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Abstract—In recent decades, various software effort 

estimation (SEE) algorithms have been suggested. Unfortunately, 

generating high-precision accuracy is still a major challenge in 

the context of SEE. The use of traditional techniques and 

parametric approaches is largely inaccurate because they 

produce biased and subjective accuracy. Meanwhile, none of the 

machine learning methods performed well. This study applies the 

AdaBoost ensemble learning method and random forest (RF), on 

the other hand the Bayesian optimization method is applied to 

determine the hyperparameters of this model. The PROMISE 

repository and the ISBSG dataset were used to build the SEE 

model. The developed model was comprehensively compared 

with four machine learning methods (classification and 

regression tree, k-nearest neighbor, multilayer perceptron, and 

support vector regression) under 3-fold cross validation (CV). It 

can be seen that the RF method based on AdaBoost ensemble 

learning and bayesian optimization outperforms this approach. 

In addition, the AdaBoost-based model assigns a feature 

importance rating, which makes it a promising tool in software 

effort prediction. 

Keywords—Bayesian optimization; adaboost ensemble 

learning; random forest; software effort estimation 

I. INTRODUCTION 

Software effort estimation (SEE) is a method of estimating 
the amount of time it will take to build a software system in 
person-months or person-hours [1][2]. Uncertainty and 
imprecision characterize software effort estimation 
environments [3][4]. The topic of SEE, on the other hand, has 
been characterized as a regression problem in general [5]. 
Various SEE models in the literature still show considerable 
performance deviations and are extremely dataset-dependent. 

SEE has previously been accomplished via expert 
judgment, analogy, decomposition and recomposition, and 
parametric techniques [6]. Meanwhile, standard SEE 
methodologies can produce erroneous estimates due to human 
bias and subjectivity [7]. The Machine learning (ML) 
algorithm is very effective in modeling uncertainty as a better 
decision-making process [8]. However, no single learning 
method is ideal for all supervised learning tasks [9]. However, 
a single sophisticated algorithm may not be a consideration for 
building current SEE models, as the performance of any 
model mainly depends on the characteristics of the data set 
used, such as data set size, outliers, categorical features, and 
missing values. 

Several machine learning techniques have been widely 
applied in the SEE context which have been considered as 
necessary steps, such as: Case-Based Reasoning (CBR), 
Artificial Neural Networks (ANN), Support Vector 
Regression (SVR) [10], while for other ML methods, such as 
Random Forest (RF), Classification And Regression Tree 
(CART) and K-Nearest Neighbor (kNN), they are still 
ignored. RF is a powerful, easy-to-train ensemble learner with 
big data [11]. RF is widely used in the data mining domain 
and has achieved good performance when dealing with 
regression and classification problems [12]; this method can 
overcome overfitting and is less affected by outliers [13]. On 
the other hand, RF improves prediction accuracy without 
significant computational improvement, and is not sensitive to 
multicollinearity [14]. Some researchers have also applied RF 
to solve regression problems in the context of SEE, for 
example [15][16][17]. Unfortunately, the RF model can only 
be extended horizontally because decision trees exist in 
parallel and these decision trees have equal weight in voting 
for the final prediction even though some of these trees may 
underperform. 

The use of Ensemble learning combines several algorithms 
that process different hypotheses to make their predictions 
perform well [18]. According to Lessmann et al. (2015), the 
ensemble method is better than the single ML and other 
statistical method [19]. While, Kocaguneli et al. (2012), the 
proper use of the ensemble method can outperform the 
performance of single learners on the ML model [20], as well 
as being one of the best methods in increasing the accuracy 
and stability of the most influential estimation [21]. 
Averaging, voting, and bagging are three common broad 
ensemble approaches that have piqued the interest of machine 
learning researchers. Meanwhile, developing ensemble 
methods such as stacked generalization, AdaBoost algorithm, 
Gradient tree boosting have not been widely tried/ignored 
[22]. 

Ren et al. (2016) investigated the use of ensembles in 
classification and regression and the success of AdaBoost 
about regression behaviour [23]. AdaBoost, as a popular 
boosting algorithm, combines weak estimators and 
implements them on an improved version of the data with the 
help of weighted majority voting/hard voting [24]. However, 
AdaBoost may not offer high accuracy when the dataset is 
heavily contaminated with noise [25]. In contrast to, Martin-
Diaz et al. (2017), AdaBoost is also known to achieve a 
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significant reduction in bias as well [26], and low error 
variance [24]. Also, it is not easy to overfit during training 
[27]. 

Unfortunately, the method will need to be fine-tuned to fit 
the scenario at hand. Automatic hyperparameter adjustment 
saves time and effort when experimenting with different 
machine learning model configurations, improves algorithm 
accuracy, and increases reproducibility. Hyperparameter 
tuning is a well-known approach for achieving optimal 
performance in machine learning models [28][29]. Several 
other studies have shown that the accuracy dimension in SEE 
is strongly influenced by choice of information estimation 
using parameter tuning techniques [30]. Because determining 
the best hyperparameter combination can improve the ML 
model's performance [28][31]. However, much of the work 
seems to implicitly assume that tuning the parameters will not 
significantly change the results [32]. In the worst case, 
improper parameter setting may lead to inferior performance 
results [33]. However, the default hyperparameter setting may 
not produce consistent results depending on the data set used 
[34]. Based on the work by [35], there is still limited work 
investigating the impact of parameter setting for SEE methods 
in improving prediction accuracy. 

Manual search, grid search, and random search are some 
of the most used hyperparameter optimization strategies [36]. 
When the hyperparameter space is large, however, this method 
is time consuming and impractical [6]. Manual search 
necessitates a higher level of professional knowledge, is 
difficult to implement without prior experience, and takes time 
[37]. Meanwhile, grid search suffers from a dimensional 
curse, which means that as the number of hyperparameters set 
or the complexity of the search space and the range of values 
of the hyperparameters increases, the algorithm's efficiency 
declines dramatically [37]. Random search, on the other hand, 
is more effective in high-dimensional space [38], but this 
method is not reliable for training complex models [38]. 
Despite the fact that this method provides automatic tuning, it 
can acquire the optimization goal function's ideal global 
importance. 

Among other classic hyperparameter optimization 
techniques, Bayesian optimization is a very successful 
optimization algorithm for solving computationally expensive 
functions [39]. Bayesian hyperparameter optimization 
technique to further promote generalization accuracy [40]. 
Bayesian optimization is effective for problems with fewer 
hyperparameters and that are difficult to parallelize [6]. 
Therefore, it promises to encourage the use of hyperparameter 
tuning for further applications in SEE. 

Motivated by the benefits mentioned above, the AdaBoost 
RF-based method of ensemble learning was developed to 
capture the relationships between features in an SEE context. 
To reduce time dependence and impracticality, Bayesian 
optimization method is used to find suitable hyperparameter 
models. The datasets in the PROMISE and ISBSG repositories 
have built the model in this paper. Based on literature review, 
there is still a limited use of the AdaBoost and RF ensemble 
learning methods adopted to build the SEE model. The 
remainder of this paper begins with related work, followed by 

experimental design. Then, the results and discussion 
containing the comparison of models. At the end, discuss the 
conclusions and future work. 

II. RELATED WORK 

Meanwhile, the literature on offline learning does not have 
a supervised procedure for automatic parameter setting. In the 
context of offline SEE, the use of Classification and 
Regression Tree (CART) with the addition of more innovative 
features can improve accuracy [28], the researchers used a 
grid search strategy to obtain optimal parameters for five 
machine learning techniques (KNN, Regression Trees (RT), 
Multilayer Perceptrons (MLP), Bagging+RT, and 
Bagging+MLP) without used generating ensembles. The 
results revealed that while RT, Bagging+RT, and KNN were 
unaffected by tuning settings, MLP and Bagging+MLP were. 
Minku (2019) Linear Regression in Logarithmic Scale 
(LogLR) results in a more stable prediction performance [41]. 
Meanwhile, Minku and Yao (2013) investigated the RT, 
Bagging+MLP, and Bagging+RT techniques shown to 
perform well across several data sets. This suggests that the 
best parameters to use with a machine learning approach may 
change over time [35]. In the context of SEE, parameter 
tuning in Support Vector Regression (SVR) is critical. A tabu 
search has been proposed in particular to find the best SVR 
parameter tuning [42]. Elish (2013) conducted an empirical 
study based on five machine learning approaches (KNN, SVR, 
MLP, Decision Tree (DT), and Radial Basis Function 
Network (RBFN)) that suggested a heterogeneous ensemble. 
Due to its irregular and unstable performance across the 
specified data set, the single approach is unreliable. 
Furthermore, across all data sets, five machine learning 
approaches were trained using the same configuration, but no 
explanation for parameter tuning was supplied [43]. 

Meanwhile, Villalobos-Arias and Quesada-López (2021) 
investigated CART, SVR, and ridge regression (RR) using 
random search and grid search with six bio-inspired 
algorithms. The results demonstrate that the Flash+Log+SVR 
model is the most accurate in the most data sets, while the 
Hyperband+Log+RR model is the most stable in the most 
datasets [44]. In particular, the stacked ensemble that offers 
the best overall accuracy in this study takes the average of the 
estimated effort values generated by Bagging, RF, ABE, 
AdaBoost, Gradient boosting machine, and Ordinary least 
squares regression which are optimized using grid search 
techniques [25]. Meanwhile, Zakrani et al. (2018) used the 
grid search (GS) method to improve SVR. The results show 
that this approach can help improve the SVR technique's 
performance [45]. Stacking ensemble learning uses two 
hyperparameter tuning (Particle Swarm Optimization and 
Genetic Algorithms) while base learners (linear regression, 
MLP, RF, and Adaboost regressor). Experimental results 
reveal that the estimation accuracy is higher when 
hyperparameters are set using PSO [6]. ROME (Rapid 
Optimizing Methods for Estimation) is a configuration 
technique that uses sequential model-based optimization 
(SMO) to identify configuration settings for KNN, SVR, RF, 
and CART techniques. For both traditional and current tasks, 
ROME outperforms sophisticated approaches [46]. The 
accuracy and stability of SVR in SEE were tested to see how a 
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random search hyperparameter tuning strategy affected them. 
According to the findings, the SVR set for random search 
performed similarly to the SVR set for grid search [47]. 

Based on the findings of previous empirical investigations 
in the context of SEE. This paper is different from previous 
research. The RF-based AdaBoost ensemble learning method 
reinforced by the Bayesian optimization method was used to 
find the appropriate hyperparameter model. Meanwhile, four 
ML techniques, such as: classification and regression tree 
(CART), k-nearest neighbor (k-NN), multilayer perceptron 
(MLP), and support vector regression (SVR) were used to 
compare the performance results of the proposed SEE model. 

III. EXPERIMENTAL DESIGN 

The data sets, ensemble learning, hyperparameter tuning, 
parameter setting ML, and evaluation measures utilized in this 
paper are described in depth in this section. 

A. Datasets 

The most widely used datasets related to the SEE context 
are the Repositories on PROMISE and ISBSG, among the 
most popular datasets. In 9 datasets from the public PROMISE 
repository (also known as SEACRAFT), as well as two sub-
datasets from the ISBSG10 and ISBSG18-IFPUG repositories. 

Table I lists the data set that was used in paper, including 
the number of projects, features, and categorical features. This 
paper uses eleven datasets (china, albrecht, maxwell, nasa93, 
cocomo81, kitchenham, kemerer, desharnais, and ISBSG10) 
and the preprocessing rules used in the study by [28][1], and 
the UCP dataset according to the regulations [48]. Meanwhile, 
ISBSG18-IFPUG refers to research [44]. 

B. Data Preprocessing 

The Data Preprocessing approach in study was used to 
improve prediction accuracy in the end. The Data 
Preprocessing technique is an effective option for effort 
estimation [50], is a crucial step in improving machine 
learning performance [51]. According to Famili et al. (1997) 
the first step by removing features on the dataset that is not 
relevant. Machine learning algorithms will perform better if 
irrelevant features are removed [52]. Subsequent processing 
converts information on categorical data into numeric. Ordinal 
coding assigns a unique number code to each category [53], 
the advantage is that the dimensions of the problem space do 
not increase because each category is displayed as a single 
input [54]. Handling missing data by using kNNI (K-Nearest 
Neighbor Imputation). This method proved to be efficient for 
estimating missing attribute values in various software 
engineering datasets [55]. In this study, data normalization 
was used as a scale of values 0 and 1. For all datasets, Mensah 
et al. (2018) discovered that the normalized Z-score [0,1] 
generated the best prediction accuracy when compared to box-
cox and log transformation [56]. This research will utilize two 
subsets at random: training (80%) and testing (20%) as a 
predicted evaluation of the training procedure. 

C. Random Forest Algorithm 

For regression purposes, the random forest is a set of tree 
predictors  (     )           where   represents the 
observed input vector (covariate) of length   with a random 
vector associated with   and    is independent and identically 
distributed (iid) random vector. A regression setting where has 
a numeric result,  , but makes multiple points of contact with 
the classification problem (categorical results). The observed 
(training) data are assumed to be taken independently of the 
combined distribution (   )  and consist of  (   )  
       (     )    (     ). 

For regression, the random forest prediction is the 

unweighted mean of the collection  ̅( )  (
 

 
)∑  (    )

 
   . 

For     the Law of Large Numbers ensures [57]. 

    (   ̅( ))      (     (   ))            (1) 

The quantity on the right is the prediction (or 
generalization) error for a random forest, designated    

 . 

Convergence in Eq. (1) implies that the random forest is not 
overfit [57]. Determine the mean prediction error for the 
individual tree  (   ) as: 

   
        (   (   ))             (2) 

Assume that for all   the tree is unbiased, eg    
   (   ), then yields: 

   
   ̅   

               (3) 

Where  ̅  is the weighted correlation between residuals 
   (   ) and    (    ) for independent     . 

D. Adaboost Ensemble Learning 

AdaBoost is a popular variation of the original Boosting 
scheme [27]. AdaBoost is a robust ensemble approach for 
fitting a poor collection of learners to a enhanced data set. The 
predictions of the weak learner are merged using weighted 
summation, to reproduce the final prediction [58]. The 
Adaboost regressor is a high-accuracy ensemble learner that is 
used to tackle regression issues [59], Adaboost.R2, a modified 
version of Adaboost.R, is used for regression [27]. 

TABLE I. THE STUDY’S DATA SET 

Dataset Size [49] Proj N Cat. 

China large 499 17 0 

Albrecht small 24 7 0 

Cococmo81 small 63 17 0 

Desharnais medium 81 8 0 

IFPUG large 36 12 11 

ISBSG10 large 952 11 6 

Kemerer small 16 6 0 

Kitchenham large 145 4 0 

Maxwell small 62 26 0 

Nasa93 small 93 18 16 

UCP small 71 5 0 
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Given           , which is applied to the training set, 
seeks to improve the training data in each boosting iteration, 
using different weights. The first update iteration uses the 
same weights and training data as before. The learner's 
algorithm is then re-applied to the new weighted data, after 
each initial weight is updated. If the weights for the training 
data that were predicted incorrectly in the previous phase are 
increased, the weights for the training data that were 
successfully predicted will be reduced. Finally, each weak 
learner is compelled to concentrate on the sample that the 
preceding one missed in the sequence [27]. In the following, 
Adaboost.R2 steps according to the rules [60][61]: 

 Set the initial weight (  ) to the training set. 

 As the training set, define the original data's input (x) 
and target (y) variables. 

 Install the regression model (  ) to the training set with 
the notation       . 

 Get the predicted training target value:   
( )

(  ). 

 Use the following equation to find the loss value for the 
i-th training sample (  ). 

    [|  
( )

(  )    |]             (4) 

Any function that is           , can be used as the loss 

function ( ). Calculate the average loss ( ̅) for    using the 
following formula: 

 ̅  ∑   
  

∑  

 
                 (5) 

When  ̅  is smaller than 0.5, an appropriate forecast is 
produced. 

 If  ̅  is more than 0.5, the weights should be updated 
using the equation below. 

      
                    (6) 

  
 ̅

   ̅
               (7) 

 To get the required loss function range, repeat steps 4-7.  

E. Bayesian with Gaussian Process Optimization of Model 

Hyperparameters 

Bayesian optimization is a useful strategy for locating the 
by extremes of computationally expensive functions [39]. In 
this paper, Bayesian optimization is used in this research to 
discover the maximum value at the sampling point for the 
unknown function f in model hyperparameter configuration 
problem [62][63]. The objective function is computationally 
       over the compact hyperparameter domain   , 
which aims to minimize f without using gradient information. 

Thus, the hyperparameter mapping in Bayesian depends on 
the objective function. The target value is predicted with the 
historical result  . A series of steps to find the hyperparameter 

as follows: 1) Define the historical model, 2) Find the optimal 
parameter, 3) Apply the detected hyperparameter to the 
objective function, 4) Update the model with new result, and 
5) 2-4 steps are repeated until the threshold value is reached or 
the process exceeds the limited time. 

Determines a previously small sample of   points      
uniform at random, and computes the value of the function at 
those locations  (  )    (  ) . Then, model f using a 
probabilistic model for the function. We'll take f as a Gaussian 
process. Because the Gaussian process is so flexible and 
simple to use, Bayesian optimization uses it to fit the data and 
update the posterior distribution [37]. For only a finite 
collection of points       , posterior delivers a probability 
distribution over a particular function. The Gaussian process 
posits that the probabilities  ( (  )    (  ))  form a 
multivariate Gaussian distribution that is specified by the 
mean function  ( )  and the covariance function  (     ) , 

where   is a positive definite kernel function (such as: the 
squared exponential kernel, the rational quadratic kernel, and 
the Matern kernel). The posterior predictive mean function 
 ( ) and the posterior predictive marginal variance function 
  ( ), both specified across the   , domain and calculated in 
closed form, are obtained by modeling   using the Gaussian 
process [62]. 

Then determine the sampling point,     , from   to find 
the location of the minimum function. Controlled by the 
optimization proxy of the acquisition function,       . 

             ( )             (8) 

This paper, will use the expected enhancement algorithm 
which is defined as follows [64]: 

   ( )       (   (  )   ( ))            (9) 

The minimum observation value of   is (  ), while      
which expresses the expectation of a random variable at  ( ). 
Thus, we receive the same reward as "fixing"  (  )   ( ) 
there is no alternative reward when  ( ) is less than  (  ). 
The right-hand side of Eq. (9) can be written as given the 
Gaussian Process predicted mean and variance functions: 

   ( )  (  (  )   ( )) ( )   ( )         (10) 

Where,   is its derivative, and   is the standard normal 

cumulative distribution function, while   
 (  )  ( )

 ( )
. 

Based on the above analysis, the basic framework of 
Random Forest and AdaBoost embedded in Bayesian 
Optimization is formulated in Fig. 1. 

F. Parameter Settings ML 

Classification And Regression Tree (CART), Multilayer 
Perceptron (MLP), Support Vector Regression (SVR), K-
Nearest Neighbor (KNN), and Random Forest (RF) were 
employed in the experiment. Table II shows the 
hyperparameter search space for setting the parameter values 
of a single approach using Bayesian Optimization. 
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Fig. 1. The Flow Chart of the Proposed RF-Adaboost with Bayesian 

Optimization. 

TABLE II. ML TECHNIQUE PARAMETER VALUES 

ML  Parameter Values 

CART 

criterion: {mse, mae} 

max_depth: {2, 6, 7, 8} 

min_samples_split: {10, 20, 40}  

max_leaf_nodes: {5, 20, 100} 

min_samples_leaf: {20, 40, 100} 

max_features:{auto, log2, sqrt, None} 

MLP 

hidden_layer_sizes: {(50,50), (100,50)} 

solver: {adam, sgd} 

activation: {'relu', 'tanh'} 

learning_rate: {constant, adaptive} 

alpha: {0.0001, 0.05} 

SVR 

kernel: {sigmoid, poly, rbf} 

degree: {3, 4, 5, 6, 7, 8, 9} 

kernel parameter: {0.0001, 0.001, 0.01, 0.1} 

learning rate: {0.01, 0.02, 0.03, 0.04, 0.05} 

deviation tolerated: {0.001, 0.01, 0.1} 

k-NN 
K: {1, 2, 3, 4, 5, 6} 

weights: {uniform, distance} 

RF 

number of trees: 125 

criterion: {mse, mae} 

n_estimators: {10, 20, 30, 50, 100} 

min sample leaf: {3, 4, 5, 6, 7} 

min samples split: {3, 5, 7, 9} 

max_features: {1,13} 

max_depth: {5, 15, 20, 30, 50} 

max depth of the tree: {100, 200, 300} 

G. Cross-Validation 

The cross-validation methodology is a widely known 
method for revealing the model's true performance, and it is 
highly recommended by researchers [58]. For the PROMISE 
and ISBSG R10/R18-IFPUG datasets, will apply ten times 3-
fold cross-validation. This paper divided the data into three 
folds or groups at random. The test set is chosen, and the 
remaining two folds are joined to form the train set. For each 
schema, the model is based on a train set (a combination of 
machine learning algorithms, ensemble learning, and 
hyperparameter tuners). Within this framework, AdaBoost 
functions as a meta-regressor for ensemble and Bayesian 
optimization to provide automatic tuning that functions as an 
appropriate hyperparameter model optimization objective. 
Sub-partitioning is done via 3-fold cross-validation because 
the tuner does not have access to the test set. The model is 
retrained on the entire set with these parameters once the 
optimal hyperparameter values have been identified. Finally, 
an assessment matrix will be used to assess the model. The 
flowchart of the framework in the proposed regression scheme 
based on AdaBoost and bayesian hyperparameter tuning is 
summarized in Fig. 2. 

H. Evaluation Metrics 

Mean absolute error (MAE), root mean square error 
(RMSE), and R-squared (R

2
) are the metrics that are used in 

the evaluation. If the MAE and RMSE are low, and the R
2
 is 

high, the model is better. 

    
 

 
∑        

 
              (11) 

     √
 

 
∑ (     )

  
             (12) 

     
∑ (     )

  
   

∑ ( ̅   )
  

   

           (13) 

 

Fig. 2. Procedure Training and Testing Scheme. 
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IV. RESULT AND DISCUSSION 

This section will address the issues raised in section 1 by 
conducting three sets of experiments to determine the 
accuracy of the SEE: 1) without hyperparameters tuning 
(default), 2) hyperparameters tuning, and 3) SEE model using 
Adaboost ensemble learning with Bayesian hyperparameters. 

In this paper describe the experiments in depth and offer 
the findings of each experiment in this section. All of the tests 
were run in a Python environment. In this study, eleven 
software engineering repository data sets with various 
dimensions and attributes were employed. Table I lists the 
dataset's details, including the number of samples, 
characteristics, and target value. In the first step, carried out 
the data preprocessing stage, which was used to overcome 
missing data by Missing Data Treatment (MDT) using k-NNI 
and converting categorical data into numeric using the ordinal 
encoder. In the next step, will normalize the data with a scale 
of 0 and 1. The data has been converted to a format where 
powerful machine learning algorithms may be deployed to 
create accurate predictions in the SEE context using various 
data preprocessing approaches. 

A. Model with Default Parameter Tuning 

After passing through the data preprocessing stage, the 
next step will be to compare 5 ML methods (namely, CART, 
MLP, SVR, KNN, and RF) without setting the 
hyperparameters using the default parameters tuning. The 
purpose of the ML algorithm comparisons is to assess which 
algorithm is more likely to have the best performance without 
tuning in to different problems. The default settings in the 
training data are used to train the machine learning technique. 
More exact findings are obtained by using the ML approach 
with the lowest MAE and RMSE. When it comes to the R

2
 

value, the greater the number, the better the accuracy. For the 
performance of the ML method, which considers the values of 
MAE, RMSE, and R

2
. Where the best value is marked in bold, 

otherwise the worst value is marked in italics. 

Tables III to V list the best possible performance values 
for each model and dataset, as well as the tuner who achieved 
them (without tuning where the parameters are set randomly 
within the range). Each model's performance changes 
depending on the dataset. For the PROMISE and ISBSG 
datasets, the dataset used with small/medium/large effect sizes 
[49]; in the first experimental stage, the default settings for the 
base learners model will yield the most accurate predictions. 
Based on the experimental results in this paper, it can be seen 
that RF almost usually outperforms other methods. In 
particular, when measured in MAE (Table III), RF achieved 
the best average rating, CART performed second, followed by 
k-NN and SVR with a slightly worse average rating, and MLP 
performed the worst among all related methods. Nonetheless, 
no significant differences could be found concerning the three 
methods: k-NN, MLP, and SVR. RF has advantages over 
other methods in most datasets with medium/large effect sizes 
but performs worse than CART, k-NN, and SVR in many 
datasets with small effect sizes. In terms of RMSE (Table IV) 
and R

2
 (Table V), the results are almost similar to the MAE 

values. 

TABLE III. COMPARISON MAE USING DEFAULT PARAMETER TUNING 

Dataset 
MAE 

CART KNN MLP SVR RF 

Albrecht 0.0534 0.1016 0.0888 0.1694 0.1217 

China 0.0178 0.0244 0.0284 0.0567 0.0115 

Cocomo81 0.0934 0.0466 0.0949 0.1230 0.0681 

Desharnais 0.0228 0.0594 0.0678 0.0522 0.0161 

IFPUG 0.2557 0.1591 0.1853 0.1923 0.1698 

ISBSG10 0.0174 0.0268 0.0228 0.0568 0.0132 

Kemerer 0.1167 0.2732 0.2442 0.3319 0.2326 

Kitchenham 0.0065 0.0068 0.0074 0.0823 0.0044 

Maxwell 0.0667 0.0718 0.0638 0.0982 0.0544 

Nasa93 0.0433 0.0492 0.0451 0.0945 0.0213 

UCP 0.1146 0.1367 0.2307 0.0960 0.1012 

TABLE IV. COMPARISON RMSE USING DEFAULT PARAMETER TUNING 

Dataset 
RMSE 

CART KNN MLP SVR RF 

Albrecht 0.0776 0.1538 0.1238 0.2379 0.1702 

China 0.0479 0.0479 0.0567 0.0730 0.0400 

Cocomo81 0.1911 0.0745 0.1139 0.1528 0.1396 

Desharnais 0.0321 0.0656 0.0861 0.0654 0.0248 

IFPUG 0.3762 0.2290 0.2379 0.2382 0.2271 

ISBSG10 0.0387 0.0455 0.0309 0.0624 0.0280 

Kemerer 0.1964 0.2934 0.2680 0.3673 0.2674 

Kitchenham 0.0129 0.0156 0.0150 0.0831 0.0098 

Maxwell 0.1049 0.0982 0.0855 0.1120 0.0959 

Nasa93 0.1102 0.1223 0.0717 0.1179 0.0457 

UCP 0.2655 0.1801 0.2932 0.1206 0.1961 

TABLE V. COMPARISON R2
 USING DEFAULT PARAMETER TUNING 

Dataset 
R2 

CART KNN MLP SVR RF 

Albrecht 0.9524 0.8135 0.8791 0.5536 0.7714 

China 0.7954 0.7956 0.7131 0.5246 0.8570 

Cocomo81 -0.6659 0.7467 0.4075 -0.0650 0.1108 

Desharnais 0.9284 0.7014 0.4870 0.7032 0.9572 

IFPUG -2.7883 -0.4036 -0.5145 -0.5186 -0.3807 

ISBSG10 0.6840 0.5636 0.7984 0.1795 0.8344 

Kemerer 0.8173 0.5926 0.6599 0.3614 0.6616 

Kitchenham 0.7354 0.6119 0.6429 -9.8874 0.8474 

Maxwell 0.5269 0.5848 0.6853 0.4590 0.6043 

Nasa93 0.2071 0.0227 0.6643 0.0928 0.8635 

UCP 0.3484 0.7003 0.2054 0.8656 0.6445 
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Based on the study results in the table, it shows that the 
algorithm with the best performance in almost all datasets is 
RF. RF obtained the highest accuracy in china, desharnais, 
IFPUG, ISBSG10, kitchenham, Maxwell, and Nasa93. With 
the best accuracy value in the kitchenham dataset with MAE 
(0.0044), RMSE (0.0098), and R

2
 (0.8474), although 

Desharnais owns the best R
2
 value. Furthermore, the second 

position is obtained by CART, which has the best accuracy 
value on albrecht and kemerer. Meanwhile, KNN, MLP, and 
SVR have almost similar performance. 

The lack of parameter adjustment in this situation can 
result in worst performance of CART, KNN, MLP, and SVR. 
This is due to SVR's ability to perform effectively with limited 
data sets. However, it is unsuccessful in dealing with outliers 
in training data, which is a common occurrence in real-world 
applications. As a result, some outliers cause regression to be 
poor. Meanwhile, MLP, with a small data set without any 
appropriate parameter tuning, can reduce the number of 
hidden nodes which causes a decrease in its approximation 
ability [65]. KNN is extremely sensitive to characteristics that 
are irrelevant or redundant. Because it is unclear which sort of 
distance and which attribute are employed in distance-based 
learning KNN to give the best results, and because must 
calculate the distance of each query instance to all training 
samples, the computational cost is relatively large [66]. CART 
performs badly on smaller data sets compared to bigger data 
sets. As a result, using this CART approach without 
considering the data's magnitude is not recommended [67]. 

B. Comparison Model with Hyperparameter Tuning and 

Ensemble Learning 

Next, this model will use hyperparameter tuning based on 
the Bayesian-based Gaussian process. The ML method is 
trained with hyperparameter tuning on the training data in the 
training process. All tuners are used as an optimization 
method combined with a cross-validation procedure. 
Configure using cross-validation (i.e. cv: 3), verbose: 3, 
scoring: 'mean_squared_error', and 10 iterations. Because the 
datasets in this scenario are small, will narrow the search 
space to the most promising values based on previous 
research. 

Next, the same experiment was repeated using Adaboost 
ensemble learning. With repeat the experiment to find the best 
convergence with 10 iterations. Configure the Adaboost 
ensemble learning using the maximum number of estimators 
at which the algorithm is terminated (n_estimator: 200), 
learning_rate: 1, and random_state: 0. After that, will compare 
the algorithms have done, aiming to assess which algorithm is 
more likely to be efficient and how this efficiency varies by 
hyperparameters tuning and reinforcement using ensemble 
learning on different problems. Fig. 3 shows the performance 
of Bayesian hyperparameter and Adaboost ensemble learning 
on the ML model concerning the error function based on 
MAE, RMSE, and R

2
. 

The performance of each model varies depending on the 
dataset. Base learners model with parameter tuning using 

Bayesian which produces the most accurate predictions. In 
Fig. 3, it shows that the algorithm that has the best 
performance in almost all datasets is RF. RF achieved the 
highest accuracy in cocomo81, ISBSG10, kitchenham, 
maxwell, nasa93, and UCP. Meanwhile, CART, KNN, MLP, 
and SVR have almost similar performance. These results show 
that CART, KNN, MLP, and SVR are not very sensitive to 
parameters tuning, while RF is very sensitive to parameters 
tuning which results in stable prediction performance. This 
suggests that the best parameters to use with a machine 
learning approach may change over time. 

As for the base learner model with Adaboost ensemble 
learning, it shows different results. Where the algorithm that 
has the best performance is CART, followed by RF as the 
second algorithm that has the best performance. While KNN, 
MLP, and SVR have almost similar performance. For CART, 
obtain the highest accuracy in albrecht, china, cocomo81, 
ISBSG10, IFPUG, kemerer, and UCP. This analysis of 
different optimization approaches reveals that the Adaboost 
ensemble learning optimization is the clear victor, as it can 
create a model with the highest test accuracy for eleven data 
sets. To summarize, the meta-parameter analysis for 
Adaboost, which was used to strengthen the basic CART 
model, significantly outperforms other models (on this 
dataset). 

C. The Best Model using Adaboost with Bayesian 

Hyperparameter Optimization 

The same experiment used the ML algorithm to set the 
Adaboost Ensemble learning parameters using Bayesian 
hyperparameter optimization. In this paper, will repeated the 
experiment to find the best convergence with iterations from 
10 to 200. The effect of the ML model on setting the Bayesian 
hyperparameter values of the Adaboost ensemble model is 
presented in Table VI to VIII. 

In particular, when measured in MAE, RMSE, and R
2
 

(Table VI to VIII), RF and SVR achieve the best average 
ratings, followed by MLP, and CART, while k-NN with 
slightly worse average ratings among all related methods. In 
this respect, RF, SVR, and MLP have advantages over other 
methods in most datasets with medium/large effect sizes but 
perform worse than CART and k-NN in many datasets with 
small effect sizes. CART and k-NN perform best on data sets 
with small effect sizes. No significant differences could be 
found among the three methods RF, SVR, and MLP had 
similar overall performance and were superior to CART and 
k-NN with medium/large effect sizes depending on the data 
set. Nonetheless, the RF method is more consistent among the 
best methods regardless of the metric. 

This experiment shows that overall, the five machine 
learning models that are strengthened by the Bayesian 
gaussian process and Adaboost ensemble learning have almost 
the same performance in all datasets used. However, it can be 
determined that RF, SVR, and MLP have the best results in 
this area. 
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(a) Baseline ML with Bayesian gaussian Process (MAE, RMSE, and R2). (b) Baseline ML with Adaboost ensemble learning (MAE, RMSE, and R2). 

Fig. 3. Comparison Algorithm: (a) Baseline ML with Bayesian Gaussian Process; (b) Baseline ML with Adaboost Ensemle Learning. 

TABLE VI. COMPARISON MAE USING BAYESIAN HYPERPARAMETER TUNING WITH ADABOOST ENSEMBLE LEARNING 

Dataset 
MAE (Bayesian optimization-Adaboost ensemble learning) 

CART KNN MLP SVR RF 

Albrecht 0.1463 0.1888 0.1694 0.0490 0.1070 

China 0.0396 0.0436 0.0528 0.0243 0.0359 

Cocomo81 0.0557 0.1462 0.1563 0.1603 0.1600 

Desharnais 0.0166 0.0482 0.0277 0.0081 0.0210 

IFPUG 0.2431 0.1849 0.1771 0.2713 0.1842 

ISBSG10 0.0326 0.0452 0.0476 0.0436 0.0241 

Kemerer 0.4681 0.2340 0.2317 0.3388 0.3521 

Kitchenham 0.0079 0.0130 0.0663 0.0195 0.0068 

Maxwell 0.1114 0.0753 0.0909 0.0924 0.1431 

Nasa93 0.0653 0.1101 0.0729 0.8203 0.0456 

UCP 0.1131 0.1612 0.1969 0.1460 0.1574 
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TABLE VII. COMPARISON RMSE USING BAYESIAN HYPERPARAMETER 

TUNING WITH ADABOOST ENSEMBLE LEARNING 

Dataset 
RMSE (Bayesian optimization-Adaboost ensemble learning) 

CART KNN MLP SVR RF 

Albrecht 0.1463 0.1888 0.1694 0.0490 0.1070 

China 0.0396 0.0436 0.0528 0.0243 0.0359 

Cocomo81 0.0557 0.1462 0.1563 0.1603 0.1600 

Desharnais 0.0166 0.0482 0.0277 0.0081 0.0210 

IFPUG 0.2431 0.1849 0.1771 0.2713 0.1842 

ISBSG10 0.0326 0.0452 0.0476 0.0436 0.0241 

Kemerer 0.4681 0.2340 0.2317 0.3388 0.3521 

Kitchenham 0.0079 0.0130 0.0663 0.0195 0.0068 

Maxwell 0.1114 0.0753 0.0909 0.0924 0.1431 

Nasa93 0.0653 0.1101 0.0729 0.8203 0.0456 

UCP 0.1131 0.1612 0.1969 0.1460 0.1574 

TABLE VIII. COMPARISON R2
 USING BAYESIAN HYPERPARAMETER TUNING 

WITH ADABOOST ENSEMBLE LEARNING 

Dataset 
R2 (Bayesian optimization-Adaboost ensemble learning) 

CART KNN MLP SVR RF 

Albrecht 0.8311 0.7190 0.7737 0.9810 0.9096 

China 0.8602 0.8301 0.7517 0.9473 0.8847 

Cocomo81 0.8582 0.0247 -0.1146 -0.1723 -0.1677 

Desharnais 0.9807 0.8386 0.9468 0.9954 0.9693 

IFPUG -0.5819 0.0844 0.1600 -0.9702 0.0913 

ISBSG10 0.7758 0.5687 0.5220 0.5987 0.8772 

Kemerer -0.0370 0.7408 0.7458 0.4566 0.4133 

Kitchenham 0.9006 0.7320 -5.9438 0.3952 0.9264 

Maxwell 0.4667 0.7561 0.6448 0.6329 0.1194 

Nasa93 0.7216 0.2077 0.6527 -42.901 0.8639 

UCP 0.8818 0.7597 0.6418 0.8030 0.7710 

V. CONCLUSION 

An enhanced hyperparameter tuning approach on an 
ensemble learning algorithm will be evaluated for its impact 
on model accuracy and stability in this study. The parameters 
of five machine learning models trained on eight datasets from 
the PROMISE repository and two subsets of data from the 
ISBSG R10/R18-IFPUG dataset are adjusted using this tuner. 
This study applies a state-of-the-art method by combining 
Bayesian-based gaussian processes with Adaboost ensemble 
learning to improve ML performance in a SEE context. 
Tuning, training, evaluation, and cross-validation will all be 
used in this project. The findings of this study show that 
optimizing machine learning models can considerably 
improve their performance. The implementation of AdaBoost 
ensemble learning and Bayesian hyperparameter optimization 
can improve the performance of the RF method. RF 
outperformed other methods in almost all datasets. As such, 
AdaBoost ensemble learning is the optimization that impacts 
machine learning model performance across all data sets in 

this scenario. On the other hand, the Bayesian optimization 
approach based on the Gaussian process to improve the 
performance of machine learning prediction models can 
achieve high accuracy in some cases. 

More empirical research could be conducted in the future 
to support the conclusions of this study and to acquire 
knowledge utilizing different data sets. Additionally, 
compared or investigated various different optimization 
strategies, particularly for classification issues. It's also crucial 
to test the efficacy of various feature selection approaches, as 
well as increase with optimization tuning, when estimating 
software effort. 
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