
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

449 | P a g e

www.ijacsa.thesai.org

Random and Sequence Workload for Web-Scale

Architecture for NFS, GlusterFS and MooseFS

Performance Enhancement

Mardhani Riasetiawan, Nashihun Amien

Department of Computer Science and Electronics

Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract—The problem in the data storage method that can

support the data processing speed in the network is one of the

key problems in big data. As computing speed increases and

cluster size increases, I/O and network processes related to

intensive data usage cannot keep up with the growth rate and

data processing speed. Data processing applications will

experience latency issues from long I/O. Distributed data storage

systems can use Web scale technology to assist centralized data

storage in a computing environment to meet the needs of data

science. By analyzing several distributed data storage models,

namely NFS, GlusterFS and MooseFS, a distributed data storage

method is proposed. The parameters used in this study are

transfer rate, IOPS and CPU resource usage. Through testing the

sequential and random reading and writing of data, it is found

that GlusterFS has faster performance and the best performance

for sequential and random data reading when using 64k block

data storage. MooseFS uses 64k power storage blocks to obtain

the best performance in random data read operations. Using 32k

data storage blocks, NFS achieves the best results in random

writes. The performance of a distributed data storage system

may be affected by the size of the data storage block. Using a

larger data storage block can achieve faster performance in data

transmission and performing operations on data.

Keywords—Component; network storage; container; NFS;

GlusterFS; MooseFS; random workload; sequence workload

I. INTRODUCTION

The current digital era is driven by data derived from a
variety of information, both individuals, companies and
governments, which is more available than ever before.
Currently, various information technology-based companies
produce big data [1]. Large volumes in big data require large
data storage. Digital products such as Twitter can generate 7
Terabytes (TB) a day of data, while Facebook produces 10 TB
of data a day. Several similar enterprise companies have the
same tendency to produce data per day [2].

Big data storage and processing needs require huge
resources [9]. The gap between computing and data storage is
quite large. With multicore technology in the processor, the
ability of the CPU has increased for big data needs. However,
the ability of data storage to serve data processing and storage
still experiences its obstacles. The characteristics of the
physical storage media account for most of the slow data
storage performance. Even though optimization has been
carried out in the Input / Output (I/O) layer in data storage, the

I/O layer remains volatile. Problems related to the inefficiency
in data management in storage media become more visible
when multi-tasking big data in a shared resource environment
[3].

An architecture is needed that can match resources with
storage and data processing needs [8]. The web-scale
architecture can handle the fast-growing processing and
storage needs efficiently without rearranging the existing
architecture [4]. As computation speed increases and cluster
size increases, the I/O and network processes associated with
intensive data use cannot keep up with the growth and data
processing speed. Data processing applications will
experience latency problems from long I/O [5].

Problems in data storage methods in the network that can
support data processing speed are one of the crucial issues in
big data. The research was conducted by analyzing the results
of observations and exploration of storage performance by
comparing architectures and file systems by considering
parameters such as I/O performance, seek time, memory, and
network usage. The results of data analysis from this study are
expected to be a reference in building a data storage center for
big data needs.

II. LITERATURE REVIEW

Research on measuring the performance of data storage
was conducted [10]. This study measures the performance of
high-performance data storage systems on baremetal clouds
such as AWS, Azure, CGE, and OCI that run Hadoop. The
test parameters in this research are I/O, CPU, memory and
throughtput. Researchers run the method for benchmarking
I/O with TestDFSIO, Flexible I/O tester (fio). To test the use
of CPU resources using the K-means, Terrasort, Pagerank, and
Wordcount algorithms which are run on the server to be
tested. Another test was the use of network resources running
K-means and Terrasort using 10TB of data. The results
indicate that Hadoop systems running on high-performance
data storage are a good choice for building high-performance
virtual clusters to process shared workloads. In the results of
this study, high-performance storage performance makes a
significant impact on HDFS-based workloads with a large
number of virtual cores. Non-RAID storage performs six
times better with increased volume and CPU per server
compared to clusters containing a large number of low-end
servers. With a model like the one developed by researchers,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

450 | P a g e

www.ijacsa.thesai.org

we can get better scalability and efficiency on high-capacity
servers and bare metal servers suitable for seeking increased
performance and cost savings [10].

The research performed a statistical analysis of the
variability of write and read operations on parallel file systems
[11]. This study uses six factors to be tested, namely
Application Programming Interface (API), I/O strategy,
request size, access pattern, stripe size, and stripe count. The
researcher used the ANOVA F-test method to generate a
comprehensive model from the observations that had been
made. The results of this study indicate that these various
factors within the range of values evaluated affect
performance in a way that is indistinguishable from the
presence of errors in the experiments performed. It should be
noted that the conclusions of this study are only statistically
valid for the range of values considered. For other values and
a different set of other significant factors can emerge.

One of the earliest and most successful distributed systems
was developed by Sun Microsystems and is known as the Sun
Network Filesystem (or NFS) [12]. To define NFS, Sun
developed an open protocol that simply defines the message
format used to communicate by the client and server so that
other groups outside Sun Microsystems can develop their own
NFS.

Gluster is an open source, software-only file-based NAS
scale-out platform. This enables enterprises to combine a large
number of commodity data storage devices and compute
resources into a single storage pool resulting in high
performance and centrally managed storage. Both capacity
and performance can scale independently on demand, from a
few terabytes to several petabytes, using on-premises
hardware and public cloud storage infrastructure. Combining
affordable hardware with a scaling approach, users get
radically better price and performance, in an easy-to-manage
solution that can be configured for the most demanding
workloads.

GlusterFS is designed for several purposes such as
elasticity, linear scaling, and scale-out. The elasticity in
GlusterFS is the idea that an enterprise should be able to
flexibly adapt to data growth (or reduction) and add or remove
resources to the storage pool as needed, without disrupting
existing systems.

Linear Scaling is that twice the amount of system storage
will provide twice the performance. What is observed in this
case is twice with the same average response time for each
event in the external file system I/O system i.e., how long the
NFS client waits for the file server to return the information
associated with each NFS client request. Traditional
filesystem models and architectures cannot be scalable in this
way and therefore can never achieve performance at true
linear scale.

Gluster is designed to provide a scale-out architecture for
performance and data storage capacity requirements. This
implies that the system must be able to increase (or decrease)
along some dimensions. By combining the data storage, CPU,
and I/O resources of a large number of systems with
affordable hardware. If you want to add more capacity to your

scale-out system, you can add more disks at a lower cost. In
practice, both performance and data storage capacity can be
linearly increased in Gluster.

As a distributed file system, Moose File System
(MooseFS) has been widely used in industry. As the
architecture built by MooseFS becomes more efficient to
increase the level of data handling, companies such as Douban
(a Chinese social networking service website) and Lenovo
have benefited greatly from using MooseFS. MooseFS has
just been released as an open-source project in the GitHub
repository since 2016, and some research has been done on
MooseFS [7].

MooseFS consists of four main parts: client, chunk server,
master server and metalogger. The master server maintains all
the metadata of the system files. The server chunk is the
storage unit in MooseFS. The basic unit in data storage is
called a chunk, and all chunks are managed by the chunk
server. When a client wants to get services from MooseFS, the
server and client first interact with the master server for
metadata information retrieval operations, and then
communicate with the chunk server to read or write data.
Metaloggers are backups of the master server. Its main
function is to periodically download metadata from the master
server to be promoted as new in case of failure. In the general
case, a single metalogger is sufficient to handle failures.

Metalogger stores metadata (such as permissions and last
access of data) and file and directory hierarchies in master
main memory and then performs a permanent copy of the
metalogger. With this, MooseFS gives users the global
namespace of the system. The MooseFS client accesses the
file system by mounting the namespace in the local file
system. The client can perform the operation by
communicating to the master server which directs the client to
the chunk server.

In MooseFS, each file has a purpose, namely a certain
number of copies that must be preserved. When the client
writes data, the master server sends it a list of server chunks
where the data will be stored. Then, the client sends data to the
first chunk server which instructs the other chunk servers to
replicate the files synchronously. MooseFS uses msfmount to
communicate between users and msfmount itself is based on
Filesystem Userspace (FUSE) which means MooseFS can
work with operating systems that use this mechanism such as
Linux, FreeBSD, OSX and others.

III. METHODOLOGY

This section introduces the methods of studying network
storage services. The method is developed around a test
platform that allows us to run specific benchmarks. First, we
aim to test client capabilities and network attaches storage
design decisions. Then, use the test platform to measure the
impact of these two aspects on performance under different
workloads.

A. Overview

The environment that will be created for this research can
be used as a prototype for centralized data storage and
computing services. Users will be connected to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

451 | P a g e

www.ijacsa.thesai.org

environment via a wireless network. Docker has a non-
permanent nature of data storage, so Docker needs to be
integrated with external data storage methods so that data is
permanently stored and accessed in a cluster. In this study, the
availability of datasets prepared for computational purposes
will be stored in an external file system (in this study is DFS)
which is connected to the research environment created.

The data service in the environment to be built is expected
to be able to produce dynamic data storage and processing.
Storage and dynamic data processing in this research are that
when a user accesses the service, the system will run Docker
and create a directory automatically which will be tied to
Docker that is running and used by the user. It is expected that
by using data storage like this, the data in Docker will always
be in its position when one user accesses the same data.

B. Goal

The aim of this research is to evaluate and analyse which
file system is best among NFS, GlusterFS and MooseFS for
big data storage and processing based on I/O performance,
network transfer rate and CPU usage inside network storage
cluster for data science environment.

In this study, we are using the black-box testing approach.
We instrument a testbed in which one more test computers run
the desired application-under-test. The Testing running several
workloads inside Docker for reading and writing specific files
to defined directory attached into network storage. In the
meantime, testing tool writing an output file for collected data
during testing execution.

We require tests to be repeatable and automated run testing
scenario sequentially to get an average number of data at one
time. Since we target three various network storage with write
and read scenario using four different storage block, we need
all scenario able to be performed without supervision and
logged automatically.

C. Testbed

This study utilizes three storage clients connected for each
network storage and mounted like local directory and using
Docker to creating workloads. We are using three storage
clients to simulate concurrent workloads running at the same
time. Our test application receives benchmark test parameters,

which describe the sequence of operations to be performed.
Then, the test application is operated remotely through Docker
to generate workloads. Network storage clusters synchronize
in the background and each client detect updated file listing
generated from Docker workload. Once benchmark tools
running from Docker, every parameter is going generated and
written in the output file and processed to measure
performance metrics. The testing runs workloads thirty times
for each scenario with different block size.

We plan the testbed using Linux virtual server explain in
Fig. 1. The server controls the experiments by running
network storage clusters and clients installed with Docker
container and host benchmark tools. Both clients and network
storage clusters are attached to the virtual network interface.
With this setup allow the server easily to manage and observe
from the virtual server host. Linux virtual servers connected
with 10Gbps network link.

D. Benchmark Performance

After knowing the design choices of network storage
types, we use our testbed to check their influence on
performance. We plan a methodology to calculate metrics
related to read and write workloads. A workload is generated
by the testing application based on a benchmark definition. A
variable of reading and write workload with different storage
block size. Besides, workload type can be specified to random
or sequential to test how service reacts to different I/O.

Performance is calculated. We calculate (i) transfer rate
between clients and storage server (ii) IOPS during random
and sequential workload (iii) CPU usage in operating system
user-space.

E. Network Attached Storage (NAS) under Test

This study comparing three network storage and limiting
the analysis to the native client using Docker workload.
Table I list considered technology specification of three
network storages. Each network storage using different
technologies, architecture and method to work with data and
metadata. In such allow us to compare the impact of the
technology design and architecture to handling different data
workloads.

Fig. 1. Testbed Environment for Network Storage Workload Testing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

452 | P a g e

www.ijacsa.thesai.org

TABLE I. THE TECHNOLOGY SPECIFICATION

 NFS GlusterFS MooseFS

API Access Remote Procedure Call (RPC), NFS Client libglusterfs, Fuse, NFS, SMB, Swift, libgfapi POSIX, FUSE MooseFS clients.

High Availability Need additional softwear and hardware Mirroring Master – Slave

Architecture Client – Server Client – Server without metadata Using master server to manage server

Metadata Data and metadata are saving inside NFS
Using Elastic Hashing Algorithm instead of

saving metadata

Savinng metadata inside master

server

Cache Client side Not usning cache Using RAM inside storage server

Fault Tolerant Need additional softwear and hardware Eliminates server that is in status not available
Do quarantine against the server
machine who can’t perform I/O

operations

Replication and
Synchronization

Need additional software and hardware Not replicating directly Keep some copy of data.

IV. RESULT AND DISCUSSION

We evaluate the testing parameter with different storage
block and network storages. Workload running from Docker
to read or writing test file with random or sequential to write
10GB files for each task. Our experiment checks how the
network storage will handle batches workload for reading and
write using four different storage block: (i) 8k, (ii) 16k, (iii)
32k, dan (iv) 64k.

A. Transfer Rate

In data storage transfer rate can represent how many data
can be transferred during the reading or writing process in one
time. In general, with a higher transfer rate meaning the
storage system able to process big data faster. In our
methodology, we are trying to process 10 GB data with
random and sequential data to be processed and transferred
from the client into the storage cluster network. In Fig. 2, we
can see the average result from transfer rate benchmark. In

random read and sequence read, GlusterFS having better
transfer rate compared to NFS and MooseFS. GlusterFS
transfer rate for random read workload increase with bigger
storage block size. However, GlusterFS transfer rate
performance for sequential read workload not affected by the
storage block size. MooseFS with sequential read workload
affected with the changes in block size with 32k and the
performance in 64k quite same with 32k block size.

The result for random write, MooseFS having significant
performance result with 64k storage block size with reaching
300MiB/s transfer. GlusterFS and NFS transfer rate for
random write performance is not affected by the block size. In
Sequence read workload the NFS having better performance
than GlusterFS and MooseFS. The NFS performance reaching
a peak with 32k storage block size and able to be reaching
1200MiB/s. However, the performance is dropping with a 64k
block size. We believe in NFS performance dropping because
of the bottleneck in the networks.

(a) Average Transfer Rate for Random Read and Write.

(b) Average Transfer Rate for Sequence Read and Write.

Fig. 2. Average Transfer Rate from Read and Write for Sequence and Random Workloads.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

453 | P a g e

www.ijacsa.thesai.org

B. IOPS

IOPS refers to the maximum number of reads and writes to
non-contiguous storage locations. These operations are
typically dominated by seeking time, or the time it takes a disk
drive to position its read/write heads to the correct location.
We are trying to measure IOPS to identify IOPS between three
network storages as shown in Fig. 3.

The result for this test showing IOPS affected with storage
block. In random read and sequence read workload GlusterFS
having the best performance with 8k storage block size.
However, the IOPS performance dropping in 16k, 32k and
64k. MooseFS with random write having a better performance
with 16k but it gradually decreases in 32k and 64k block size.

In random read, sequence read, and random write with
MooseFS able to reach better performance. However, IOPS
performance degraded with 32k and 64k block size. NFS
having same degrade performance with 16k and 32k.
However, in 64k block size NFS having better result than
GlusterFS and MooseFS.

C. CPU Usage

The equations are an exception to the prescribed CPU
usage in user space is part of this. A user-space program is any
process that doesn't belong to the kernel. Shells, compilers,
databases, web servers, and the programs associated with the
desktop are all user space processes. If the processor isn't idle,
it is quite normal that the majority of the CPU time should be
spent running user space processes. This scenario able to crash
the system or the environment and we need to restart the
system.

Higher CPU usage causing process stuck in the system and
causing a bottleneck in the data processing. n this study we

measure how efficient the network-attached storage using the
processing resources.

Result in Fig. 4 showing the average result of CPU usage
in userspace. We found CPU usage in the three network
storage affected with different storage block size. NFS
showing low CPU usage in random read, random write, and
sequence read workloads. However, NFS in sequence writes
using high CPU resources.

GlusterFS having high usage CPU resources when running
sequence read workloads with around 25% - 30% CPU
usages. GlusterFS with random read, random write and
sequence write are affected with storage block size as we can
see in Fig. 4 GlusterFS CPU usage lower with bigger storage
block size. GlusterFS and NFS having a similar pattern with
CPU usage is decreasing with bigger storage block size. In the
meantime, MooseFS having increase CPU usage in 32k block
size workload and CPU usage dropped with bigger storage
block size.

D. NFS Performance

The results of the random read scenario transfer rate
performance test on NFS show that 64k blocks have the
highest yield, 32k in second place, then 16k and 8k in third
and fourth place, as shown in Fig. 5. The results of the random
write scenario transfer rate performance test on NFS show that
16k blocks have the highest yields, 32k in second place, then
64k and 8k in third and fourth place. The results of the transfer
rate performance test for the sequence read scenario on NFS
show that 64k blocks have the highest yield, 16k in second
place, then 32k and 8k in third and fourth place. The results of
the transfer rate performance test for the sequence write
scenario on NFS show that 32k blocks have the highest yield,
64k in second place, then 16k and 8k in third and fourth place.

(a) Average IOPS for Random Read and Write.

(b) Average IOPS for Sequence Read and Write.

Fig. 3. Average IOPS from Read and Write for Sequence and Random Workloads.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

454 | P a g e

www.ijacsa.thesai.org

(a) Average CPU (usr%) for random read and write

(b) Average CPU (usr%) for sequence read and write

Fig. 4. Average CPU usage in Network Storage Performance with different Block Size.

Fig. 5. Transfer Rate Performance from NFS Benchmark.

The results of the random read scenario IOPS performance
test on NFS show that 8k blocks have the highest results, 64k
in second place, then 32k and 16k in third and fourth place.
The results of the IOPS performance test in the random write
scenario on NFS show that 8k blocks have the highest yield,
16k in second place, then 32k and 64k in third and fourth
place, as shown in Fig. 6.

The IOPS performance test results in the sequence read
scenario on NFS show that 8k blocks have the highest yields,
16k in second place, then 32k and 64k in third and fourth
place. The IOPS performance test results in the sequence write
scenario on NFS show that 64k blocks have the highest yield,
8k is in second place, then 16k and 32k are in third and fourth
place.

Fig. 6. IOPS Performance in NFS Workload.

The results of the CPU performance test (usr%) for the
random read scenario on NFS show that the 16k block has the
lowest results, 64k is in second place, then 32k and 8k are in
the third and fourth place. The results of the cpu performance
test (usr%) for the random write scenario on NFS show that
the 64k block has the lowest yield, 32k is in second place, then
16k and 8k are in the third and fourth place. The results of the
CPU performance test (usr%) in the sequence read scenario on
NFS show that 64k blocks have the lowest results, 32k are in
second place, then 16k and 8k are in the third and fourth
places. The results of the CPU performance test (usr%) in the
sequence write scenario on NFS show that 64k blocks have
the lowest results, 16k are in second place, then 32k and 8k
are in the third and fourth places, as shown in Fig. 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

455 | P a g e

www.ijacsa.thesai.org

Fig. 7. CPU (usr%) Performance in NFS Benchmark.

E. MooseFS

Benchmark of the random read scenario transfer rate
performance test on MooseFS show that the 64k block has the
highest yield, 32k is in second place, then 16k and 8k are in
the third and fourth place. The results of the random write
scenario transfer rate performance test on MooseFS show that
64k blocks have the highest yield, 32k in second place, then
16k and 8k in third and fourth place, as shown in Fig. 8.

The results of the transfer rate performance test for the
sequence read scenario on MooseFS show that 32k blocks
have the highest yield, 64k in second place, then 16k and 8k in
third and fourth place. The results of the transfer rate
performance test for the sequence write scenario on MooseFS
show that 64k blocks have the highest yield, 32k in second
place, then 16k and 8k in third and fourth place.

The results of the random read scenario IOPS performance
test on MooseFS show that the 16k block has the highest
yield, 64k in second place, then 32k and 8k in third and fourth
place. The results of the IOPS performance test in the random
write scenario on MooseFS show that 16k blocks have the
highest yield, 32k in second place, then 64k and 8k in third
and fourth place. The IOPS performance test results in the
sequence read scenario on MooseFS show that 8k blocks have
the highest yields, 16k in second place, then 32k and 64k in
third and fourth place. The IOPS performance test results in
the sequence write scenario on MooseFS show that 8k blocks
have the highest results, 16k are in second place, then 32k and
64k are in third and fourth places, as shown in Fig. 9.

Fig. 8. Average Performance Transfer Rate in MooseFS with different

Blocksize and Workload.

Fig. 9. Average IOPS in MooseFS with different Block Size and Workload.

The results of the CPU performance test (usr%) for the
random read scenario on MooseFS show that 64k blocks have
the lowest results, 8k is in second place, then 32k and 16k are
in third and fourth place. The results of the cpu performance
test (usr%) of the random write scenario on MooseFS show
that the 8k block has the lowest result, 64k is in second place,
then 32k and 16k are in the third and fourth place. The results
of the CPU performance test (usr%) in the sequence read
scenario on MooseFS show that the 64k block has the lowest
results, 32k is in second place, then 16k and 8k are in the third
and fourth place. The results of the CPU performance test
(usr%) in the sequence write scenario on MooseFS show that
64k blocks have the lowest results, 32k are in second place,
then 16k and 8k are in the third and fourth places, as shown in
Fig. 10.

F. Random Read Workload in NFS, GlusterFS and MooseFS

In the random read test, GlusterFS has good performance
at data transfer speed and bandwidth, resulting in higher iops
than NFS and MooseFS. The high performance of iops causes
the runtime value to be smaller, which means that in jobs that
require random data reading, GlusterFS can complete it
quickly. GlusterFS's speed in handling reading work can be
influenced by the GlusterFS architecture that propagates
metadata and breaks data files into smaller data on all
machines in one cluster of distributed storage systems [6]. The
performance results from NFS and MooseFS in the random
data reading test produce almost the same values in blocks of
16k, 32k, and 64k except for CPU usage.

Fig. 10. Average CPU (usr%) in MooseFS with different Block Size and

Workload.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

456 | P a g e

www.ijacsa.thesai.org

The use of CPU resources in the random read test shows
that NFS uses the least amount of CPU resources on both the
user CPU and the CPU system. GlusterFS experienced a
decrease in user and system CPU resource usage according to
the larger block being tested. MooseFS in this study
experienced an increase in CPU user usage in 16k blocks and
after that experienced a decrease in CPU user usage on 32k
and 64k blocks. The use of the CPU system on NFS,
GlusterFS and MooseFS tends to increase in proportion to the
larger the data storage block.

G. Random Write Workload in NFS, GlusterFS and MooseFS

In the random write test on MooseFS, the transfer rate and
bandwidth performance always increase for each block tested,
resulting in a small runtime. The lowest performance on the
random write test is GlusterFS. On the performance of NFS
IOPS, the performance decreases on each block.

MooseFS on random write testing with high bandwidth
and transfer rate performance results in high CPU system and
user usage. In the random write test on MooseFS, it is carried
out in parallel which is synchronized by the master server and
therefore must be sequential so that writing data requires a lot
of processing. So the CPU load depends on the number of
operations and RAM on the total number of files and folders,
not the total size of the files themselves. RAM usage is
proportional to the number of entries in the file system
because the master server process stores all metadata in
memory [7].

H. Sequence Read in NFS, GlusterFS and MooseFS

Testing on a distributed file system on sequence read
performance resulted in different performance from the
random read. The results of this test show that GlusterFS has
the best performance for sequential file reading. The value of
GlusterFS bandwidth and transfer rate in the sequence read
test results in high-performance values. GlusterFS has
decreased performance on IOPS with each increase in the
block size of data storage so that GlusterFS tends to
experience a decrease in the system and user CPU resource
usage.

In MooseFS, the transfer rate and bandwidth performance
increase with each increase in the block being tested so that it
affects the CPU resource usage which also increases for each
block tested. In the NFS test results, the performance is below
GlusterFS and MooseFS. The bandwidth performance and
transfer rate appear to decrease in each block. The decline in
performance on NFS is caused by a bottleneck that occurs in
each block. When multiple NFS clients read data from an NFS
server, there may be a winner-lose pattern in which the
network bandwidth is unfairly distributed among clients. This
winner-lose pattern is included in an unexpected scenario
because in this experiment using the same tools and operations
in running the test.

I. Sequence Write in NFS, GlusterFS and MooseFS

In the sequence write test, NFS has better performance
when compared to MooseFS and GlusterFS which produce
almost the same test value. Based on the results of the NFS
test data, performance has decreased when writing data to data
storage with 64k blocks. Average CPU usage across all

distributed file systems tends to decrease as the data storage
block under test gets larger. The use of the CPU system on
NFS has increased along with the increase in bandwidth and
data transfer performance.

In MooseFS and GlusterFS, the performance of almost all
parameters is below that of NFS. In this experiment, the
performance of GlusterFS and MooseFS is below NFS
possible because of the metadata function that needs to be
processed and distributed in GlusterFS and MooseFS to all
servers so that there is a possibility of increasing execution on
the server to write data.

V. CONCLUSION

In this paper, a studied network attaches storage for web-
scale infrastructure proposed for data science environment.
Distributed data storage systems can assist in centralized data
storage for data science needs with a computing environment
with webscale technology. The distributed data storage
method has proposed by analyzing several distributed data
storage models, namely, NFS, GlusterFS, and MooseFS. The
parameter used in this study is the transfer rate, IOPS, and
CPU resource usage.

By testing the work of reading and writing data
sequentially and randomly, it found that GlusterFS's
performance was faster in reading data both sequentially and
randomly with the best performance using 64k block data
storage. MooseFS achieves the best performance on random
data read jobs using 64k blocks of power storage. NFS gets
the best results in random writing using 32k blocks of data
storage.

Performance of the distributed data storage system can be
affected by each size of the data storage block. With larger
data storage block used, faster the performance can be in
terms of data transfer and execution of operations on the data.
However, this also implies greater use of resources.

Based on the test results, it can be concluded that each
distributed data storage system has its advantages in every job.
GlusterFS can achieve good performance on data reading jobs,
NFS can obtain the best performance on data writing jobs in
order, and MooseFS achieves the best performance at reading
data sequentially.

ACKNOWLEDGMENT

The research has supported from Magister Program of
Computer Science, Department of Computer Science and
Electronics, Faculty of Mathematics and Natural Sciences,
Universitas Gadjah Mada. The work one part of the research
on GamaCloud infrastructures in the thesis work.

REFERENCES

[1] P. China Venkanna Varma, K. Venkata Kalyan Chakravarthy, V. Valli
Kumari, and S. Viswanadha Raju, “Analysis of a Network IO
Bottleneck in Big Data Environments Based on Docker Containers,” Big
Data Res., vol. 3, pp. 24–28, 2016, doi: 10.1016/j.bdr.2015.12.002.

[2] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data, 1 st. McGraw-Hill
Osborne Media ©2011.

[3] Mishra and A. K. Somani, “Host managed storage solutions for Big
Data,” no. February, 2018, doi: 10.13140/RG.2.2.19115.90406.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 3, 2022

457 | P a g e

www.ijacsa.thesai.org

[4] A. Leibovici, “Understanding Web-Scale Properties,” 2014.

[5] J. Wang, J. Yin, D. Han, X. Zhou, and C. Jiang, “ODDS- Optimizing
Data-locality Access for Scientific Data Analysis,” IEEE Trans. Cloud
Comput., 2017, doi: 10.1109/TCC.2017.2754484.

[6] B. Depardon, L. Mahec, S. Cyril, B. Depardon, L. Mahec, and S. Cyril,
“Analysis of Six Distributed File Systems,” 2013.

[7] Y. Fang, H. Zhu, and G. Lu, “Modeling and Verifying MooseFS in
CSP,” 2018 IEEE 42nd Annu. Comput. Softw. Appl. Conf., pp. 270–
275, 2018, doi: 10.1109/COMPSAC.2018.00043.

[8] E. Mohammed Mahmoud Nasef, and N Azaliah Abu Bakar, “Enterprise
Architecture “As-Is” Analysis for Competitive Advantage”,
International Journal of Advanced Computer Science and Application
(IJACSA), vol 11, issue 7, 2020.

[9] I. Shabani, E. Meziu, B. Berisha, and T. Biba, “Design of Modern
Distributed Systems based on Microservoces Architecture”,
International Journal of Advanced Computer Science and Application
(IJACSA), vol 12, issue 2, 2021.

[10] Lee, H. & Fox, G.C., 2019, Big Data Benchmarks of High-Performance
Storage Systems on Commercial Bare Metal Clouds, 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), 1–8.

[11] Inacio, E.C., Barbetta, P.A., Systems, A., Inacio, C., Barbetta, P.A. &
Dantas, A.R., 2017, A Statistical Analysis of the Performance
Variability of Statistical Analysis of the on Performance Variability of
Read / Write Operations Parallel File Systems, Procedia Computer
Science, 108, 2393–2397. http://dx.doi.org/10.1016/j.procs.2017.05.026.

[12] Sandberg, R., 2000, The Sun Network Filesystem : Design ,
Implementation and Experience, , 1–16.

