that SWM 
research was strongly related to the environmental sciences. 

B. Thematic Analysis of Review 

After the emergence of the various computational model of 
DL, no review study consolidated the applications of DL 
models in SWM and allied fields. The analysis of compiled 
studies unveiled four major applications of DL in SWM, 
namely waste detection, identification, bin level detection, and 
forecasting of waste generation. Additionally, DL was also 
applied to perform tasks such as demolish material prediction, 
custom software development for robot control, defect 
detection in potatoes, and different types of polythene material. 

Table VI displays the applications of DL models identified 
in considered studies and implemented model performance 
evaluation for the used data set. All the studies except one had 
applied the proposed model on an actual data set which showed 
the experimental performance of the models. Only one study 
had performed the experiments on simulated data to evaluate 
the model performance. A significant number of studies had 
compared the performance of the implemented model with 
other DL/conventional models. Moreover, most studies had a 
sufficiently large data set to train, validate and test the 
proposed model. Therefore, it could be concluded that the 
performance of the models was reliable and could be utilized 
for comparison in further studies. 

TABLE V. THE LIST OF PAPERS CHOSEN FOR THIS SLR ACCORDING TO JOURNALS / CONFERENCES WITH THEIR PUBLICATION AREAS 

Publisher Journal/Conference Focused Areas 

Elsevier (13) 

Automation in Construction (1) 
Computer-aided design and engineering, Product modelling and process simulation, 
Automated inspection, and robotics 

Case Studies in Chemical and Environmental 
Engineering (1) 

Environmental and chemical engineering applications- Water, Air, soil, waste, resource 
recovery, energy 

Journal of Cleaner Production (2) Cleaner Production, environmental, and sustainability  

Journal of KSU – Computer and Information 

Sciences (1) 
Computer science and applications, Information science 

Journal of the International Measurement 

Confederation (1) 

Sensors, Data processing, Fusion algorithms, Mathematical modelling, processes, and 

algorithms 

Resources, Conservation & Recycling (1) 
Sustainable production, consumption and management, Resources conservation and 

recycling 

Waste Management (5) 
SWM generation, collection, transportation, segregation, recycling, composition, policy, 

environment assessment 

Hindawi (2) 

Applied Computational Intelligence & Soft 
Computing(1) 

AI, Fuzzy and soft computing, Operations research, Mathematical modelling, and 
programming  

Computational Intelligence and Neuroscience (1) 
AI, Fuzzy system, Neural network, Neuro-biologically inspired evolutionary designs, 
Genetic algorithm 

IEEE (6) 

IEEE Access (5) Multidisciplinary from science and engineering 

IEEE Transactions on Consumer Electronics (1) 
Concept, design, development, production of electronics, systems, software, and services 

for the consumer market 

MDPI (9) 

Applied Sciences (2) Engineering, environmental, earth, material, and pure science 

Applied System Innovation (1) 
Computer and human-machine interaction, Applications of the IoT, Smart and intelligent 

system 

Electronics (1) 
AI, Computer science and engineering, Systems and control engineering, control and 
system 

Energies (1) Energy and environment, sustainable energy, AI systems design and control, Smart cities  

Future Internet (1) IoT, Smart Cities and urban development, human-computer interaction, and usability 

International Journal of Environmental Research 

and Public Health (1) 

Environmental science and engineering, Digital health, Environmental health, and 

ecology  

Remote sensing (1) 
Remote sensing applications, Image processing and pattern recognition, Data fusion and 
data assimilation 

Sustainability (1) 
Air pollution and climate change, Water pollution and sanitation, Sustainable 

development 

Springer (2) 

International Journal of Environmental Science 
and Technology (1) 

Environmental science and technology, Solid and hazardous waste management, Air, 
water, and soil pollution 

Multimedia Tools and Applications (1) 
Air traffic and online control, Real-time system, Computer-aided instruction, Remote 

home care, Smart system 

Wiley (1) 
Concurrency Computation Practice and 
Experience (1) 

AI and ML, Big data applications, algorithms, and systems, Data science 

World  

Scientific (1) 

International Journal of Software Engineering 

and Knowledge Engineering (1) 
Application software, Knowledge management and engineering, Smart system design 

Conferences (6) 
Held by Elsevier (2), Springer (2), IOP Press (1), 
and other (1) 

AI, Computer and information science, System development, environment, and material 
science  
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TABLE VI. TABULATION OF APPLICATION TYPE, DATA SET TYPE AND PERFORMANCE EVALUATION 

Reference Application type Data set type Performance evaluation 

[22] 
Identification and 
classification 

Real (5000 images) 
The combined model classification accuracy is compared with standard pre-
trained models VGG19, DenseNet169, and NASNetLarge. 

[25] 
Identification and 

classification 

Real (two datasets 2527 and 5904 

images)  

Performance is shown with respect to the ResNext model, which is applied 

to different datasets. 

[36] 
Intelligent hardware 

design 
Real (4168 images) 

ResNet-34: 98.59%, ResNet-34-A: 99.41%, ResNet-34-B: 99.95%, ResNet-

34-C: 99.28% and proposed model: 99.96%. 

[46] 
Smart bin hardware 
design  

Real (565 images) The garbage level inside the bin is monitored accurately in real-time. 

[16] 
Electrical and electronic 

item recognition 
Real (210 images) 

R-CNN accuracy (90% - 96.7%) is compared with respect to CNN 

(maximum 90%). 

[47] Intelligent robot design Real (47000 images) The robot picked garbage efficiently, and no comparison is shown. 

[35] Material prediction Real (2280 demolition) No comparison is shown. 

[26] Real-time detection Real (375 images) Manual verification is performed for test images. 

[23] 
Identification and 

classification 
Real (2527 image) 

Accuracies of CNN with various fusions are compared with AlexNet, 

GoogleNet, VGGNet, and ResNet-101. 

[17] 
Smart bin design and 

waste sorting 
GITHUB 2020 dataset 

There are shown the comparison of existing CNN models ResNet-34, 

VGG16, AlexNet, and ResNet50. 

[24] 
Identification and 

classification 
Real (400 images) Statistical analysis is performed after manual verification. 

[48] Defect detection Real (images not defined) No comparative study is performed. 

[30] Waste sorting  Real (100 images) Improved accuracy is shown with CNN. 

[31] Forecasting 
Real (weekly observation of 1000 
households, 2011-2018) 

Displayed 85% improved results with respect to the traditional ARIMA 
model. 

[49] Waste segregation Real (2527 images) Compared with various CNN models. 

[28] 
Identification and 
classification 

Real (25077 images) Compared with other current states of the art studies. 

[50] Garbage detection Real (4795 and 12346 images) No comparison, different classes accuracies are compared. 

[51] Garbage detection Real (8000 images) No comparison is shown, but the prediction is manually verified. 

[52] 
Polythene type 
identification 

Simulated (33000 images per class) Performance is compared with 23 layers networks with different image sizes. 

[32] Forecasting Real (730 data samples)  Compared with ARIMA and conventional ANN. 

[33] Prediction Real (9358 data points) No comparative analysis is shown. 

[34] Prediction Real (2827 data point) No comparison with other studies is shown. 

[53] Waste classification Real (7724 images) YOLOv3 results are compared with YOLOv3-tiny. 

[27] Waste classification Real (1989 images) No comparative analysis is presented. 

[29] Waste classification Real (2527 images) 
Performance is compared with MobileNet, InceptionV4, InceptionResnetV2, 
Xception, DenseNet121 & 169. 

[17] Waste classification Real (4163 images) 
Performance comparison is shown among four models DenseNet169, 

ResNet50, VGG16, and AlexNet. 

[54] 
Localization and 
recognition  

Real (56,964 images) Performance is compared with BNInception and ResNet-50. 

[55] 
Real-time waste 

identification 
Real (2527 images) 

Various models based on MobileNetV2, InceptionV2, & V4 are tested to 

obtain optimal accuracy. 

[56] 

Construction and 

demolition waste 

classification 

Real (Two data sets of 525 and1758 
images) 

No comparison with other studies is shown. 

[57] Waste classification Real (More than 25000 images) The performance of VGC19 is compared with ResNet50 and InceptionV3. 

[58] Glass and metal detection Real (2000 images) Performance comparison analysis of three models is shown.  

[59] Classification Real (6640 images) 
Accuracies of Resnet101, EfficientNet-B0, B1 and ensemble are compared 

to determine the optimal model. 

[60] Classification Real (500 images) No comparison with other studies is shown. 

[61] 
Detection and 

classification 
Real (369 images) No comparison with other studies is shown. 

[62] Detection and recognition Real (546 images)  No comparison with other studies is shown. 

[63] Waste dump detection Real (5000 images captured by UAV) No comparison with other studies is shown. 

[64] Plastic classification Real (109820 images) 
Proposed CNN accuracy is compared with AlexNet, MobileNet v.1 and 

MobileNet v.2 

[65] Waste classification Real (2527 images) 
Multilayer hybrid CNN accuracy is compared with AlexNet, ResNet50, and 

Vgg16. 

[38] Illegal dump detection Real (3000 images) No comparison with other studies is shown. 

[66] Classification Real (5416 images) Various state-of-arts models are compared. 
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TABLE VII. TABULATION OF DL MODELS, OBJECTIVES AND KEY RESULTS 

Reference DL Model/Technique Goal/Objective Key results 

[22] 

Transfer learning: proposed a combination of pre-

trained models VGG19, DenseNet169, and 
NASNetLarge 

Waste classification into six categories 
Classification accuracy: more than 92% for all 

distinct classes with an average of 96.5%  

[25] DNN-TC: an improved version of ResNext 
Waste classification into organic, 

inorganic, and medical waste  

Applied on two data sets and obtained 

accuracies 94% and 98%, respectively 

[36] 

ResNet-34 incorporating input images with multi 

features, reuse of the residual unit and a new 

activation function 

Developed hardware of automatic 
garbage classification system  

Identified 14 subcategories of recyclable and 
nonrecyclable with an accuracy of 99.96%  

[46] IoT and Tensor flow  
Smart bin with real-time waste object 

detection and classification features  

Obtained hardware of automated segregation 

and monitoring system 

[16] CNN and faster region CNN E-waste recognition and classification  
Acquired e-waste equipment identification 

accuracy between 90% - 96.7%  

[47] SegNet and ResNet Robot for waste picking from grass 
Attained waste recognition accuracy up to 95% 

without path planning 

[35] Deep neural network 
Prediction of demolition waste for 
reusable, recyclable, and landfill  

Prediction accuracy recyclable: 95%, reusable: 
98%, and landfill: 99% 

[26] YOLOv2 and YOLOv3 CNN 
Garbage container detection and 

classification 

Identified and classified the garbage and its type 

with an accuracy of more than 90% 

[23] DL models using the feature and score-level fusion Waste categorization into five classes 
Obtained accuracies 94.11% and 94.58% for 

double fusion PSO and GA, respectively 

[17] 
Integration of IoT and ResNet-34, VGG16, 

AlexNet, and ResNet50 

Sorting of digestible and non-digestible 

along with smart trash bin 

Exhibited maximum accuracy of 95.31% and 

successfully real-time bin monitoring 

[24] Two Deep CNN with four and five layers Waste classification into four categories 
Computed accuracies of four and five layers 

DCNN 61.67% and 70%, respectively 

[48] CNN with nine layers Real-time defect detection into potato Achieved 83.3% accuracy in real-time  

[30] Hybrid of CNN and multilayer perceptron  Waste sorting as recyclable and others Determined the accuracy more than 90% 

[31] Multi-site LSTM CNN Waste forecasting  
Reported RMSE, MAE and MAPE as 0.5, 0.41 
and 0.74 

[49] DenseNet121 optimized by genetic algorithm Recyclable waste segregation Highest accuracy demonstrated 99.6% 

[28] 
Auto Encoder network, CNN, Ridge Regression 

and Support vector machine as a classifier 
Waste Classification Achieved 99.6% accuracy 

[50] Fast region CNN Street litter detection and classification 
Achieved accuracies between 73.4% and 97.3% 
for different classes 

[51] Fast region CNN with edge computing 
Garbage detection for street cleanliness 

assessment 

Achieved accuracies between 81% and 93% for 

different classes 

[52] CNN with fifteen layers Polythene Classification 
Input image size 120x120 pixels, report 
accuracy for 15 layers network 99.2% 

[32] LSTM CNN Waste forecasting  
Reported R2 and MAPE as 0.96, 6, and 63.66 

(Training), 0.92 and 114.05 (Testing) 

[33] Simple and modified LSTM CNN 
Prediction of carbon mono oxide 

concentration inside the bin 

Prediction accuracies exhibited by simple and 

modified models were 88% and 90% 

[34] CNN with three hidden layers of eighty neurons Per capita waste generation prediction  Forecasted accuracy 94.6% 

[53] YOLOv3 and YOLOv3-tiny 
Waste segregation for disposal and 
recycling 

Mean average precision of implemented 
network is 94.99% 

[27] ResNet-50 and Support Vector Machine Waste categorization into four classes 
Obtained the classification accuracy of 

approximately 87% 

[29] MobileNet-V2 Waste categorization into six classes 
The accuracy of the implemented network is 
96.57% 

[17] DenseNet169, ResNet50, VGG16, and AlexNet  Waste categorization into six classes 
Accuracies of all four models are 94.9%, 

93.4%, 91.7%, and 89.3% respectively 

[54] Multi-task learning architecture-based CNN 
Simultaneous waste localization and 

recognition 

Shown F1 score 95.12% to 95.88%, with a 95% 

confidence interval 

[55] 
Single Shot Detector and Faster R-CNN based on 

MobileNetV2 and Inception-ResNet 
Identification of six types of waste 

Reported the accuracy for both models 97.63% 

and 95.76%, respectively 

[56] Two Deep CNN with multiple layers 
Construction and demolition waste 

classification  

Single and multi-waste classification accuracies 

are obtained 91.88% and 96.17%, respectively 

[57] VCG-19, ResNet50, and InceptionV3 Waste categorization into fifty classes Obtained the accuracy 86.19% for fifty classes 

[58] Three CNN with different number of layers 
Metal and glass detection into a waste 
bag 

Determined the maximum accuracy for metal 
and glass 100% and 96.28, respectively 

[59] 
Resnet101, EfficientNet-B0, EfficientNet-B1 and 

ensemble 
Waste categorization into seven classes 

Overall accuracies 92.43%, 91.53%, 90.02%, 

and 94.11% 

[60] Faster Region CNN 
Biodegradable and non-degradable 
waste segregation 

Computed average accuracy 84.34% 

[61] RetinaNet 
Waste pollutant detection and 

classification inside water 
Obtained average precision 0.8148 
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[62]  YOLOv2  
Classifying battery-containing devices, 
detecting batteries, and recognizing 

battery-structures 

100% is demonstrated for classifying battery-

containing from non-battery-containing devices 

[63] Deep CNN using Single Shot Detector 
Waste dump identification on the 

riverbank 

Masks generated on waste by the model are 

compared with the original image. 

[64] CNN with twenty-three layers  
Different types of plastic material 

detection 
Demonstrated the average accuracy of 74%  

[65] Multilayer hybrid CNN model Waste classification into six categories Shown classification accuracy up to 92.6% 

[38] 
Combination of ResNet50 and Feature Pyramid 
Network 

Waste dump identification and 
classification 

Achieved classification precision 94.5% 

[66] 
Seven state-of-the-art CNNs like MobileNetV3, 

AlexNet, ResNet  
Waste classification into nine categories Obtained accuracy from 91.9% to 94.6% 

Table VII demonstrates the proposed DL models, 
objectives, and key results of compiled studies. A significant 
number of studies had implemented pre-existing CNN for self-
constructed data set. In contrast, the remaining studies had 
designed their own CNN and applied it to their data set to 
demonstrate the experimental results. The deeper analysis of 
compiled studies deduced that most studies concentrated on the 
different waste identification and classification types. At the 
same time, some focused on the prediction of waste generation 
with various influencing factors. Few studies developed the 
smart bin using the IoT, and the DL model was used to build 
the custom software to control the bin hardware. One study 
constructed the waste picking robot from the grass ground, 
using DL-based custom software to manage the robot 
hardware. Moreover, objectives such as detecting different 
types of polythene materials and defects in potatoes were also 
obtained successfully. The key results of complied studies are 
discussed in detection precision and classification accuracy. 
The evaluation of results exhibits that the reported accuracies 
were more than 90%. 

The comprehensive analysis of considered studies indicates 
that a significant number of studies had implemented pre-
existing CNNs such as AlexNet, MobileNet-v2, YOLOv3, 
ResNet-50, NASNetLarge while remaining studies applied 
manually constructed CNNs which are built through a different 
number of neural layers. Pre-existing CNNs are developed by 
various researchers from academic and industry backgrounds. 
The CNNs have already demonstrated remarkable performance 
on image recognition benchmarks. These networks are trained, 
so only top layers, called fully connected layers, are retrained 
and fine-tuned according to the data set. Conceptually, these 
networks reutilize the weights and structure of a prior model 
from the convolutional layers. The construction and training of 
a CNN based new image recognition from scratch involve a lot 
of time and computational power. Therefore, the utilization of 
pre-existing networks increases computational efficiency. 

V. DEEP LEARNING 

In the last decade, AI has completely transformed and 
shifted into the era of computation, and DL is the only reason 
for this cutting-edge development. It has a very interesting and 
unique feature to ‘self-learn’ distinctive patterns directly from 
the data. It has the ability to extract features automatically 
without hand crafting them. It has emerged as the most 
promising computing method to automate the categorization of 

visual and spatial data in the context of SWM. Nowadays, 
SWM and allied field researchers are getting huge amounts of 
street or city-level data from various systems such as city 
surveillance systems, unmanned aerial vehicles, high-
resolution satellite imagery, or online platforms where many 
people participate in data collection [67]. However, 
conventional AI methods have limited capacity to analyze this 
huge amount of data which is a bottleneck for researchers [68]. 
DL computing techniques have the extensive power to 
overcome this condition through automatic analysis of a 
massive dataset. 

DL theoretical concepts are not developed recently; it has 
been published as far back as the 1980s [69]. This approach 
has become more prevalent, understandable, and practically 
possible in the last decade due to tremendous growth in 
computer hardware, the development of exceptional 
computational tools, and the accessibility of massive 
preprocessed and annotated data necessary to implement this 
methodology [70]. The literature analysis evidence that it has 
been implemented in automation of complex data computation 
tasks, object detection and location in visual data, photo 
tagging, self-driving car, speech recognition etc., across a wide 
range of industries [70]. The authors strongly believed that this 
methodology could achieve similar remarkable advantages in 
SWM. It potentially saves a lot of time for manual data 
analysis; therefore, DL enables the SWM and allied researchers 
to concentrate on more crucial tasks and could develop 
improved features for large scale and real-time monitoring 
SWM systems [16], [17]. 

A subset of ML, DL consists of utilizing the data structures 
named ‘deep ANN’, interchangeably DL. It is fundamentally 
consecutive arrangements of non-linear functions or several 
layers of digital neurons. These multiple layers of neurons 
construct the deeper the network. These networks learn hidden 
patterns automatically from the input data without explicit 
construction of distinct features to categorize the data. This 
drives the AI to be widely understandable and usable to non-
expert users. DL models are trained to perceive and learn these 
patterns by labelled inputs and corresponding outputs. After 
learning, the model predicts data that was never seen earlier 
[70]. This AI model, where labelled data is given in training of 
deep ANN, is termed supervised DL. Fig. 4 displays DL 
workflow using supervised learning through classification of e-
waste items. 
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Fig. 4. A Typical Architecture of CNN. 

A. Convolutional Neural Network 

The CNN is an essential class of deep neural networks, 
more precisely, DL, a subset of ML and inherently re-branding 
ANN. CNN has exhibited massive growth in image 
recognition, so they are specially implemented to analyze 
visual data and perform tasks beyond classification. The CNN 
allows to extract the features from the image and conducts its 
training from these features. It is different from a conventional 
neural network in processing and extracting features. Image 
features are handcrafted to implement image recognition using 
a conventional neural network while CNN receives the image’s 
raw pixels as input data, trains the proposed model, then 
automatically extracts the features to perform the better 
classification. Fig. 4 depicts the general architecture of a CNN 
[71]. A typical CNN has comprised an input layer, followed by 
the alternate combination of convolutional and pooling layer, 
and top of the network fully connected layer followed by 
classification output layer. 

The input layer defines the size of the input image and 
holds the values of raw pixels extracted from the image. The 
input image dimensions are represented by the height, width, 
and the number of colour channels (1 and 3 for grayscale and 
colour images, respectively) in the image. This layer also 
carries out input data preprocessing such as simple rescaling or 
normalization, mean subtraction, normalization and principal 
component analysis and whitening. 

The convolution layer is the core element of CNN building 
which comprises filter and stride. A filter is a small size two-
dimensional layer of neurons mapped over a small segment of 
the input image and covers the whole image through shifting. 
The convolution operation is performed by the computing dot 
product between the filter and image pixel, added over the 
filter area. After that, the filter is shifted in the horizontal and 
vertical direction to perform similar computation in each area 
of the whole image. The step size of shifting is called stride. 
When the filter moves over the input image or output of the 
preceding layer, it uses the same set of weights to carry out the 
convolution operation to create the feature maps. Therefore, 
feature maps and filters are equal in number. All feature maps 
comprise a different set of weights and neurons of the same 
map using similar weights for different input regions. Initially, 

all these filters have random values and become network 
parameters that will be learned subsequently. 

The pooling layer decreases output data size from the 
convolution layer, called down sampling operation. Various 
types of pooling functions occur, but max pooling is generally 
utilized. It reduces the count of connections to the following 
layer, the typically fully connected layer. It also decreases the 
count of parameters learnt in the previous layer and does not 
perform any learning. The max-pooling filter gives the 
maximum value for every sub-region. 

A fully connected layer is called a hidden layer, like an 
ANN. It connects each neuron of the preceding layer with 
every neuron of the successive layer. It determines the patterns 
to categorize the images by incorporating the features learned 
in the preceding layers and usually learns the non-linear 
function. 

B. Computational Requirements 

Generally, deep CNN models are implemented in several 
programming languages: Python, R, MATLAB, Java, and 
C/C++. Many open-source software libraries such as 
TensorFlow, PyTorch, OpenCV, Theano and Microsoft CNTK 
(Cognitive Toolkit) provide a diverse range of functions for 
most of the programming languages, including Python and R 
[72][73]. Moreover, software libraries like Keras provide a 
highly simplified interface for the DL libraries like 
TensorFlow. 

The physical resources required to execute DL models are 
either Graphical Processing Unit (GPU) or Central Processing 
Unit (CPU). Generally, a CPU comprises only 2 to 16 cores, 
which are the smallest computation unit in a computer. A GPU 
consists of thousands of more simplified cores than CPU cores, 
optimized to execute parallel arithmetic operations, and is best 
for executing DL models [74]. Therefore, GPU decreases the 
program execution time in significant orders of magnitude and 
makes physical implementation possible [70]. Nowadays, an 
alternative is available for computation, which does not need 
the local computer hardware resources, is called cloud 
computing. It provides online on-demand computing and 
storage resources for computation without user management. 
Platforms like Google Cloud Platform Microsoft Azure provide 
a subscription to execute DL models online at cloud. 
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VI. RESEARCH GAPS AND PRIORITIES 

Even though DL models have been extensively 
implemented in recent years to solve various SWM problems, 
they are still in the early phase of evolution and application. 
This SLR study has uncovered some gaps in applying DL 
models to SWM, and some aspects must be prioritized in the 
future.  

A. Data Acquisition 

DL models perceive insights and uncover hidden patterns 
from a massive amount of data applying various techniques. 
Reliable and enough data are the most fundamental and core 
elements of DL models applications. The quality and quantity 
of historical waste data are extremely crucial for the reliable 
performance of the DL model [75]. However, most of the 
studies deal with small or medium datasets, which could be 
attributed to SWM infrastructure and practices [16], [47]. 
Generally, SWM associated data are collected and organized 
by distinct channels encompassing various stakeholders. This 
hybrid management structure makes the data gathering and 
compilation extremely hard and complex [76]. Due to the lack 
of SWM related data, precise DL models are tough to 
implement. Furthermore, authors have analyzed that most 
research studies have utilized self-constructed data set for 
training, validation, and testing purposes. Therefore, it implies 
that the data set for DL model implementation is not available 
in the public domain. The scarcity of open benchmark data set 
is a major obstacle in implementing DL models in SWM and 
allied fields. 

Now-a-days, many techniques are available to construct a 
large data set from a smaller one. For example, data 
augmentation is one of the most prevalent methods in fields 
such as data analysis to increase data size for effective and 
accurate model implementation. In SWM tasks such as waste 
classification material detection, the data augmentation 
technique is utilized to increase the amount of sample data for 
better performance of the DL model [52], [64]. Additionally, 
the collection of waste generation data is growing due to 
extensive waste monitoring, and some constructive data set are 
accessible freely [77]. Currently, city monitoring data is 
collected using remote sensing, geographic information 
system, unmanned aerial vehicle photography, satellite 
imagery, and modern technologies like IoT, sensors, and radio 
frequency identification to develop the SWM monitoring 
system. These sources generate a massive amount of data; 
therefore, it is highly demanded to develop a system for 
combining these existing data resources and constructing a data 
management platform with a unified protocol for distinct 
formats and types. Data fusion technology can also be applied 
to analyze and monitor the interconnection between distinct 
systems, databases and data types. Furthermore, data sharing 
mechanisms must be flexible and open to develop the reliable 
and quality data opening environment. 

B. Data Preprocessing 

Data preprocessing is not a vital phase for the AI, ML and 
DL models, but it is the highly consequential phase. If the 
collected data are processed correctly, it significantly impacts 
the training phase and predicted outcomes. Generally, it 
decreases the training time of DL model and sometimes 

enhances the model performance. Besides this, it is also 
instrumental in transforming the collected data into an 
appropriate form for the subsequent model phases. Missing 
values and noise are common in data collection and recording. 
Mostly linear interpolation or mean value replacement are 
applied to fix missing data points [31], [78]. But these methods 
have one major drawback of information loss. In [79], the 
author applied the ANN to reconstruct the missing values in 
methane generation data and showed a significant decrease in 
mean square error. This leads to the novel direction for 
constructing MSW data missing value to future researchers. 

In addition, the selection of suitable input variables for the 
DL model can extensively control the performance of the 
training phase and the robustness of DL models. These 
appropriate variables would improve the performance and 
reduce the modelling complexity. The SWM system is very 
complex contains various interconnected processes with 
numerous complex operations. This system also involves many 
non-linear parameters, including highly inconstant influencing 
factors, namely socioeconomic and demographic and operating 
control parameters [80]. The labelling of visual data is also 
highly consequential on supervised DL model learning 
performance and predicted results. An inaccurate label can 
significantly confuse the model learning, which will lead to 
erroneous results [81]. The survey analysis has uncovered that 
most of the existing studies have applied the DL algorithm on a 
selected set of labelled data that is correct in real-world 
applications. Furthermore, precise data labelling is 
cumbersome and time-consuming [81]. In [81], the author has 
demonstrated a DL technique to select the most appropriate 
data for labelling cost-effectively. This active labelling of data 
can focus on attaining the best training and testing performance 
for waste classification and illegal dump detection using the 
DL model with limited data. This can also be used to create the 
benchmark data set for different categories of waste. 

C. Model Selection and Architecture Definition 

Now-a-days, numerous DL models are available for 
implementation, but there is no specific rule to choose the best 
model. Generally, CNNs are applied to imagery or spatially 
related data, while LSTM/RNN are performed best on 
sequential data. Table VIII demonstrates the strengths and 
drawbacks of the DL models used in SWM and can help select 
the appropriate model. The DL model selection in SWM 
depends on the types of input data and tasks performed. The 
right accuracy selection also plays a crucial role in choosing a 
suitable DL model. Defining DL model architecture is a critical 
step for successfully executing model over studies data set with 
acceptable accuracy. There is no clear set of instructions to 
build the model, but the following two things help to develop 
model architecture. The model must possess satisfactory 
accuracy on the studies data set and must be easily retrainable 
or exist as a pre-trained model. The practical aspect associated 
with accuracy is the speed versus accuracy tradeoff. DL 
communities have currently constructed a diverse range of 
architectures for distinct use cases that can be applied in real-
world problems. For example, if someone has a constraint of 
computing resources, then one must choose fast architecture 
such as MobileNetv2 [29], [55], [66], and if someone does not 
have the above constraint, then one can go state-of-art model 
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which promises then best accuracy. Furthermore, some 
architectures are lighter and faster as they cut down the layers, 
making them faster and slimmer. 

Additionally, different existing or pre-trained models can 
be applied to the same data set to obtain the best model to 
perform the target task. Based on Table VI and Table VII, 
CNNs have been widely applied in waste classification with 
remarkable accuracy [28]. However, these are rarely 
implemented in other SWM processes. Therefore, researchers 
have opportunities to develop new CNN architectures or can 
apply existing CNN in other processes. LSTM/RNN models 
have been implemented to forecast waste generation, but these 
models can have potential applications in other sequential data 
related to SWM [31]–[33]. 

TABLE VIII. STRENGTH AND DRAWBACK OF DL MODEL APPLIED IN SWM 

WITH THEIR APPLICATIONS 

Model Strength Drawback Applications in SWM 

CNN 

Capable of extracting 

features automatically; 
therefore, no explicit 

crafting of features. 

They have been used 
effectively for imagery 

data. 

Perform well with data 
that has spatial 

relationships. 

Require 

massive 
sample data 

for training 

Require 
parameters 

tunning 

Waste detection and 
classification- Glass, 

Metal, Trash, 
Cardboard, Plastic, 

Medical, Recyclable, 

Nonrecyclable, e-
Waste, Polyethene, 

Organic, Inorganic etc. 

Object detection- 
Battery, Defects in 

potatoes, Waste bags 

etc. (refer to Table VI) 

LSTM 

/RNN 

They have been 

efficiently used for 

sequence data like text, 
speech etc.  

Require 
massive 

computation 

Waste forecasting, Gas 
prediction inside the 

bin [31]–[33] 

D. Model Comparison 

It must be conducted to evaluate the effectiveness and 
performance of the DL model. This SLR analysis has 
uncovered that many studies have applied on one model with 
showing any comparative performance with other model [27], 
[33], [61]–[63], [34], [35], [38], [47], [48], [50], [51], [56]. In 
some studies, the outcomes from different models have been 
compared and analyzed to choose the best one while they lack 
in comparison to similar models from different studies [24], 
[26], [31], [32]. However, these studies have shown good 
results, but this comparison does not provide evidence for the 
best model selection. Very few studies have utilized the results 
of other studies as a baseline for comparison, but both results 
are Computer using the different data set; therefore, this type of 
comparison does not seem very meaningful and convincing 
[15], [28]. In waste classification and similar tasks, a 
significant number of studies have demonstrated the 
comparison with a similar type of model on the same data set 
and shown better accuracy (refer to Table VI). This SLR has 
also undermined that the current studies do not explain more 
about the model description, such as hyperparameters setting 
and fine-tuning. Therefore, it is extremely difficult to 
reproduce the results from implemented DL model. 
Consequently, the author has suggested explaining the DL 
model description with minor detail that will help advance 

scientific research with previous outcomes and fast 
development and applications in SWM. 

VII. DISCUSSION 

The overall discussion about the SLR study can be 
partitioned into three subsets. The first subset describes the 
summary of the study. The second subset discusses an 
important observation with a shortcoming. The third subset 
explains why applications of DL models in SWM is growing 
with remarkable momentum. 

First, the comprehensive SLR concentrates on analyzing 
and evaluating the various DL models and their applications in 
SWM, obtained from 40 research studies published in reputed 
journals and reliable conferences between 2019 and 2021. The 
reported key results of all complied studies are displayed, and 
performance comparisons shown within the study are also 
manifested. The outcomes of the SLR study indicates that 
various types of CNNs, manually constructed, pre-existing, and 
hybrid with other approaches, have been implemented to 
perform various tasks. Generally, waste identification and 
classification problems are fundamentally complex as waste 
have ill-defined features readable to the machine. Therefore, 
traditional ML and image process algorithms do not have 
sufficient capabilities to provide a reasonable solution in terms 
of effectiveness and efficiency. Other than waste classification, 
DL models have also been applied to predict waste generation, 
gas concentration and illegal waste dump detection. 

Second, the in-depth analysis of the literature unveils that 
all the studies used self-constructed data set. Therefore, it can 
be confidently concluded that no benchmark data set exists, 
which is a major drawback for the researchers comparing their 
model performance with benchmark results. So, firstly it can be 
strongly recommended that an annotated benchmark data set be 
constructed for each waste category for future research. 
Secondly, it also seems clear that DL models provide more 
cutting-edge techniques in SWM, which are significantly 
effective and efficient compared to traditional ML and image 
process approaches. Therefore, DL models have gained 
sufficient momentum in the SWM research community to 
solve a wide variety of problems. 

Third, the field of DL has got popular recently, so 
researchers from SWM research communities are increasing 
interest in applying DL models for SWM services. The SLR 
evidence that applications of DL models in SWM have started 
recently, especially in the last three years. The literature in this 
field is growing at a significant pace with novel applications in 
different SWM tasks. Therefore, the SLR study has focused on 
the research published in the last three years. The maturity of 
DL applications in this field can take a long time as the SWM 
system has highly complex interconnected components. It has 
been practically applied in many applications, namely 
intelligent waste identification and classification. For example, 
SpotGarbage, an Android App and robot for waste picking 
over grass, has successfully applied the DL models to detect, 
localize, and classify the waste automatically. Furthermore, 
most of the chosen studies for SLR are exploratory, so it can 
also be anticipated that more applications will be in practice 
soon. 
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VIII. CONCLUSION 

Various AI and image processing approaches have been 
implemented for solving the SWM problems, such as waste 
generation prediction and waste level detection in the bin over 
the years. But in the last decade, DL has been successfully 
applied in diverse domains. Even though the main focus of DL 
(especially unsupervised learning) is in the image processing 
domain, this study has performed the SLR of the emerging 
research relating to the DL applications in the SWM. 
Furthermore, these approaches are popularly known to conquer 
the vanishing gradient problem, which was an acute limitation 
on the depth of ANN. In the last few years, lots of research 
efforts have been made to apply DL in the SWM domain. This 
study performs an SLR of published research that applies the 
DL models for SWM. Forty relevant research studies are 
uncovered after executing the rigorous SLR procedure. These 
research studies are analyzed and examined based on the SWM 
problem they focused, type of data set utilized, implemented 
models comparison, and performance evaluation according to 
the performance matrices used by individual papers. The 
performance of DL models is compared with other existing 
techniques. The overview of findings implies that DL exhibits 
better performance and outperforms as compared to other 
prevalent ML and image processing techniques. 

Significance of this SLR: The identified DL learning 
techniques have been effectively applied to model the complex 
processes in SWM. Therefore, DL is drawing the attention of 
researchers from around the world and has emerged as a 
foundation for SWM problem-solving. This SLR study also 
provides evidence that DL in SWM is the most active research 
field. Furthermore, it is observed that DL models consist of 
cutting-edge techniques to solve the SWM problems. These 
techniques are remarkably efficient and do not need hand 
crafted features as traditional ML and image process 
approaches. Hence, DL models have obtained significant 
popularity in the SWM research community to solve a wide 
range of problems. The main goal and significance of this SLR 
provide the background about different DL models with their 
performance in a variety of SWM tasks and gaps for future 
research on this particular topic. It also elaborates the basic DL 
model (CNN architecture) design and provides comprehensive 
information about DL in SWM, which could be highly useful 
to SWM practitioners. 

For future work, it is recommended to implement the 
general concepts and best practices of DL, as illustrated 
through this SLR, to problems of SWM where this cutting edge 
approach has not yet been significantly applied. One crucial 
suggestion is to construct the annotated benchmark data set for 
public use. It is strongly needed to compare and enhance the 
performance of the DL models. It will also provide a boost to 
the applications of models in SWM. 
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