
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

419 | P a g e

www.ijacsa.thesai.org

Bayesian Hyperparameter Optimization and

Ensemble Learning for Machine Learning Models on

Software Effort Estimation

Robert Marco
1
*, Sakinah Sharifah Syed Ahmad

2
, Sabrina Ahmad

3

Department of Informatics, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
1

Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia, Melaka, Malaysia
2, 3

Abstract—In recent decades, various software effort

estimation (SEE) algorithms have been suggested. Unfortunately,

generating high-precision accuracy is still a major challenge in

the context of SEE. The use of traditional techniques and

parametric approaches is largely inaccurate because they

produce biased and subjective accuracy. Meanwhile, none of the

machine learning methods performed well. This study applies the

AdaBoost ensemble learning method and random forest (RF), on

the other hand the Bayesian optimization method is applied to

determine the hyperparameters of this model. The PROMISE

repository and the ISBSG dataset were used to build the SEE

model. The developed model was comprehensively compared

with four machine learning methods (classification and

regression tree, k-nearest neighbor, multilayer perceptron, and

support vector regression) under 3-fold cross validation (CV). It

can be seen that the RF method based on AdaBoost ensemble

learning and bayesian optimization outperforms this approach.

In addition, the AdaBoost-based model assigns a feature

importance rating, which makes it a promising tool in software

effort prediction.

Keywords—Bayesian optimization; adaboost ensemble

learning; random forest; software effort estimation

I. INTRODUCTION

Software effort estimation (SEE) is a method of estimating
the amount of time it will take to build a software system in
person-months or person-hours [1][2]. Uncertainty and
imprecision characterize software effort estimation
environments [3][4]. The topic of SEE, on the other hand, has
been characterized as a regression problem in general [5].
Various SEE models in the literature still show considerable
performance deviations and are extremely dataset-dependent.

SEE has previously been accomplished via expert
judgment, analogy, decomposition and recomposition, and
parametric techniques [6]. Meanwhile, standard SEE
methodologies can produce erroneous estimates due to human
bias and subjectivity [7]. The Machine learning (ML)
algorithm is very effective in modeling uncertainty as a better
decision-making process [8]. However, no single learning
method is ideal for all supervised learning tasks [9]. However,
a single sophisticated algorithm may not be a consideration for
building current SEE models, as the performance of any
model mainly depends on the characteristics of the data set
used, such as data set size, outliers, categorical features, and
missing values.

Several machine learning techniques have been widely
applied in the SEE context which have been considered as
necessary steps, such as: Case-Based Reasoning (CBR),
Artificial Neural Networks (ANN), Support Vector
Regression (SVR) [10], while for other ML methods, such as
Random Forest (RF), Classification And Regression Tree
(CART) and K-Nearest Neighbor (kNN), they are still
ignored. RF is a powerful, easy-to-train ensemble learner with
big data [11]. RF is widely used in the data mining domain
and has achieved good performance when dealing with
regression and classification problems [12]; this method can
overcome overfitting and is less affected by outliers [13]. On
the other hand, RF improves prediction accuracy without
significant computational improvement, and is not sensitive to
multicollinearity [14]. Some researchers have also applied RF
to solve regression problems in the context of SEE, for
example [15][16][17]. Unfortunately, the RF model can only
be extended horizontally because decision trees exist in
parallel and these decision trees have equal weight in voting
for the final prediction even though some of these trees may
underperform.

The use of Ensemble learning combines several algorithms
that process different hypotheses to make their predictions
perform well [18]. According to Lessmann et al. (2015), the
ensemble method is better than the single ML and other
statistical method [19]. While, Kocaguneli et al. (2012), the
proper use of the ensemble method can outperform the
performance of single learners on the ML model [20], as well
as being one of the best methods in increasing the accuracy
and stability of the most influential estimation [21].
Averaging, voting, and bagging are three common broad
ensemble approaches that have piqued the interest of machine
learning researchers. Meanwhile, developing ensemble
methods such as stacked generalization, AdaBoost algorithm,
Gradient tree boosting have not been widely tried/ignored
[22].

Ren et al. (2016) investigated the use of ensembles in
classification and regression and the success of AdaBoost
about regression behaviour [23]. AdaBoost, as a popular
boosting algorithm, combines weak estimators and
implements them on an improved version of the data with the
help of weighted majority voting/hard voting [24]. However,
AdaBoost may not offer high accuracy when the dataset is
heavily contaminated with noise [25]. In contrast to, Martin-
Diaz et al. (2017), AdaBoost is also known to achieve a

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

420 | P a g e

www.ijacsa.thesai.org

significant reduction in bias as well [26], and low error
variance [24]. Also, it is not easy to overfit during training
[27].

Unfortunately, the method will need to be fine-tuned to fit
the scenario at hand. Automatic hyperparameter adjustment
saves time and effort when experimenting with different
machine learning model configurations, improves algorithm
accuracy, and increases reproducibility. Hyperparameter
tuning is a well-known approach for achieving optimal
performance in machine learning models [28][29]. Several
other studies have shown that the accuracy dimension in SEE
is strongly influenced by choice of information estimation
using parameter tuning techniques [30]. Because determining
the best hyperparameter combination can improve the ML
model's performance [28][31]. However, much of the work
seems to implicitly assume that tuning the parameters will not
significantly change the results [32]. In the worst case,
improper parameter setting may lead to inferior performance
results [33]. However, the default hyperparameter setting may
not produce consistent results depending on the data set used
[34]. Based on the work by [35], there is still limited work
investigating the impact of parameter setting for SEE methods
in improving prediction accuracy.

Manual search, grid search, and random search are some
of the most used hyperparameter optimization strategies [36].
When the hyperparameter space is large, however, this method
is time consuming and impractical [6]. Manual search
necessitates a higher level of professional knowledge, is
difficult to implement without prior experience, and takes time
[37]. Meanwhile, grid search suffers from a dimensional
curse, which means that as the number of hyperparameters set
or the complexity of the search space and the range of values
of the hyperparameters increases, the algorithm's efficiency
declines dramatically [37]. Random search, on the other hand,
is more effective in high-dimensional space [38], but this
method is not reliable for training complex models [38].
Despite the fact that this method provides automatic tuning, it
can acquire the optimization goal function's ideal global
importance.

Among other classic hyperparameter optimization
techniques, Bayesian optimization is a very successful
optimization algorithm for solving computationally expensive
functions [39]. Bayesian hyperparameter optimization
technique to further promote generalization accuracy [40].
Bayesian optimization is effective for problems with fewer
hyperparameters and that are difficult to parallelize [6].
Therefore, it promises to encourage the use of hyperparameter
tuning for further applications in SEE.

Motivated by the benefits mentioned above, the AdaBoost
RF-based method of ensemble learning was developed to
capture the relationships between features in an SEE context.
To reduce time dependence and impracticality, Bayesian
optimization method is used to find suitable hyperparameter
models. The datasets in the PROMISE and ISBSG repositories
have built the model in this paper. Based on literature review,
there is still a limited use of the AdaBoost and RF ensemble
learning methods adopted to build the SEE model. The
remainder of this paper begins with related work, followed by

experimental design. Then, the results and discussion
containing the comparison of models. At the end, discuss the
conclusions and future work.

II. RELATED WORK

Meanwhile, the literature on offline learning does not have
a supervised procedure for automatic parameter setting. In the
context of offline SEE, the use of Classification and
Regression Tree (CART) with the addition of more innovative
features can improve accuracy [28], the researchers used a
grid search strategy to obtain optimal parameters for five
machine learning techniques (KNN, Regression Trees (RT),
Multilayer Perceptrons (MLP), Bagging+RT, and
Bagging+MLP) without used generating ensembles. The
results revealed that while RT, Bagging+RT, and KNN were
unaffected by tuning settings, MLP and Bagging+MLP were.
Minku (2019) Linear Regression in Logarithmic Scale
(LogLR) results in a more stable prediction performance [41].
Meanwhile, Minku and Yao (2013) investigated the RT,
Bagging+MLP, and Bagging+RT techniques shown to
perform well across several data sets. This suggests that the
best parameters to use with a machine learning approach may
change over time [35]. In the context of SEE, parameter
tuning in Support Vector Regression (SVR) is critical. A tabu
search has been proposed in particular to find the best SVR
parameter tuning [42]. Elish (2013) conducted an empirical
study based on five machine learning approaches (KNN, SVR,
MLP, Decision Tree (DT), and Radial Basis Function
Network (RBFN)) that suggested a heterogeneous ensemble.
Due to its irregular and unstable performance across the
specified data set, the single approach is unreliable.
Furthermore, across all data sets, five machine learning
approaches were trained using the same configuration, but no
explanation for parameter tuning was supplied [43].

Meanwhile, Villalobos-Arias and Quesada-López (2021)
investigated CART, SVR, and ridge regression (RR) using
random search and grid search with six bio-inspired
algorithms. The results demonstrate that the Flash+Log+SVR
model is the most accurate in the most data sets, while the
Hyperband+Log+RR model is the most stable in the most
datasets [44]. In particular, the stacked ensemble that offers
the best overall accuracy in this study takes the average of the
estimated effort values generated by Bagging, RF, ABE,
AdaBoost, Gradient boosting machine, and Ordinary least
squares regression which are optimized using grid search
techniques [25]. Meanwhile, Zakrani et al. (2018) used the
grid search (GS) method to improve SVR. The results show
that this approach can help improve the SVR technique's
performance [45]. Stacking ensemble learning uses two
hyperparameter tuning (Particle Swarm Optimization and
Genetic Algorithms) while base learners (linear regression,
MLP, RF, and Adaboost regressor). Experimental results
reveal that the estimation accuracy is higher when
hyperparameters are set using PSO [6]. ROME (Rapid
Optimizing Methods for Estimation) is a configuration
technique that uses sequential model-based optimization
(SMO) to identify configuration settings for KNN, SVR, RF,
and CART techniques. For both traditional and current tasks,
ROME outperforms sophisticated approaches [46]. The
accuracy and stability of SVR in SEE were tested to see how a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

421 | P a g e

www.ijacsa.thesai.org

random search hyperparameter tuning strategy affected them.
According to the findings, the SVR set for random search
performed similarly to the SVR set for grid search [47].

Based on the findings of previous empirical investigations
in the context of SEE. This paper is different from previous
research. The RF-based AdaBoost ensemble learning method
reinforced by the Bayesian optimization method was used to
find the appropriate hyperparameter model. Meanwhile, four
ML techniques, such as: classification and regression tree
(CART), k-nearest neighbor (k-NN), multilayer perceptron
(MLP), and support vector regression (SVR) were used to
compare the performance results of the proposed SEE model.

III. EXPERIMENTAL DESIGN

The data sets, ensemble learning, hyperparameter tuning,
parameter setting ML, and evaluation measures utilized in this
paper are described in depth in this section.

A. Datasets

The most widely used datasets related to the SEE context
are the Repositories on PROMISE and ISBSG, among the
most popular datasets. In 9 datasets from the public PROMISE
repository (also known as SEACRAFT), as well as two sub-
datasets from the ISBSG10 and ISBSG18-IFPUG repositories.

Table I lists the data set that was used in paper, including
the number of projects, features, and categorical features. This
paper uses eleven datasets (china, albrecht, maxwell, nasa93,
cocomo81, kitchenham, kemerer, desharnais, and ISBSG10)
and the preprocessing rules used in the study by [28][1], and
the UCP dataset according to the regulations [48]. Meanwhile,
ISBSG18-IFPUG refers to research [44].

B. Data Preprocessing

The Data Preprocessing approach in study was used to
improve prediction accuracy in the end. The Data
Preprocessing technique is an effective option for effort
estimation [50], is a crucial step in improving machine
learning performance [51]. According to Famili et al. (1997)
the first step by removing features on the dataset that is not
relevant. Machine learning algorithms will perform better if
irrelevant features are removed [52]. Subsequent processing
converts information on categorical data into numeric. Ordinal
coding assigns a unique number code to each category [53],
the advantage is that the dimensions of the problem space do
not increase because each category is displayed as a single
input [54]. Handling missing data by using kNNI (K-Nearest
Neighbor Imputation). This method proved to be efficient for
estimating missing attribute values in various software
engineering datasets [55]. In this study, data normalization
was used as a scale of values 0 and 1. For all datasets, Mensah
et al. (2018) discovered that the normalized Z-score [0,1]
generated the best prediction accuracy when compared to box-
cox and log transformation [56]. This research will utilize two
subsets at random: training (80%) and testing (20%) as a
predicted evaluation of the training procedure.

C. Random Forest Algorithm

For regression purposes, the random forest is a set of tree
predictors () where represents the
observed input vector (covariate) of length with a random
vector associated with and is independent and identically
distributed (iid) random vector. A regression setting where has
a numeric result, , but makes multiple points of contact with
the classification problem (categorical results). The observed
(training) data are assumed to be taken independently of the
combined distribution () and consist of ()
 () ().

For regression, the random forest prediction is the

unweighted mean of the collection ̅() (

)∑ ()

 .

For the Law of Large Numbers ensures [57].

 (̅()) (()) (1)

The quantity on the right is the prediction (or
generalization) error for a random forest, designated

 .

Convergence in Eq. (1) implies that the random forest is not
overfit [57]. Determine the mean prediction error for the
individual tree () as:

 (()) (2)

Assume that for all the tree is unbiased, eg
 (), then yields:

 ̅

 (3)

Where ̅ is the weighted correlation between residuals
 () and () for independent .

D. Adaboost Ensemble Learning

AdaBoost is a popular variation of the original Boosting
scheme [27]. AdaBoost is a robust ensemble approach for
fitting a poor collection of learners to a enhanced data set. The
predictions of the weak learner are merged using weighted
summation, to reproduce the final prediction [58]. The
Adaboost regressor is a high-accuracy ensemble learner that is
used to tackle regression issues [59], Adaboost.R2, a modified
version of Adaboost.R, is used for regression [27].

TABLE I. THE STUDY’S DATA SET

Dataset Size [49] Proj N Cat.

China large 499 17 0

Albrecht small 24 7 0

Cococmo81 small 63 17 0

Desharnais medium 81 8 0

IFPUG large 36 12 11

ISBSG10 large 952 11 6

Kemerer small 16 6 0

Kitchenham large 145 4 0

Maxwell small 62 26 0

Nasa93 small 93 18 16

UCP small 71 5 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

422 | P a g e

www.ijacsa.thesai.org

Given , which is applied to the training set,
seeks to improve the training data in each boosting iteration,
using different weights. The first update iteration uses the
same weights and training data as before. The learner's
algorithm is then re-applied to the new weighted data, after
each initial weight is updated. If the weights for the training
data that were predicted incorrectly in the previous phase are
increased, the weights for the training data that were
successfully predicted will be reduced. Finally, each weak
learner is compelled to concentrate on the sample that the
preceding one missed in the sequence [27]. In the following,
Adaboost.R2 steps according to the rules [60][61]:

 Set the initial weight () to the training set.

 As the training set, define the original data's input (x)
and target (y) variables.

 Install the regression model () to the training set with
the notation .

 Get the predicted training target value:
()

().

 Use the following equation to find the loss value for the
i-th training sample ().

 [|
()

() |] (4)

Any function that is , can be used as the loss

function (). Calculate the average loss (̅) for using the
following formula:

 ̅ ∑

∑

 (5)

When ̅ is smaller than 0.5, an appropriate forecast is
produced.

 If ̅ is more than 0.5, the weights should be updated
using the equation below.

 (6)

 ̅

 ̅
 (7)

 To get the required loss function range, repeat steps 4-7.

E. Bayesian with Gaussian Process Optimization of Model

Hyperparameters

Bayesian optimization is a useful strategy for locating the
by extremes of computationally expensive functions [39]. In
this paper, Bayesian optimization is used in this research to
discover the maximum value at the sampling point for the
unknown function f in model hyperparameter configuration
problem [62][63]. The objective function is computationally
 over the compact hyperparameter domain ,
which aims to minimize f without using gradient information.

Thus, the hyperparameter mapping in Bayesian depends on
the objective function. The target value is predicted with the
historical result . A series of steps to find the hyperparameter

as follows: 1) Define the historical model, 2) Find the optimal
parameter, 3) Apply the detected hyperparameter to the
objective function, 4) Update the model with new result, and
5) 2-4 steps are repeated until the threshold value is reached or
the process exceeds the limited time.

Determines a previously small sample of points
uniform at random, and computes the value of the function at
those locations () () . Then, model f using a
probabilistic model for the function. We'll take f as a Gaussian
process. Because the Gaussian process is so flexible and
simple to use, Bayesian optimization uses it to fit the data and
update the posterior distribution [37]. For only a finite
collection of points , posterior delivers a probability
distribution over a particular function. The Gaussian process
posits that the probabilities (() ()) form a
multivariate Gaussian distribution that is specified by the
mean function () and the covariance function () ,

where is a positive definite kernel function (such as: the
squared exponential kernel, the rational quadratic kernel, and
the Matern kernel). The posterior predictive mean function
 () and the posterior predictive marginal variance function
 (), both specified across the , domain and calculated in
closed form, are obtained by modeling using the Gaussian
process [62].

Then determine the sampling point, , from to find
the location of the minimum function. Controlled by the
optimization proxy of the acquisition function, .

 () (8)

This paper, will use the expected enhancement algorithm
which is defined as follows [64]:

 () (() ()) (9)

The minimum observation value of is (), while
which expresses the expectation of a random variable at ().
Thus, we receive the same reward as "fixing" () ()
there is no alternative reward when () is less than ().
The right-hand side of Eq. (9) can be written as given the
Gaussian Process predicted mean and variance functions:

 () (() ()) () () (10)

Where, is its derivative, and is the standard normal

cumulative distribution function, while
 () ()

 ()
.

Based on the above analysis, the basic framework of
Random Forest and AdaBoost embedded in Bayesian
Optimization is formulated in Fig. 1.

F. Parameter Settings ML

Classification And Regression Tree (CART), Multilayer
Perceptron (MLP), Support Vector Regression (SVR), K-
Nearest Neighbor (KNN), and Random Forest (RF) were
employed in the experiment. Table II shows the
hyperparameter search space for setting the parameter values
of a single approach using Bayesian Optimization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

423 | P a g e

www.ijacsa.thesai.org

Fig. 1. The Flow Chart of the Proposed RF-Adaboost with Bayesian

Optimization.

TABLE II. ML TECHNIQUE PARAMETER VALUES

ML Parameter Values

CART

criterion: {mse, mae}

max_depth: {2, 6, 7, 8}

min_samples_split: {10, 20, 40}

max_leaf_nodes: {5, 20, 100}

min_samples_leaf: {20, 40, 100}

max_features:{auto, log2, sqrt, None}

MLP

hidden_layer_sizes: {(50,50), (100,50)}

solver: {adam, sgd}

activation: {'relu', 'tanh'}

learning_rate: {constant, adaptive}

alpha: {0.0001, 0.05}

SVR

kernel: {sigmoid, poly, rbf}

degree: {3, 4, 5, 6, 7, 8, 9}

kernel parameter: {0.0001, 0.001, 0.01, 0.1}

learning rate: {0.01, 0.02, 0.03, 0.04, 0.05}

deviation tolerated: {0.001, 0.01, 0.1}

k-NN
K: {1, 2, 3, 4, 5, 6}

weights: {uniform, distance}

RF

number of trees: 125

criterion: {mse, mae}

n_estimators: {10, 20, 30, 50, 100}

min sample leaf: {3, 4, 5, 6, 7}

min samples split: {3, 5, 7, 9}

max_features: {1,13}

max_depth: {5, 15, 20, 30, 50}

max depth of the tree: {100, 200, 300}

G. Cross-Validation

The cross-validation methodology is a widely known
method for revealing the model's true performance, and it is
highly recommended by researchers [58]. For the PROMISE
and ISBSG R10/R18-IFPUG datasets, will apply ten times 3-
fold cross-validation. This paper divided the data into three
folds or groups at random. The test set is chosen, and the
remaining two folds are joined to form the train set. For each
schema, the model is based on a train set (a combination of
machine learning algorithms, ensemble learning, and
hyperparameter tuners). Within this framework, AdaBoost
functions as a meta-regressor for ensemble and Bayesian
optimization to provide automatic tuning that functions as an
appropriate hyperparameter model optimization objective.
Sub-partitioning is done via 3-fold cross-validation because
the tuner does not have access to the test set. The model is
retrained on the entire set with these parameters once the
optimal hyperparameter values have been identified. Finally,
an assessment matrix will be used to assess the model. The
flowchart of the framework in the proposed regression scheme
based on AdaBoost and bayesian hyperparameter tuning is
summarized in Fig. 2.

H. Evaluation Metrics

Mean absolute error (MAE), root mean square error
(RMSE), and R-squared (R

2
) are the metrics that are used in

the evaluation. If the MAE and RMSE are low, and the R
2
 is

high, the model is better.

∑

 (11)

 √

∑ ()

 (12)

∑ ()

∑ (̅)

 (13)

Fig. 2. Procedure Training and Testing Scheme.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

424 | P a g e

www.ijacsa.thesai.org

IV. RESULT AND DISCUSSION

This section will address the issues raised in section 1 by
conducting three sets of experiments to determine the
accuracy of the SEE: 1) without hyperparameters tuning
(default), 2) hyperparameters tuning, and 3) SEE model using
Adaboost ensemble learning with Bayesian hyperparameters.

In this paper describe the experiments in depth and offer
the findings of each experiment in this section. All of the tests
were run in a Python environment. In this study, eleven
software engineering repository data sets with various
dimensions and attributes were employed. Table I lists the
dataset's details, including the number of samples,
characteristics, and target value. In the first step, carried out
the data preprocessing stage, which was used to overcome
missing data by Missing Data Treatment (MDT) using k-NNI
and converting categorical data into numeric using the ordinal
encoder. In the next step, will normalize the data with a scale
of 0 and 1. The data has been converted to a format where
powerful machine learning algorithms may be deployed to
create accurate predictions in the SEE context using various
data preprocessing approaches.

A. Model with Default Parameter Tuning

After passing through the data preprocessing stage, the
next step will be to compare 5 ML methods (namely, CART,
MLP, SVR, KNN, and RF) without setting the
hyperparameters using the default parameters tuning. The
purpose of the ML algorithm comparisons is to assess which
algorithm is more likely to have the best performance without
tuning in to different problems. The default settings in the
training data are used to train the machine learning technique.
More exact findings are obtained by using the ML approach
with the lowest MAE and RMSE. When it comes to the R

2

value, the greater the number, the better the accuracy. For the
performance of the ML method, which considers the values of
MAE, RMSE, and R

2
. Where the best value is marked in bold,

otherwise the worst value is marked in italics.

Tables III to V list the best possible performance values
for each model and dataset, as well as the tuner who achieved
them (without tuning where the parameters are set randomly
within the range). Each model's performance changes
depending on the dataset. For the PROMISE and ISBSG
datasets, the dataset used with small/medium/large effect sizes
[49]; in the first experimental stage, the default settings for the
base learners model will yield the most accurate predictions.
Based on the experimental results in this paper, it can be seen
that RF almost usually outperforms other methods. In
particular, when measured in MAE (Table III), RF achieved
the best average rating, CART performed second, followed by
k-NN and SVR with a slightly worse average rating, and MLP
performed the worst among all related methods. Nonetheless,
no significant differences could be found concerning the three
methods: k-NN, MLP, and SVR. RF has advantages over
other methods in most datasets with medium/large effect sizes
but performs worse than CART, k-NN, and SVR in many
datasets with small effect sizes. In terms of RMSE (Table IV)
and R

2
 (Table V), the results are almost similar to the MAE

values.

TABLE III. COMPARISON MAE USING DEFAULT PARAMETER TUNING

Dataset
MAE

CART KNN MLP SVR RF

Albrecht 0.0534 0.1016 0.0888 0.1694 0.1217

China 0.0178 0.0244 0.0284 0.0567 0.0115

Cocomo81 0.0934 0.0466 0.0949 0.1230 0.0681

Desharnais 0.0228 0.0594 0.0678 0.0522 0.0161

IFPUG 0.2557 0.1591 0.1853 0.1923 0.1698

ISBSG10 0.0174 0.0268 0.0228 0.0568 0.0132

Kemerer 0.1167 0.2732 0.2442 0.3319 0.2326

Kitchenham 0.0065 0.0068 0.0074 0.0823 0.0044

Maxwell 0.0667 0.0718 0.0638 0.0982 0.0544

Nasa93 0.0433 0.0492 0.0451 0.0945 0.0213

UCP 0.1146 0.1367 0.2307 0.0960 0.1012

TABLE IV. COMPARISON RMSE USING DEFAULT PARAMETER TUNING

Dataset
RMSE

CART KNN MLP SVR RF

Albrecht 0.0776 0.1538 0.1238 0.2379 0.1702

China 0.0479 0.0479 0.0567 0.0730 0.0400

Cocomo81 0.1911 0.0745 0.1139 0.1528 0.1396

Desharnais 0.0321 0.0656 0.0861 0.0654 0.0248

IFPUG 0.3762 0.2290 0.2379 0.2382 0.2271

ISBSG10 0.0387 0.0455 0.0309 0.0624 0.0280

Kemerer 0.1964 0.2934 0.2680 0.3673 0.2674

Kitchenham 0.0129 0.0156 0.0150 0.0831 0.0098

Maxwell 0.1049 0.0982 0.0855 0.1120 0.0959

Nasa93 0.1102 0.1223 0.0717 0.1179 0.0457

UCP 0.2655 0.1801 0.2932 0.1206 0.1961

TABLE V. COMPARISON R2
 USING DEFAULT PARAMETER TUNING

Dataset
R2

CART KNN MLP SVR RF

Albrecht 0.9524 0.8135 0.8791 0.5536 0.7714

China 0.7954 0.7956 0.7131 0.5246 0.8570

Cocomo81 -0.6659 0.7467 0.4075 -0.0650 0.1108

Desharnais 0.9284 0.7014 0.4870 0.7032 0.9572

IFPUG -2.7883 -0.4036 -0.5145 -0.5186 -0.3807

ISBSG10 0.6840 0.5636 0.7984 0.1795 0.8344

Kemerer 0.8173 0.5926 0.6599 0.3614 0.6616

Kitchenham 0.7354 0.6119 0.6429 -9.8874 0.8474

Maxwell 0.5269 0.5848 0.6853 0.4590 0.6043

Nasa93 0.2071 0.0227 0.6643 0.0928 0.8635

UCP 0.3484 0.7003 0.2054 0.8656 0.6445

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

425 | P a g e

www.ijacsa.thesai.org

Based on the study results in the table, it shows that the
algorithm with the best performance in almost all datasets is
RF. RF obtained the highest accuracy in china, desharnais,
IFPUG, ISBSG10, kitchenham, Maxwell, and Nasa93. With
the best accuracy value in the kitchenham dataset with MAE
(0.0044), RMSE (0.0098), and R

2
 (0.8474), although

Desharnais owns the best R
2
 value. Furthermore, the second

position is obtained by CART, which has the best accuracy
value on albrecht and kemerer. Meanwhile, KNN, MLP, and
SVR have almost similar performance.

The lack of parameter adjustment in this situation can
result in worst performance of CART, KNN, MLP, and SVR.
This is due to SVR's ability to perform effectively with limited
data sets. However, it is unsuccessful in dealing with outliers
in training data, which is a common occurrence in real-world
applications. As a result, some outliers cause regression to be
poor. Meanwhile, MLP, with a small data set without any
appropriate parameter tuning, can reduce the number of
hidden nodes which causes a decrease in its approximation
ability [65]. KNN is extremely sensitive to characteristics that
are irrelevant or redundant. Because it is unclear which sort of
distance and which attribute are employed in distance-based
learning KNN to give the best results, and because must
calculate the distance of each query instance to all training
samples, the computational cost is relatively large [66]. CART
performs badly on smaller data sets compared to bigger data
sets. As a result, using this CART approach without
considering the data's magnitude is not recommended [67].

B. Comparison Model with Hyperparameter Tuning and

Ensemble Learning

Next, this model will use hyperparameter tuning based on
the Bayesian-based Gaussian process. The ML method is
trained with hyperparameter tuning on the training data in the
training process. All tuners are used as an optimization
method combined with a cross-validation procedure.
Configure using cross-validation (i.e. cv: 3), verbose: 3,
scoring: 'mean_squared_error', and 10 iterations. Because the
datasets in this scenario are small, will narrow the search
space to the most promising values based on previous
research.

Next, the same experiment was repeated using Adaboost
ensemble learning. With repeat the experiment to find the best
convergence with 10 iterations. Configure the Adaboost
ensemble learning using the maximum number of estimators
at which the algorithm is terminated (n_estimator: 200),
learning_rate: 1, and random_state: 0. After that, will compare
the algorithms have done, aiming to assess which algorithm is
more likely to be efficient and how this efficiency varies by
hyperparameters tuning and reinforcement using ensemble
learning on different problems. Fig. 3 shows the performance
of Bayesian hyperparameter and Adaboost ensemble learning
on the ML model concerning the error function based on
MAE, RMSE, and R

2
.

The performance of each model varies depending on the
dataset. Base learners model with parameter tuning using

Bayesian which produces the most accurate predictions. In
Fig. 3, it shows that the algorithm that has the best
performance in almost all datasets is RF. RF achieved the
highest accuracy in cocomo81, ISBSG10, kitchenham,
maxwell, nasa93, and UCP. Meanwhile, CART, KNN, MLP,
and SVR have almost similar performance. These results show
that CART, KNN, MLP, and SVR are not very sensitive to
parameters tuning, while RF is very sensitive to parameters
tuning which results in stable prediction performance. This
suggests that the best parameters to use with a machine
learning approach may change over time.

As for the base learner model with Adaboost ensemble
learning, it shows different results. Where the algorithm that
has the best performance is CART, followed by RF as the
second algorithm that has the best performance. While KNN,
MLP, and SVR have almost similar performance. For CART,
obtain the highest accuracy in albrecht, china, cocomo81,
ISBSG10, IFPUG, kemerer, and UCP. This analysis of
different optimization approaches reveals that the Adaboost
ensemble learning optimization is the clear victor, as it can
create a model with the highest test accuracy for eleven data
sets. To summarize, the meta-parameter analysis for
Adaboost, which was used to strengthen the basic CART
model, significantly outperforms other models (on this
dataset).

C. The Best Model using Adaboost with Bayesian

Hyperparameter Optimization

The same experiment used the ML algorithm to set the
Adaboost Ensemble learning parameters using Bayesian
hyperparameter optimization. In this paper, will repeated the
experiment to find the best convergence with iterations from
10 to 200. The effect of the ML model on setting the Bayesian
hyperparameter values of the Adaboost ensemble model is
presented in Table VI to VIII.

In particular, when measured in MAE, RMSE, and R
2

(Table VI to VIII), RF and SVR achieve the best average
ratings, followed by MLP, and CART, while k-NN with
slightly worse average ratings among all related methods. In
this respect, RF, SVR, and MLP have advantages over other
methods in most datasets with medium/large effect sizes but
perform worse than CART and k-NN in many datasets with
small effect sizes. CART and k-NN perform best on data sets
with small effect sizes. No significant differences could be
found among the three methods RF, SVR, and MLP had
similar overall performance and were superior to CART and
k-NN with medium/large effect sizes depending on the data
set. Nonetheless, the RF method is more consistent among the
best methods regardless of the metric.

This experiment shows that overall, the five machine
learning models that are strengthened by the Bayesian
gaussian process and Adaboost ensemble learning have almost
the same performance in all datasets used. However, it can be
determined that RF, SVR, and MLP have the best results in
this area.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

426 | P a g e

www.ijacsa.thesai.org

(a) Baseline ML with Bayesian gaussian Process (MAE, RMSE, and R2). (b) Baseline ML with Adaboost ensemble learning (MAE, RMSE, and R2).

Fig. 3. Comparison Algorithm: (a) Baseline ML with Bayesian Gaussian Process; (b) Baseline ML with Adaboost Ensemle Learning.

TABLE VI. COMPARISON MAE USING BAYESIAN HYPERPARAMETER TUNING WITH ADABOOST ENSEMBLE LEARNING

Dataset
MAE (Bayesian optimization-Adaboost ensemble learning)

CART KNN MLP SVR RF

Albrecht 0.1463 0.1888 0.1694 0.0490 0.1070

China 0.0396 0.0436 0.0528 0.0243 0.0359

Cocomo81 0.0557 0.1462 0.1563 0.1603 0.1600

Desharnais 0.0166 0.0482 0.0277 0.0081 0.0210

IFPUG 0.2431 0.1849 0.1771 0.2713 0.1842

ISBSG10 0.0326 0.0452 0.0476 0.0436 0.0241

Kemerer 0.4681 0.2340 0.2317 0.3388 0.3521

Kitchenham 0.0079 0.0130 0.0663 0.0195 0.0068

Maxwell 0.1114 0.0753 0.0909 0.0924 0.1431

Nasa93 0.0653 0.1101 0.0729 0.8203 0.0456

UCP 0.1131 0.1612 0.1969 0.1460 0.1574

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

427 | P a g e

www.ijacsa.thesai.org

TABLE VII. COMPARISON RMSE USING BAYESIAN HYPERPARAMETER

TUNING WITH ADABOOST ENSEMBLE LEARNING

Dataset
RMSE (Bayesian optimization-Adaboost ensemble learning)

CART KNN MLP SVR RF

Albrecht 0.1463 0.1888 0.1694 0.0490 0.1070

China 0.0396 0.0436 0.0528 0.0243 0.0359

Cocomo81 0.0557 0.1462 0.1563 0.1603 0.1600

Desharnais 0.0166 0.0482 0.0277 0.0081 0.0210

IFPUG 0.2431 0.1849 0.1771 0.2713 0.1842

ISBSG10 0.0326 0.0452 0.0476 0.0436 0.0241

Kemerer 0.4681 0.2340 0.2317 0.3388 0.3521

Kitchenham 0.0079 0.0130 0.0663 0.0195 0.0068

Maxwell 0.1114 0.0753 0.0909 0.0924 0.1431

Nasa93 0.0653 0.1101 0.0729 0.8203 0.0456

UCP 0.1131 0.1612 0.1969 0.1460 0.1574

TABLE VIII. COMPARISON R2
 USING BAYESIAN HYPERPARAMETER TUNING

WITH ADABOOST ENSEMBLE LEARNING

Dataset
R2 (Bayesian optimization-Adaboost ensemble learning)

CART KNN MLP SVR RF

Albrecht 0.8311 0.7190 0.7737 0.9810 0.9096

China 0.8602 0.8301 0.7517 0.9473 0.8847

Cocomo81 0.8582 0.0247 -0.1146 -0.1723 -0.1677

Desharnais 0.9807 0.8386 0.9468 0.9954 0.9693

IFPUG -0.5819 0.0844 0.1600 -0.9702 0.0913

ISBSG10 0.7758 0.5687 0.5220 0.5987 0.8772

Kemerer -0.0370 0.7408 0.7458 0.4566 0.4133

Kitchenham 0.9006 0.7320 -5.9438 0.3952 0.9264

Maxwell 0.4667 0.7561 0.6448 0.6329 0.1194

Nasa93 0.7216 0.2077 0.6527 -42.901 0.8639

UCP 0.8818 0.7597 0.6418 0.8030 0.7710

V. CONCLUSION

An enhanced hyperparameter tuning approach on an
ensemble learning algorithm will be evaluated for its impact
on model accuracy and stability in this study. The parameters
of five machine learning models trained on eight datasets from
the PROMISE repository and two subsets of data from the
ISBSG R10/R18-IFPUG dataset are adjusted using this tuner.
This study applies a state-of-the-art method by combining
Bayesian-based gaussian processes with Adaboost ensemble
learning to improve ML performance in a SEE context.
Tuning, training, evaluation, and cross-validation will all be
used in this project. The findings of this study show that
optimizing machine learning models can considerably
improve their performance. The implementation of AdaBoost
ensemble learning and Bayesian hyperparameter optimization
can improve the performance of the RF method. RF
outperformed other methods in almost all datasets. As such,
AdaBoost ensemble learning is the optimization that impacts
machine learning model performance across all data sets in

this scenario. On the other hand, the Bayesian optimization
approach based on the Gaussian process to improve the
performance of machine learning prediction models can
achieve high accuracy in some cases.

More empirical research could be conducted in the future
to support the conclusions of this study and to acquire
knowledge utilizing different data sets. Additionally,
compared or investigated various different optimization
strategies, particularly for classification issues. It's also crucial
to test the efficacy of various feature selection approaches, as
well as increase with optimization tuning, when estimating
software effort.

REFERENCES

[1] L. Song, L. L. Minku, and X. Yao, “A novel automated approach for
software effort estimation based on data augmentation,” ACM on Eur.
Soft. Eng. Conf. and Symp. on the Found. of Soft. Eng., pp. 468–479 ,
November 2018.

[2] S. S. Gautam and V. Singh, “The state-of-the-art in software
development effort estimation,” J. of Software: Evolution and Process ,
Vol. 30, No. 12 , May 2018.

[3] M. Usman, K. Petersen, J. Börstler, and P. Santos Neto, “Developing
and using checklists to improve software effort estimation: A multi-case
study,” J. of Systems and Software , Vol. 146 , pp. 286–309 , September
2018.

[4] S. Ezghari and A. Zahi, “Uncertainty management in Software effort
estimation using a consistent fuzzy analogy-based method,” J. of Appl.
Soft. Comp., Vol. 67 , pp. 540–557 , 2018.

[5] M. Azzeh, “Software Effort Estimation Based on Optimized Model
Tree,” PROMISE, 2011.

[6] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning of
ensemble model for software effort estimation,” J. of Amb. Intell. and
Human. Comp., No. 0123456789 , 2020.

[7] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective
approach for software project effort and duration estimation with
machine learning algorithms,” J. of Systems and Software , Vol. 137,
No. January , pp. 184–196 , 2018.

[8] R. Alizadehsani et al., “Handling of uncertainty in medical data using
machine learning and probability theory techniques: a review of 30 years
(1991–2020), ” Springer US, 2021.

[9] J. Novaković, P. Strbac, and D. Bulatović, “Toward optimal feature
selection using ranking methods and classification algorithms,” J. of Op.
Res., Vol. 21, No. 1 , pp. 119–135 , 2011.

[10] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software
effort estimation accuracy prediction of machine learning techniques: A
systematic performance evaluation,” J. of Soft. Pract. and Exp., 2021.

[11] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning of
ensemble model for software effort estimation,” J. of Amb. Intell. and
Human. Comp., Vol. 12, No. 6 , pp. 6579–6589 , 2021.

[12] H. Zhao, X. Chen, T. Nguyen, J. Z. Huang, G. Williams, and H. Chen,
“Stratified over-sampling bagging method for random forests on
imbalanced data,” Springer Int. Pub. Switzerland , Vol. 9650 , pp. 63–72
, 2016.

[13] G. W. Cha, H. J. Moon, and Y. C. Kim, “Comparison of random forest
and gradient boosting machine models for predicting demolition waste
based on small datasets and categorical variables,” Int. J. of Env. Res.
and Pub. Heal. MDPI, Vol. 18, No. 16 , 2021.

[14] X. Ren et al., “A Dynamic Boosted Ensemble Learning Method Based
on Random Forest,” arXiv preprint, 2018.

[15] Z. Abdelali, H. Mustapha, and N. Abdelwahed, “Investigating the use of
random forest in software effort estimation,” Procedia Computer
Science , Vol. 148 , pp. 343–352 , 2019.

[16] A. Zakrani, M. Hain, and A. Namir, “Software development effort
estimation using random forests: An empirical study and evaluation,”
Int. J. of Int. Eng. and Sys., Vol. 11, No. 6 , pp. 300–311 , 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

428 | P a g e

www.ijacsa.thesai.org

[17] S. M. Satapathy, B. P. Acharya, and S. K. Rath, “Early stage software
effort estimation using random forest technique based on use case
points,” IET Software, Vol. 10, No. 1 , pp. 10–17 , 2016.

[18] W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, “Prediction of
undrained shear strength using extreme gradient boosting and random
forest based on Bayesian optimization,” Geo. Front., Vol. 12, No. 1 ,
pp. 469–477 , 2021.

[19] S. Lessmann, B. Baesens, H. V. Seow, and L. C. Thomas,
“Benchmarking state-of-the-art classification algorithms for credit
scoring: An update of research,” Eur. J. of Oper. Res., Vol. 247, No. 1 ,
pp. 124–136 , 2015.

[20] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” IEEE Trans. on Soft. Eng., Vol. 38, No. 6 , pp. 1403–
1416 , 2012.

[21] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification
problems?,” J. of Mach. Learn. Res., Vol. 15 , pp. 3133–3181, 2014.

[22] S. Shukla, S. Kumar, and P. R. Bal, “Analyzing effect of ensemble
models on multi-layer perceptron network for software effort
estimation,” IEEE World Cong. on Serv., Vol. 2642–939X, pp. 386–387
, 2019.

[23] Y. Ren, L. Zhang, and P. N. Suganthan, “Ensemble Classification and
Regression – Recent Developments, Applications and Future Direction,”
IEEE Comput. Intell. Mag , Vol. 11, No. 1 , pp. 41–53 , 2016.

[24] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. of
Mach. Learn. Res., Vol. 12 , pp. 2825–2830 , 2011.

[25] P. Phannachitta and K. Matsumoto, “Model-based software effort
estimation - A robust comparison of 14 algorithms widely used in the
data science community,” Int. J. of Inn. Comp., Vol. 15, No. 2 , pp. 569–
589 , 2019.

[26] I. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, and R. J. De
Romero-Troncoso, “Early Fault Detection in Induction Motors Using
AdaBoost with Imbalanced Small Data and Optimized Sampling,”
IEEE Trans. on Ind. App., Vol. 53, No. 3 , pp. 3066–3075 , 2017.

[27] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
Annals of Statistics, Vol. 26, No. 5 , pp. 1651–1686 , 1998.

[28] T. Xia, R. Krishna, J. Chen, G. Mathew, X. Shen, and T. Menzies,
“Hyperparameter Optimization for Effort Estimation,” arXiv preprint,
Vol. 4 , 2018.

[29] M. Hosni, A. Idri, A. Abran, and A. B. Nassif, “On the value of
parameter tuning in heterogeneous ensembles effort estimation,” J. of
Soft Comp., pp. 1–34 , 2017.

[30] A. Kumar, B. D. . Patro, and B. K. Singh, “Parameter Tuning for
Software Effort Estimation Using Particle Swarm Optimization
Algorithm,” Int. J. of App. Eng. Res., Vol. 14, No. 2 , pp. 139–144 ,
2019.

[31] P. Phannachitta, “On an Optimal Analogy-based Software Effort
Estimation,” Inf. and Soft. Tech., Vol. 125, No. June 2019 , p. 106330 ,
2020.

[32] L. Song, L. L. Minku, and X. Yao, “The impact of parameter tuning on
software effort estimation using learning machines,” ACM Int. Conf.
Proc. Ser., Vol. Part F1288 , 2013.

[33] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,” Int. Sym.
on Sear. Bas. Soft. Eng., pp. 33–47 , 2011.

[34] M. M. Ozturk, “The impact of parameter optimization of ensemble
learning on defect prediction,” Comp. Sci. J. of Mol., Vol. 27, No. 1 ,
pp. 85–128 , 2019.

[35] L. L. Minku and X. Yao, “An analysis of multi-objective evolutionary
algorithms for training ensemble models based on different performance
measures in software effort estimation,” ACM Int. Conf. Proc. Ser., Vol.
Part F1288 , 2013.

[36] R. Shu, T. Xia, J. Chen, L. Williams, and T. Menzies, “Improved
Recognition of Security Bugs via Dual Hyperparameter Optimization,”
arXiv , 2019.

[37] J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng,
“Hyperparameter optimization for machine learning models based on

Bayesian optimization,” J. of Elect. Sci. and Tech., Vol. 17, No. 1 , pp.
26–40 , 2019.

[38] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” Ann. Conf. on Neu. Inf. Proc. Sys., pp.
1–9 , 2011.

[39] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” arXiv
preprint , 2010.

[40] J. C. Lévesque, C. Gagné, and R. Sabourin, “Bayesian hyperparameter
optimization for ensemble learning,” Conf. on Uncer. in Art. Intell., UAI
2016 , pp. 437–446 , 2016.

[41] L. L. Minku and X. Yao, “A Principled Evaluation of Ensembles of
Learning Machines for Software Effort Estimation Categories and
Subject Descriptors,” Proc. of Int. Conf. on Pred. Mod. in Soft. Eng.,
Banff Alberta, Canada , 2011.

[42] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E.
Mendes, “Using tabu search to configure support vector regression for
effort estimation,” Emp. Soft. Eng., Vol. 18, No. 3 , pp. 506–546 , 2013.

[43] M. O. Elish, “Assessment of voting ensemble for estimating software
development effort,” Proc. of the IEEE Sym. on Comp. Intell. and Dat.
Min., SSCI 2013, pp. 316–321 , 2013.

[44] L. Villalobos-Arias and C. Quesada-López, ”Comparative study of
random search hyper-parameter tuning for software effort estimation, ”
Ass. for Comp. Mach., Vol. 1, No. 1, 2021.

[45] A. Zakrani, A. Najm, and A. Marzak, “Support Vector Regression Based
on Grid-Search Method for Agile Software Effort Prediction,” Coll. in
Inf. Sci. and Tech., Vol. 2018-Octob , pp. 492–497 , 2018.

[46] T. Xia, R. Shu, X. Shen, and T. Menzies, “Sequential Model
Optimization for Software Effort Estimation,” IEEE Trans. on Soft.
Eng., Vol. 5589, No. c, pp. 1–16, 2020.

[47] L. Villalobos-Arias, C. Quesada-López, J. Guevara-Coto, A. Martínez,
and M. Jenkins, “Evaluating hyper-parameter tuning using random
search in support vector machines for software effort estimation,” ACM
Int. Conf. on Pred. Mod. and Dat. Analy. in Soft. Eng., pp. 31–40 , 2020.

[48] M. Azzeh, A. B. Nassif, and S. Banitaan, “Comparative analysis of soft
computing techniques for predicting software effort based use case
points,” IET Software, Vol. 12, No. 1 , pp. 19–29 , 2018.

[49] L. Song, L. L. Minku, and Y. A. O. Xin, “Software effort interval
prediction via Bayesian inference and synthetic bootstrap resampling,”
ACM Trans. on Soft. Eng. and Meth., Vol. 28, No. 1 , 2019.

[50] J. Huang, Y. F. Li, J. W. Keung, Y. T. Yu, and W. K. Chan, “An
empirical analysis of three-stage data-preprocessing for analogy-based
software effort estimation on the ISBSG data,” Proc. of Int. Conf. on
Soft. Qual. Relia. and Sec., Prague, Czech Republic , pp. 442–449 ,
2017.

[51] J. Huang, Y. Li, and M. Xie, “An empirical analysis of data
preprocessing for machine learning-based software cost estimation,” J.
of Inf. and Soft. Tech., Vol. 67 , pp. 108–127 , 2015.

[52] A. Famili, W. M. Shen, R. Weber, and E. Simoudis, “Data preprocessing
and intelligent data analysis,” Intell. Dat. Analy., Vol. 1, No. 1 , pp. 3–
23 , 1997.

[53] S. Viaene, G. Dedene, and R. A. Derrig, “Auto claim fraud detection
using Bayesian learning neural networks,” J. of Exp. Sys. with App.,
Vol. 29, No. 3 , pp. 653–666 , 2005.

[54] E. Fitkov-Norris, S. Vahid, and C. Hand, “Evaluating the Impact of
Categorical Data Encoding and Scaling on Neural Network
Classification Performance: The Case of Repeat Consumption of
Identical Cultural Goods,” J. of Comm. in Comp. and Inf. Sci., Vol. 311
, pp. 343–0352 , 2012.

[55] I. Abnane, M. Hosni, A. Idri, and A. Abran, “Analogy Software Effort
Estimation Using Ensemble KNN Imputation,” Proc. of Int. Conf. On
Soft. Eng. and Adv. App., Kallithea, Greece , pp. 228–235 , 2019.

[56] S. Mensah, J. Keung, S. G. MacDonell, M. F. Bosu, and K. E. Bennin,
“Investigating the Significance of the Bellwether Effect to Improve
Software Effort Prediction: Further Empirical Study,” IEEE Trans. on
Relia. Vol. 67, No. 3 , pp. 1176–1198 , 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

429 | P a g e

www.ijacsa.thesai.org

[57] M. R. Segal, “Machine Learning Benchmarks and Random Forest
Regression,” Biostatistics, pp. 1–14 , 2004.

[58] Z. Zhang, J. T. Kwok, and D. Y. Yeung, “Parametric distance metric
learning with label information,” IJCAI Inte. Joint Conf. on Art. Intell.,
pp. 1450–1452 , 2003.

[59] R. Polikar, “Ensemble based systems in decision making,” IEEE Cir.
and Sys. Mag., Vol. 6, No. 3 , pp. 21–44 , 2006.

[60] A. Sharafati, S. B. H. S. Asadollah, and M. Hosseinzadeh, “The
potential of new ensemble machine learning models for effluent quality
parameters prediction and related uncertainty,” Proc. Saf. and Env. Prot.,
Vol. 140 , pp. 68–78 , 2020.

[61] D. L. Shrestha and D. P. Solomatine, “Experiments with AdaBoost.RT,
an improved boosting scheme for regression,” Neu. Comput., Vol. 18,
No. 7 , pp. 1678–1710 , 2006.

[62] M. T. Young, J. Hinkle, A. Ramanathan, and R. Kannan, “HyperSpace:
Distributed Bayesian Hyperparameter Optimization,” Proc. Int. Sym. on
Comp. Arch. and Hig. Perfor. Comput., SBAC-PAD 2018 , No. 1 , pp.
339–347 , 2019.

[63] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” Adv. in Neu. Inf. Proc.
Sys., 2012.

[64] M. Feurer and F. Hutter, “Hyperparameter Optimization,” Auto. Mach.
Lear., The Springer Series, pp. 3–34 , 2019.

[65] R. Marco, S. S. S. Ahmad, and S. Ahmad, “Empirical Analysis of
Software Effort Preprocessing Techniques Based on Machine Learning,”
Int. J. of Intell. Eng. and Sys., Vol. 14, No. 6 , pp. 554–567 , 2021.

[66] S. B. Imandoust and M. Bolandraftar, “Application of K-Nearest
Neighbor (KNN) Approach for Predicting Economic Events :
Theoretical Background,” Int. J. of Eng. Res. and App., Vol. 3, No. 5 ,
pp. 605–610 , 2013.

[67] E. Kocaguneli, T. Menzies, J. Hihn, and B. H. Kang, “Size doesn’t
matter? On the value of software size features for effort estimation,”
Proc. of Int. Conf. On Pred. Mod. in Soft. Eng., Lund, Sweden , pp. 89–
98 , 2012.

