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Abstract—The problem in the data storage method that can 

support the data processing speed in the network is one of the 

key problems in big data. As computing speed increases and 

cluster size increases, I/O and network processes related to 

intensive data usage cannot keep up with the growth rate and 

data processing speed. Data processing applications will 

experience latency issues from long I/O. Distributed data storage 

systems can use Web scale technology to assist centralized data 

storage in a computing environment to meet the needs of data 

science. By analyzing several distributed data storage models, 

namely NFS, GlusterFS and MooseFS, a distributed data storage 

method is proposed. The parameters used in this study are 

transfer rate, IOPS and CPU resource usage. Through testing the 

sequential and random reading and writing of data, it is found 

that GlusterFS has faster performance and the best performance 

for sequential and random data reading when using 64k block 

data storage. MooseFS uses 64k power storage blocks to obtain 

the best performance in random data read operations. Using 32k 

data storage blocks, NFS achieves the best results in random 

writes. The performance of a distributed data storage system 

may be affected by the size of the data storage block. Using a 

larger data storage block can achieve faster performance in data 

transmission and performing operations on data. 
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GlusterFS; MooseFS; random workload; sequence workload 

I. INTRODUCTION 

The current digital era is driven by data derived from a 
variety of information, both individuals, companies and 
governments, which is more available than ever before. 
Currently, various information technology-based companies 
produce big data [1]. Large volumes in big data require large 
data storage. Digital products such as Twitter can generate 7 
Terabytes (TB) a day of data, while Facebook produces 10 TB 
of data a day. Several similar enterprise companies have the 
same tendency to produce data per day [2]. 

Big data storage and processing needs require huge 
resources [9]. The gap between computing and data storage is 
quite large. With multicore technology in the processor, the 
ability of the CPU has increased for big data needs. However, 
the ability of data storage to serve data processing and storage 
still experiences its obstacles. The characteristics of the 
physical storage media account for most of the slow data 
storage performance. Even though optimization has been 
carried out in the Input / Output (I/O) layer in data storage, the 

I/O layer remains volatile. Problems related to the inefficiency 
in data management in storage media become more visible 
when multi-tasking big data in a shared resource environment 
[3]. 

An architecture is needed that can match resources with 
storage and data processing needs [8]. The web-scale 
architecture can handle the fast-growing processing and 
storage needs efficiently without rearranging the existing 
architecture [4]. As computation speed increases and cluster 
size increases, the I/O and network processes associated with 
intensive data use cannot keep up with the growth and data 
processing speed. Data processing applications will 
experience latency problems from long I/O [5]. 

Problems in data storage methods in the network that can 
support data processing speed are one of the crucial issues in 
big data. The research was conducted by analyzing the results 
of observations and exploration of storage performance by 
comparing architectures and file systems by considering 
parameters such as I/O performance, seek time, memory, and 
network usage. The results of data analysis from this study are 
expected to be a reference in building a data storage center for 
big data needs. 

II. LITERATURE REVIEW 

Research on measuring the performance of data storage 
was conducted [10]. This study measures the performance of 
high-performance data storage systems on baremetal clouds 
such as AWS, Azure, CGE, and OCI that run Hadoop. The 
test parameters in this research are I/O, CPU, memory and 
throughtput. Researchers run the method for benchmarking 
I/O with TestDFSIO, Flexible I/O tester (fio). To test the use 
of CPU resources using the K-means, Terrasort, Pagerank, and 
Wordcount algorithms which are run on the server to be 
tested. Another test was the use of network resources running 
K-means and Terrasort using 10TB of data. The results 
indicate that Hadoop systems running on high-performance 
data storage are a good choice for building high-performance 
virtual clusters to process shared workloads. In the results of 
this study, high-performance storage performance makes a 
significant impact on HDFS-based workloads with a large 
number of virtual cores. Non-RAID storage performs six 
times better with increased volume and CPU per server 
compared to clusters containing a large number of low-end 
servers. With a model like the one developed by researchers, 
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we can get better scalability and efficiency on high-capacity 
servers and bare metal servers suitable for seeking increased 
performance and cost savings [10]. 

The research performed a statistical analysis of the 
variability of write and read operations on parallel file systems 
[11]. This study uses six factors to be tested, namely 
Application Programming Interface (API), I/O strategy, 
request size, access pattern, stripe size, and stripe count. The 
researcher used the ANOVA F-test method to generate a 
comprehensive model from the observations that had been 
made. The results of this study indicate that these various 
factors within the range of values evaluated affect 
performance in a way that is indistinguishable from the 
presence of errors in the experiments performed. It should be 
noted that the conclusions of this study are only statistically 
valid for the range of values considered. For other values and 
a different set of other significant factors can emerge. 

One of the earliest and most successful distributed systems 
was developed by Sun Microsystems and is known as the Sun 
Network Filesystem (or NFS) [12]. To define NFS, Sun 
developed an open protocol that simply defines the message 
format used to communicate by the client and server so that 
other groups outside Sun Microsystems can develop their own 
NFS. 

Gluster is an open source, software-only file-based NAS 
scale-out platform. This enables enterprises to combine a large 
number of commodity data storage devices and compute 
resources into a single storage pool resulting in high 
performance and centrally managed storage. Both capacity 
and performance can scale independently on demand, from a 
few terabytes to several petabytes, using on-premises 
hardware and public cloud storage infrastructure. Combining 
affordable hardware with a scaling approach, users get 
radically better price and performance, in an easy-to-manage 
solution that can be configured for the most demanding 
workloads. 

GlusterFS is designed for several purposes such as 
elasticity, linear scaling, and scale-out. The elasticity in 
GlusterFS is the idea that an enterprise should be able to 
flexibly adapt to data growth (or reduction) and add or remove 
resources to the storage pool as needed, without disrupting 
existing systems. 

Linear Scaling is that twice the amount of system storage 
will provide twice the performance. What is observed in this 
case is twice with the same average response time for each 
event in the external file system I/O system i.e., how long the 
NFS client waits for the file server to return the information 
associated with each NFS client request. Traditional 
filesystem models and architectures cannot be scalable in this 
way and therefore can never achieve performance at true 
linear scale. 

Gluster is designed to provide a scale-out architecture for 
performance and data storage capacity requirements. This 
implies that the system must be able to increase (or decrease) 
along some dimensions. By combining the data storage, CPU, 
and I/O resources of a large number of systems with 
affordable hardware. If you want to add more capacity to your 

scale-out system, you can add more disks at a lower cost. In 
practice, both performance and data storage capacity can be 
linearly increased in Gluster. 

As a distributed file system, Moose File System 
(MooseFS) has been widely used in industry. As the 
architecture built by MooseFS becomes more efficient to 
increase the level of data handling, companies such as Douban 
(a Chinese social networking service website) and Lenovo 
have benefited greatly from using MooseFS. MooseFS has 
just been released as an open-source project in the GitHub 
repository since 2016, and some research has been done on 
MooseFS [7]. 

MooseFS consists of four main parts: client, chunk server, 
master server and metalogger. The master server maintains all 
the metadata of the system files. The server chunk is the 
storage unit in MooseFS. The basic unit in data storage is 
called a chunk, and all chunks are managed by the chunk 
server. When a client wants to get services from MooseFS, the 
server and client first interact with the master server for 
metadata information retrieval operations, and then 
communicate with the chunk server to read or write data. 
Metaloggers are backups of the master server. Its main 
function is to periodically download metadata from the master 
server to be promoted as new in case of failure. In the general 
case, a single metalogger is sufficient to handle failures. 

Metalogger stores metadata (such as permissions and last 
access of data) and file and directory hierarchies in master 
main memory and then performs a permanent copy of the 
metalogger. With this, MooseFS gives users the global 
namespace of the system. The MooseFS client accesses the 
file system by mounting the namespace in the local file 
system. The client can perform the operation by 
communicating to the master server which directs the client to 
the chunk server. 

In MooseFS, each file has a purpose, namely a certain 
number of copies that must be preserved. When the client 
writes data, the master server sends it a list of server chunks 
where the data will be stored. Then, the client sends data to the 
first chunk server which instructs the other chunk servers to 
replicate the files synchronously. MooseFS uses msfmount to 
communicate between users and msfmount itself is based on 
Filesystem Userspace (FUSE) which means MooseFS can 
work with operating systems that use this mechanism such as 
Linux, FreeBSD, OSX and others. 

III. METHODOLOGY 

This section introduces the methods of studying network 
storage services. The method is developed around a test 
platform that allows us to run specific benchmarks. First, we 
aim to test client capabilities and network attaches storage 
design decisions. Then, use the test platform to measure the 
impact of these two aspects on performance under different 
workloads. 

A. Overview 

The environment that will be created for this research can 
be used as a prototype for centralized data storage and 
computing services. Users will be connected to the 
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environment via a wireless network. Docker has a non-
permanent nature of data storage, so Docker needs to be 
integrated with external data storage methods so that data is 
permanently stored and accessed in a cluster. In this study, the 
availability of datasets prepared for computational purposes 
will be stored in an external file system (in this study is DFS) 
which is connected to the research environment created. 

The data service in the environment to be built is expected 
to be able to produce dynamic data storage and processing. 
Storage and dynamic data processing in this research are that 
when a user accesses the service, the system will run Docker 
and create a directory automatically which will be tied to 
Docker that is running and used by the user. It is expected that 
by using data storage like this, the data in Docker will always 
be in its position when one user accesses the same data. 

B. Goal 

The aim of this research is to evaluate and analyse which 
file system is best among NFS, GlusterFS and MooseFS for 
big data storage and processing based on I/O performance, 
network transfer rate and CPU usage inside network storage 
cluster for data science environment. 

In this study, we are using the black-box testing approach. 
We instrument a testbed in which one more test computers run 
the desired application-under-test. The Testing running several 
workloads inside Docker for reading and writing specific files 
to defined directory attached into network storage. In the 
meantime, testing tool writing an output file for collected data 
during testing execution. 

We require tests to be repeatable and automated run testing 
scenario sequentially to get an average number of data at one 
time. Since we target three various network storage with write 
and read scenario using four different storage block, we need 
all scenario able to be performed without supervision and 
logged automatically. 

C.  Testbed 

This study utilizes three storage clients connected for each 
network storage and mounted like local directory and using 
Docker to creating workloads. We are using three storage 
clients to simulate concurrent workloads running at the same 
time. Our test application receives benchmark test parameters, 

which describe the sequence of operations to be performed. 
Then, the test application is operated remotely through Docker 
to generate workloads. Network storage clusters synchronize 
in the background and each client detect updated file listing 
generated from Docker workload. Once benchmark tools 
running from Docker, every parameter is going generated and 
written in the output file and processed to measure 
performance metrics. The testing runs workloads thirty times 
for each scenario with different block size. 

We plan the testbed using Linux virtual server explain in 
Fig. 1. The server controls the experiments by running 
network storage clusters and clients installed with Docker 
container and host benchmark tools. Both clients and network 
storage clusters are attached to the virtual network interface. 
With this setup allow the server easily to manage and observe 
from the virtual server host. Linux virtual servers connected 
with 10Gbps network link. 

D. Benchmark Performance 

After knowing the design choices of network storage 
types, we use our testbed to check their influence on 
performance. We plan a methodology to calculate metrics 
related to read and write workloads. A workload is generated 
by the testing application based on a benchmark definition. A 
variable of reading and write workload with different storage 
block size. Besides, workload type can be specified to random 
or sequential to test how service reacts to different I/O. 

Performance is calculated. We calculate (i) transfer rate 
between clients and storage server (ii) IOPS during random 
and sequential workload (iii) CPU usage in operating system 
user-space. 

E. Network Attached Storage (NAS) under Test 

This study comparing three network storage and limiting 
the analysis to the native client using Docker workload. 
Table I list considered technology specification of three 
network storages. Each network storage using different 
technologies, architecture and method to work with data and 
metadata. In such allow us to compare the impact of the 
technology design and architecture to handling different data 
workloads. 

 

Fig. 1. Testbed Environment for Network Storage Workload Testing. 
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TABLE I. THE TECHNOLOGY SPECIFICATION 

 NFS GlusterFS MooseFS 

API Access Remote Procedure Call (RPC), NFS Client libglusterfs, Fuse, NFS, SMB, Swift, libgfapi POSIX, FUSE MooseFS clients. 

High Availability Need additional softwear and hardware Mirroring Master – Slave 

Architecture Client – Server Client – Server without metadata Using master server to manage server 

Metadata Data and metadata are saving inside NFS 
Using Elastic Hashing Algorithm instead of 

saving metadata 

Savinng metadata inside master 

server 

Cache Client side Not usning cache Using RAM inside storage server 

Fault Tolerant Need additional softwear and hardware Eliminates server that is in status not available 
Do quarantine against the server 
machine who can’t perform I/O 

operations 

Replication and 
Synchronization 

Need additional software and hardware Not replicating directly Keep some copy of data. 

IV. RESULT AND DISCUSSION 

We evaluate the testing parameter with different storage 
block and network storages. Workload running from Docker 
to read or writing test file with random or sequential to write 
10GB files for each task. Our experiment checks how the 
network storage will handle batches workload for reading and 
write using four different storage block: (i) 8k, (ii) 16k, (iii) 
32k, dan (iv) 64k. 

A. Transfer Rate 

In data storage transfer rate can represent how many data 
can be transferred during the reading or writing process in one 
time. In general, with a higher transfer rate meaning the 
storage system able to process big data faster. In our 
methodology, we are trying to process 10 GB data with 
random and sequential data to be processed and transferred 
from the client into the storage cluster network. In Fig. 2, we 
can see the average result from transfer rate benchmark. In 

random read and sequence read, GlusterFS having better 
transfer rate compared to NFS and MooseFS. GlusterFS 
transfer rate for random read workload increase with bigger 
storage block size. However, GlusterFS transfer rate 
performance for sequential read workload not affected by the 
storage block size. MooseFS with sequential read workload 
affected with the changes in block size with 32k and the 
performance in 64k quite same with 32k block size. 

The result for random write, MooseFS having significant 
performance result with 64k storage block size with reaching 
300MiB/s transfer. GlusterFS and NFS transfer rate for 
random write performance is not affected by the block size. In 
Sequence read workload the NFS having better performance 
than GlusterFS and MooseFS. The NFS performance reaching 
a peak with 32k storage block size and able to be reaching 
1200MiB/s. However, the performance is dropping with a 64k 
block size. We believe in NFS performance dropping because 
of the bottleneck in the networks. 

 
(a) Average Transfer Rate for Random Read and Write. 

 
(b) Average Transfer Rate for Sequence Read and Write. 

Fig. 2. Average Transfer Rate from Read and Write for Sequence and Random Workloads. 
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B. IOPS 

IOPS refers to the maximum number of reads and writes to 
non-contiguous storage locations. These operations are 
typically dominated by seeking time, or the time it takes a disk 
drive to position its read/write heads to the correct location. 
We are trying to measure IOPS to identify IOPS between three 
network storages as shown in Fig. 3. 

The result for this test showing IOPS affected with storage 
block. In random read and sequence read workload GlusterFS 
having the best performance with 8k storage block size. 
However, the IOPS performance dropping in 16k, 32k and 
64k. MooseFS with random write having a better performance 
with 16k but it gradually decreases in 32k and 64k block size. 

In random read, sequence read, and random write with 
MooseFS able to reach better performance. However, IOPS 
performance degraded with 32k and 64k block size. NFS 
having same degrade performance with 16k and 32k. 
However, in 64k block size NFS having better result than 
GlusterFS and MooseFS. 

C. CPU Usage 

The equations are an exception to the prescribed CPU 
usage in user space is part of this. A user-space program is any 
process that doesn't belong to the kernel. Shells, compilers, 
databases, web servers, and the programs associated with the 
desktop are all user space processes. If the processor isn't idle, 
it is quite normal that the majority of the CPU time should be 
spent running user space processes. This scenario able to crash 
the system or the environment and we need to restart the 
system. 

Higher CPU usage causing process stuck in the system and 
causing a bottleneck in the data processing. n this study we 

measure how efficient the network-attached storage using the 
processing resources. 

Result in Fig. 4 showing the average result of CPU usage 
in userspace. We found CPU usage in the three network 
storage affected with different storage block size. NFS 
showing low CPU usage in random read, random write, and 
sequence read workloads. However, NFS in sequence writes 
using high CPU resources. 

GlusterFS having high usage CPU resources when running 
sequence read workloads with around 25% - 30% CPU 
usages. GlusterFS with random read, random write and 
sequence write are affected with storage block size as we can 
see in Fig. 4 GlusterFS CPU usage lower with bigger storage 
block size. GlusterFS and NFS having a similar pattern with 
CPU usage is decreasing with bigger storage block size. In the 
meantime, MooseFS having increase CPU usage in 32k block 
size workload and CPU usage dropped with bigger storage 
block size. 

D. NFS Performance 

The results of the random read scenario transfer rate 
performance test on NFS show that 64k blocks have the 
highest yield, 32k in second place, then 16k and 8k in third 
and fourth place, as shown in Fig. 5. The results of the random 
write scenario transfer rate performance test on NFS show that 
16k blocks have the highest yields, 32k in second place, then 
64k and 8k in third and fourth place. The results of the transfer 
rate performance test for the sequence read scenario on NFS 
show that 64k blocks have the highest yield, 16k in second 
place, then 32k and 8k in third and fourth place. The results of 
the transfer rate performance test for the sequence write 
scenario on NFS show that 32k blocks have the highest yield, 
64k in second place, then 16k and 8k in third and fourth place. 

 
(a) Average IOPS for Random Read and Write. 

 
(b) Average IOPS for Sequence Read and Write. 

Fig. 3. Average IOPS from Read and Write for Sequence and Random Workloads. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

454 | P a g e  

www.ijacsa.thesai.org 

 
(a) Average CPU (usr%) for random read and write 

 
(b) Average CPU (usr%) for sequence read and write 

Fig. 4. Average CPU usage in Network Storage Performance with different Block Size. 

 

Fig. 5. Transfer Rate Performance from NFS Benchmark. 

The results of the random read scenario IOPS performance 
test on NFS show that 8k blocks have the highest results, 64k 
in second place, then 32k and 16k in third and fourth place. 
The results of the IOPS performance test in the random write 
scenario on NFS show that 8k blocks have the highest yield, 
16k in second place, then 32k and 64k in third and fourth 
place, as shown in Fig. 6. 

The IOPS performance test results in the sequence read 
scenario on NFS show that 8k blocks have the highest yields, 
16k in second place, then 32k and 64k in third and fourth 
place. The IOPS performance test results in the sequence write 
scenario on NFS show that 64k blocks have the highest yield, 
8k is in second place, then 16k and 32k are in third and fourth 
place. 

 

Fig. 6. IOPS Performance in NFS Workload. 

The results of the CPU performance test (usr%) for the 
random read scenario on NFS show that the 16k block has the 
lowest results, 64k is in second place, then 32k and 8k are in 
the third and fourth place. The results of the cpu performance 
test (usr%) for the random write scenario on NFS show that 
the 64k block has the lowest yield, 32k is in second place, then 
16k and 8k are in the third and fourth place. The results of the 
CPU performance test (usr%) in the sequence read scenario on 
NFS show that 64k blocks have the lowest results, 32k are in 
second place, then 16k and 8k are in the third and fourth 
places. The results of the CPU performance test (usr%) in the 
sequence write scenario on NFS show that 64k blocks have 
the lowest results, 16k are in second place, then 32k and 8k 
are in the third and fourth places, as shown in Fig. 7. 
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Fig. 7. CPU (usr%) Performance in NFS Benchmark. 

E. MooseFS 

Benchmark of the random read scenario transfer rate 
performance test on MooseFS show that the 64k block has the 
highest yield, 32k is in second place, then 16k and 8k are in 
the third and fourth place. The results of the random write 
scenario transfer rate performance test on MooseFS show that 
64k blocks have the highest yield, 32k in second place, then 
16k and 8k in third and fourth place, as shown in Fig. 8. 

The results of the transfer rate performance test for the 
sequence read scenario on MooseFS show that 32k blocks 
have the highest yield, 64k in second place, then 16k and 8k in 
third and fourth place. The results of the transfer rate 
performance test for the sequence write scenario on MooseFS 
show that 64k blocks have the highest yield, 32k in second 
place, then 16k and 8k in third and fourth place. 

The results of the random read scenario IOPS performance 
test on MooseFS show that the 16k block has the highest 
yield, 64k in second place, then 32k and 8k in third and fourth 
place. The results of the IOPS performance test in the random 
write scenario on MooseFS show that 16k blocks have the 
highest yield, 32k in second place, then 64k and 8k in third 
and fourth place. The IOPS performance test results in the 
sequence read scenario on MooseFS show that 8k blocks have 
the highest yields, 16k in second place, then 32k and 64k in 
third and fourth place. The IOPS performance test results in 
the sequence write scenario on MooseFS show that 8k blocks 
have the highest results, 16k are in second place, then 32k and 
64k are in third and fourth places, as shown in Fig. 9. 

 

Fig. 8. Average Performance Transfer Rate in MooseFS with different 

Blocksize and Workload. 

 

Fig. 9. Average IOPS in MooseFS with different Block Size and Workload. 

The results of the CPU performance test (usr%) for the 
random read scenario on MooseFS show that 64k blocks have 
the lowest results, 8k is in second place, then 32k and 16k are 
in third and fourth place. The results of the cpu performance 
test (usr%) of the random write scenario on MooseFS show 
that the 8k block has the lowest result, 64k is in second place, 
then 32k and 16k are in the third and fourth place. The results 
of the CPU performance test (usr%) in the sequence read 
scenario on MooseFS show that the 64k block has the lowest 
results, 32k is in second place, then 16k and 8k are in the third 
and fourth place. The results of the CPU performance test 
(usr%) in the sequence write scenario on MooseFS show that 
64k blocks have the lowest results, 32k are in second place, 
then 16k and 8k are in the third and fourth places, as shown in 
Fig. 10. 

F. Random Read Workload in NFS, GlusterFS and MooseFS 

In the random read test, GlusterFS has good performance 
at data transfer speed and bandwidth, resulting in higher iops 
than NFS and MooseFS. The high performance of iops causes 
the runtime value to be smaller, which means that in jobs that 
require random data reading, GlusterFS can complete it 
quickly. GlusterFS's speed in handling reading work can be 
influenced by the GlusterFS architecture that propagates 
metadata and breaks data files into smaller data on all 
machines in one cluster of distributed storage systems [6]. The 
performance results from NFS and MooseFS in the random 
data reading test produce almost the same values in blocks of 
16k, 32k, and 64k except for CPU usage. 

 

Fig. 10. Average CPU (usr%) in MooseFS with different Block Size and 

Workload. 
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The use of CPU resources in the random read test shows 
that NFS uses the least amount of CPU resources on both the 
user CPU and the CPU system. GlusterFS experienced a 
decrease in user and system CPU resource usage according to 
the larger block being tested. MooseFS in this study 
experienced an increase in CPU user usage in 16k blocks and 
after that experienced a decrease in CPU user usage on 32k 
and 64k blocks. The use of the CPU system on NFS, 
GlusterFS and MooseFS tends to increase in proportion to the 
larger the data storage block. 

G. Random Write Workload in NFS, GlusterFS and MooseFS 

In the random write test on MooseFS, the transfer rate and 
bandwidth performance always increase for each block tested, 
resulting in a small runtime. The lowest performance on the 
random write test is GlusterFS. On the performance of NFS 
IOPS, the performance decreases on each block. 

MooseFS on random write testing with high bandwidth 
and transfer rate performance results in high CPU system and 
user usage. In the random write test on MooseFS, it is carried 
out in parallel which is synchronized by the master server and 
therefore must be sequential so that writing data requires a lot 
of processing. So the CPU load depends on the number of 
operations and RAM on the total number of files and folders, 
not the total size of the files themselves. RAM usage is 
proportional to the number of entries in the file system 
because the master server process stores all metadata in 
memory [7]. 

H. Sequence Read in NFS, GlusterFS and MooseFS 

Testing on a distributed file system on sequence read 
performance resulted in different performance from the 
random read. The results of this test show that GlusterFS has 
the best performance for sequential file reading. The value of 
GlusterFS bandwidth and transfer rate in the sequence read 
test results in high-performance values. GlusterFS has 
decreased performance on IOPS with each increase in the 
block size of data storage so that GlusterFS tends to 
experience a decrease in the system and user CPU resource 
usage. 

In MooseFS, the transfer rate and bandwidth performance 
increase with each increase in the block being tested so that it 
affects the CPU resource usage which also increases for each 
block tested. In the NFS test results, the performance is below 
GlusterFS and MooseFS. The bandwidth performance and 
transfer rate appear to decrease in each block. The decline in 
performance on NFS is caused by a bottleneck that occurs in 
each block. When multiple NFS clients read data from an NFS 
server, there may be a winner-lose pattern in which the 
network bandwidth is unfairly distributed among clients. This 
winner-lose pattern is included in an unexpected scenario 
because in this experiment using the same tools and operations 
in running the test. 

I. Sequence Write in NFS, GlusterFS and MooseFS 

In the sequence write test, NFS has better performance 
when compared to MooseFS and GlusterFS which produce 
almost the same test value. Based on the results of the NFS 
test data, performance has decreased when writing data to data 
storage with 64k blocks. Average CPU usage across all 

distributed file systems tends to decrease as the data storage 
block under test gets larger. The use of the CPU system on 
NFS has increased along with the increase in bandwidth and 
data transfer performance. 

In MooseFS and GlusterFS, the performance of almost all 
parameters is below that of NFS. In this experiment, the 
performance of GlusterFS and MooseFS is below NFS 
possible because of the metadata function that needs to be 
processed and distributed in GlusterFS and MooseFS to all 
servers so that there is a possibility of increasing execution on 
the server to write data. 

V. CONCLUSION 

In this paper, a studied network attaches storage for web-
scale infrastructure proposed for data science environment. 
Distributed data storage systems can assist in centralized data 
storage for data science needs with a computing environment 
with webscale technology. The distributed data storage 
method has proposed by analyzing several distributed data 
storage models, namely, NFS, GlusterFS, and MooseFS. The 
parameter used in this study is the transfer rate, IOPS, and 
CPU resource usage. 

By testing the work of reading and writing data 
sequentially and randomly, it found that GlusterFS's 
performance was faster in reading data both sequentially and 
randomly with the best performance using 64k block data 
storage. MooseFS achieves the best performance on random 
data read jobs using 64k blocks of power storage. NFS gets 
the best results in random writing using 32k blocks of data 
storage. 

Performance of the distributed data storage system can be 
affected by each size of the data storage block. With larger 
data storage block used, faster the performance can be in 
terms of data transfer and execution of operations on the data. 
However, this also implies greater use of resources. 

Based on the test results, it can be concluded that each 
distributed data storage system has its advantages in every job. 
GlusterFS can achieve good performance on data reading jobs, 
NFS can obtain the best performance on data writing jobs in 
order, and MooseFS achieves the best performance at reading 
data sequentially. 
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