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Abstract—Brain functions are required to be read for curing 

neurological illness. Brain-Computer Interface (BCI) connects 

the brain to the digital world for brain signals receiving, 

recording, processing, and comprehending. With a Brain-

Computer Interface (BCI), the information from the user’s brain 

is fed into actuation devices, which then carry out the actions 

programmed into them. The Internet of Things (IoT) has made it 

possible to connect a wide range of everyday devices. 

Asynchronous BCIs can benefit from an improved system 

architecture proposed in this paper. Individuals with severe 

motor impairments will particularly get benefit from this feature. 

Control commands were translated using a rule-based 

translation algorithm in traditional BCI systems, which relied 

only on EEG recordings of brain signals. Examining BCI 

technology’s various and cross-disciplinary applications, this 

argument produces speculative conclusions about how BCI 

instruments combined with machine learning algorithms could 

affect the forthcoming procedures and practices. Compressive 

sensing and neural networks are used to compress and 

reconstruct ECoG data presented in this article. The neural 

networks are used to combine the classifier outputs adaptively 

based on the feedback. A stochastic gradient descent solver is 

employed to generate a multi-layer perceptron regressor. An 

example network is shown to take a 50% compression ratio and 

89% reconstruction accuracy after training with real-world, 

medium-sized datasets as shown in this paper. 

Keywords—Brain-computer interface; machine learning; 

internet of things; EEG; system architecture 

I. INTRODUCTION 

Brain-Computer Interface (BCI) also known as Mind 
Machine Interface (MMI), is a technology that connects the 
brain to a computer or other electronic device in order to 
investigate the normal brain’s functioning, including its 
original output level and muscle pathway [1]. In order to create 
a link between the brain and the computer, two requirements 
must be met: 

 Various states of the brain should be distinguished. 

 Detection and classification of similar features 
practically. 

It is possible to monitor brain activity using a variety of 
methods, the most common of which being 
Electroencephalograms (EEG), Electrocardiograms, Magnetic 
Resonance Imaging, Magneto-Encephalograms, and Positron 
Emission Tomograms (PET) [2]. 

A variety of approaches can be used to detect or measure 
these electrical and chemical impulses. There are issues and 
advancements to be made, just like with any other system, so it 
works on them. Both the efferent and afferent systems may be 
affected. The brain can be connected directly to its 
environment if the neurological system is effectively bypassed 
[3-5]. This can be done through BCI. While first designed to 
provide alternative methods of communication for those with 
disabilities, these devices now have the potential to provide 
“other sensations” for those who are unable to do so. Brain-
computer interfaces (BCIs) provide direct communication 
between the brain and the world around it. 

A patient can use a BCI to control a specific computer 
application, such as a computer cursor or a robotic limb. 
Patients with lock-in syndrome, for example, can benefit from 
developing a communication network even when they are 
paralyzed. Many researchers have been working on BCIs to 
capture and analyze EEG patterns associated with mental states 
throughout the past few years [6, 7, 8, 9, 10]. EEG activity in 
the left side of the motor cortex is associated with visualizing a 
change in the posture of the right hand. Other often employed 
mental exercises include moving the left hand, toes, and tongue 
around the mouth and feet. The block diagram for BCI can be 
shown in Fig. 1. 

 

Fig. 1. BCI Framework. 
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A Brain-Computer Interface (BCI) based on 
electroencephalography (EEG) is used in this study. Depending 
on where the electrode is placed, there are two main 
approaches to collecting EEG data. Non-invasive electrodes 
are attached to the scalp while invasive electrodes are attached 
directly to the cerebral cortex [11]. The non-invasive approach 
is less intrusive and more portable than fMRI, making it suited 
for performance arts. 

Improvements in biomedical signal processing have led to 
Electroencephalography (EEG) signals being utilized to 
diagnose brain illnesses and widely used in Brain-Computer 
Interface (BCI) devices. In order to operate external equipment 
like a wheelchair or a computer, BCI employs electrical 
impulses from the brain, in the form of EEG waves, as an 
input. Electroencephalography (EEG) is a method for 
recording electrical brain wave activity along the scalp as a 
result of neural activation in the brain. An 
electroencephalogram (EEG) is a short-term recording of the 
electrical activity of the brain for a short period of time 
(usually 20–40 minutes), which is accomplished by attaching 
electrodes to the scalp of the subject. EEG can be used to 
diagnose a variety of neurological illnesses, although it is most 
commonly used to treat epilepsy. EEG can be useful in the 
early stages of some serious disorders, such as coma, brain 
death, and encephalopathies. There are various different 
diseases for which electroencephalography (EEG) can be used 
as a first-line diagnostic approach. EEG is still the most 
commonly used method for diagnosing even if MRI and CT 
scans are increasingly prevalent currently. In the EEG 
approach, evoked potentials (EP) are utilized to average the 
EEG activity to stimulus responses in visual, auditory, or 
somatosensory activity. In addition, event-related potentials 
(ERPs) are employed in cognitive sciences, psychophysiology, 
and cognitive psychology for averaging EEG responses to 
complicated stimuli. 

This paper has been organized in five sections. Section 1 is 
introduction that refers the basics and contexts of research with 
introduction to various ongoing and future aspects. Section 2 is 
for background study and research that mentions the 
contributions of significant research in the field, their relevance 
and reference to this research work. Section 3 is about research 
methodologies that specify the adopted research processes and 
methods to carry out this research work. Section 4 and 
Section 5 are about implementation and results, and 
conclusion, respectively. 

II. BACKGROUND STUDY AND RESEARCH 

In order to identify changes in the surface of the head as a 
result of electrical activity in the brain, EEG is largely used in 
neuroscience and clinical neurological procedures. Wet 
(gelled) silver/silver chloride electrodes (Ag/AgCl), typically 
with the help of an EEG cap, are used in the state-of-the-art 
approach. It takes a long time and a lot of effort to get ready for 
an event like this. Electrolyte stability also limits the wear time 
(gels). Brain-computer interfaces (BCIs) are a new field of 
application for EEG [12-15]. Silver-chloride-coated metal 
discs, often composed of stainless steel, tin, gold, or silver, are 
applied to the scalp in specific places. The International 10/20 
system is used to specify the positions. All electrodes are 

numbered, and a letter is assigned to each one. The letter 
identifies the location of the electrode in relation to the brain. 
Examples include the F-Frontal lobe and T-temporal lobe. 

Dry contact electrodes must have acceptable hair layer 
penetration, biocompatibility, electrochemical stability, and 
signal quality comparable to typical wet electrodes in order to 
be viable. Aside from the long-term applicability and patient 
comfort that we strive for, we also want to ensure compatibility 
with bio-signal amplifiers, ease of use, and preparation time for 
patients [16]. As a result, three major types of electrodes have 
been created: Titanium nitride covers the first two gold multi-
pin electrodes as well as (ii) polyurethane multi-pin electrodes. 
In order to make gold multi-pin electrodes, the electrical 
precision brass pins are gold-coated and soldered to an epoxy 
baseplate. 

Fig. 2 depicts the four stages of the BCI configuration for 
this project, from data collection via EEG and analog-to-digital 
conversion to digital signal processing, feature selection, and 
control of external mechatronic devices [17]. In the first step, 
non-invasive EEG data is collected, and in the second step, 
digital EEG signals are processed with filters. Custom 
algorithms and mechatronics have been developed in the 
second and third phases to monitor the appearance of 
individual brain waves and produce the desired sounds. For 
PDR detection, a unique feature selection technique is used in 
the third phase. In the final stage, eight wirelessly connected 
modules of custom percussion instruments produce 
synchronized sounds [18]. As a result, the BCI system 
generates repetitive noises that prompt the performer to record 
reliable EEG data. 

OpenBCI’s high-quality open-source BCI solution is 
employed in this research. The system architecture is built 
using frameworks that are commonly used to run BCIs. 
OpenBCI’s STL files are used to 3D print the headgear used 
for the initial round of EEG data collecting [19, 20, 21, 22]. A 
Cyton board, an Arduino-compatible, eight-channel neural 
interface with a 32-bit processor, is attached to the headwear's 
rear. For example, the OpenBCI GUI can analyze the digitized 
EEG data from this board to remove artifacts and identify 
certain features. 

Analog signals are detected by placing electrodes on one’s 
scalp for EEG-based BCI. For use with the Ultra-Cortex Mark 
III-Nova and Ultra-Cortex Mark IV 3D-printed EEG headgear, 
electrodes are mounted according to International 10-20 system 
specifications [23]. Conductive silver chloride (AgCl) is used 
to coat the dry electrode, making it easier for the performer to 
use and more durable for long-term performances. 

 

Fig. 2. System Architecture for Four Stages of the BCI Configuration. 
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III. RESEARCH METHODOLOGY 

The Welch method uses windowed Fourier transformations 
of signal segments to calculate the Fourier spectral 
characteristics. Using only frequency data is the fundamental 
shortcoming of the method, as it does not use time-domain data 
[24]. However, studies have shown that EEG signals can be 
improved by combining frequency and time-domain data. The 
band power in multiple frequency bands is calculated from the 
AR spectrum and the power sum is used as independent 
parameters. Fig. 3 shows the block diagram of the proposed 
methodology for this research work. 

A. Classification 

Research on BCI-specific machine learning models using 
data from children with impairments is few, to our knowledge. 
It was in 2020 that Aydin applied LDA, KNN, and SVM to 
two fNIRS datasets containing typical developing adults 
(average age 28.5 3.7 years). For motor imagery fNIRS-BCI 
signals, LDA showed the maximum classification accuracy, 
while SVM had the best performance for mental arithmetic. 
The best KNN outcomes were achieved with a low k. It was 
determined that the number of features should be proportional 
to the value of k in this investigation [25]. When compared to a 
single powerful learner, ensemble classifiers have improved 
classification accuracy. SVM, LDA, and rLDA were compared 
against bagging using four different data sets involving motor 
imagery, mental arithmetic, and word production tasks. There 
were no significant differences in bitrate or classification 
accuracy between bagging and alternative algorithms across 
the datasets. According to their last remarks, they urged the 
development of novel ensemble classification methods. Seven 
models were chosen in this work because of the lack of 
research on classifying learners for a fNIRS-BCI. Based on 
past research, we chose KNN, SVM, LDA, and Bagging as our 
top four models. Random Forests, AdaBoost, and Extra Tree 
were introduced to the ensemble of classifiers. 10-fold 
stratified cross-validations were conducted on each model's 
hyperparameters to measure classification accuracy [26, 27, 
28]. Accuracy, sensitivity, and specificity were used to 
measure classification performance. 

B. Feature Selection 

Spontaneous electrical activity in neurons, as measured by 
EEG, is examined in general for its amplitude and frequency. 
Using scalp EEG, the experiment collects data and focuses on 
the frequency of the scalp EEG in the visual cortex. EEG data 
is transformed from the time domain to the frequency domain 
using the fast Fourier transform (FFT) technique. To monitor 
PDR and control sound mechanisms, the Open Sound Control 
protocol uses a special algorithm that analyses the frequency 
information from the digitalized EEG data after the FFT 
method is applied in the GUI of OpenBCI (OSC). However, 
EEGs can vary greatly depending on the individual, their age, 
their gender, and their overall health. There is a 7.5-15Hz PDR 
tolerance. As we get older, the EEG slows down, and this 
development is more pronounced for males than for women. 
Young people's EEG data isn’t yet mature because they’re 
under the age of 26. Children under the age of 8 Hz can have a 
PDR that is slower than 8Hz. As a result, it's critical to check 
the performer’s PDR scope before running the function. 

 

Fig. 3. Block Diagram for the Proposed Methodology. 

C. Dataset 

The proposed approaches are evaluated using the ECoG 
recordings from Dataset I of the BCI Competition III, as 
depicted in Fig. 4. BCI experiment participants conducted 
hypothetical motions of their left little finger or tongue to 
record motor imagery signals. Recorded ECoG signals were 
sampled at 1000 Hz. Amplification and storage at microvolt 
values made it easier to classify the recorded potentials. 
Sample recordings of either imaginary finger or tongue 
movement were recorded for three seconds. To avoid visual 
evoked potentials, the recording began 0.5 seconds after the 
visual round ended. 

D. Auto-Regressive Features 

Automatic regression (AR) models are used to represent 
random processes in statistics and signal processing, and they 
are particularly useful for modeling time-varying processes. 
Output variables are modeled by the AR to be reliant on their 
prior values. AR denotes an autoregressive model with order p. 
To put it another way, the AR (p) model is 

     ∑        
 
                  (1) 

The backshift operator B can be used to write this in the 
same way: 

     ∑    
    

 

   
               (2) 

So that,  ( )                     (3) 

Thus, an AR model can be thought of as the output of a 
white noise-inputted all-pole infinite impulse response filter. 

E. Data Acquisition 

To ensure accuracy and quality, it compares the target 
signal to background noise. Once this digital brain data has 
been decoded into the intended action, it can be classified, and 
the necessary attributes calculated and selected from the neural 
data. 

 

Fig. 4. The ECoG Recordings from Dataset I of the BCI Competition III. 
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Fig. 5. Neural based Data Acquisition for Machine Learning. 

In addition, optional feedback is sent to BCI users (which 
generates brain signals) and the cycle is again repeated. An 
anti-clockwise motion (as seen in Fig. 5) stimulates the 
simulation of data to begin. 

The input from the stimulation data decoder is processed 
using various machine learning (ML) methodologies (neural 
networks). It’s important to note that the generated input 
provides high-level information about the multimedia devices 
that will be triggered, their frequencies, and the timing of their 
activation. 

BCI technology-related parameters were subsequently 
specified using thresholding patterns that received neural input 
in the intended action and generalized form have been shown 
in the Fig. 6. To display multimedia-based actions, the process 
moves from brain data simulation to user interface and 
interactivity. 

 

Fig. 6. Neural Networks based Threshold or Firing Pattern. 

IV. IMPLEMENTATION AND RESULTS 

The computer-based assessment test of visuomotor skills 
was divided into two blocks, one standard, and one non-
standard for participants. This necessitated the use of 
cognitive-motor integration in order to treat the condition 
(CMI). Participants had to navigate a cursor as quickly and 
accurately as possible from the tablet’s center to one of four 
peripheral goals using their dominant index finger (up, down, 
left, or right). Users clicked on an 8 millimeter wide solid 
green circle in the middle of the screen to begin their 
experiment. Upon seeing an open green 10 mm diameter 
peripheral target after a 200ms center hold period, the 
participant was given the "Go" signal and was free to begin 
moving. A green cursor was positioned over an open green 
target by sliding the touch screen with one’s fingers. 

Upon reaching the peripheral goal and remaining there for 
500 milliseconds, the experiment was over. Next, the central 
target was presented after a 200-ms intertrial interval. At 37.5 
millimeters from the tablet’s central starting point, the tablet’s 
peripheral targets were (center-to-center distance). Overall, 
there were 20 trials per task, with five trials for each goal. 
Participants used their fingers to move the cursor under their 
fingers to engage directly with the target in the conventional 
condition. As a result of the non-standard CMI scenario, a 
white line separated the display into two halves. Participants 
had to pay attention to the tablet’s upper half for the targets and 
cursor. Participants had to glide their fingers along the tablet 
screen’s bottom to move the cursor. 

 

Fig. 7. Proposed Methodology for the Classification of Cognitive Load 

using EEG Data. 

The collected data will be used to improve classification 
accuracy on IVa datasets in our experimental assessment. 
Fig. 7’s SCU architecture is modified to categorize these 
images using an SSVEP-based model. As a data reference 
channel, we employed the frontal cortex (Fz) instead of the 
nine sensor channels originally used to simplify SSVEP 
classification training. They demonstrated that this model 
outperformed both standard approaches and time-series 
specialized models like Recurrent Neural Networks when it 
came to recognize SSVEP EEG signals (RNN). All tests utilize 
one-dimensional convolutional layers as depicted in Fig. 8, 
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batch normalization, and maximum pooling. After applying a 
bandpass filter between 9 and 60 Hz, as well as another filter at 
50 Hz, the EEG channels are initially pre-processed before the 
data is eventually normalized between 0 and 1. 

 

Fig. 8. Layer Representation of Neural Networks. 

For the experiments, dataset IV has been used from the BCI 
competition. The accuracy is the actual fraction of the samples 
that are correctly classified from the samples obtained in (4): 

          
     

           
             (4) 

The Precision is the percentage of relevant samples, 
evaluated as in (5): 

          
  

     
              (5) 

The Recall measures the positives identified correctly as in 
(6): 

       
  

     
               (6) 

Where, TP-True Positive, TN-True Negative, FP-False 
Positive and FN-False Negative. 

Based on the findings provided in Table I, it appears that 
the Random Forest method outperformed the Neural Network 
and Gradient Boosting classifier. An individual’s maximum 
level of accuracy was 70.2 percent, which was a reasonable 
improvement above the random guess accuracy of 33 percent. 
Because we used to leave one out cross-validation in this 
situation, the inter-subject accuracy of 56.8% was also quite 
encouraging. It was shown that training a model on an 
individual’s data yielded better results for intra-class 
classification than utilizing data from various persons, which 
could raise concerns about privacy. 

The use of the supervised forward feature selection method 
resulted in considerable improvements to our results. Reducing 
60 feature set from 60 to 10 was done by removing 
unnecessary and distracting features. We were able to enhance 
our performance on the validation set as a result of our 
methodology’s ability to reduce overfitting. This method had a 
10 percent improvement in average accuracy and the maximum 
accuracy we could achieve with wearable devices was 80.6 
percent, well above the accuracy of any previous method for 
EEG classification based on RGB colors. Fig. 9 and 10 
represent the graphs for accuracies at 200ms time window 
using all and 10 features respectively. The classifier was able 
to correctly classify 72% of the subjects on average. The 
accuracy went up to 95% of the time Intra-subject 

classification was likewise superior to inter-subject 
classification in this situation. The accuracy of inter-subject 
classification was raised by 1.3 percent. In this situation, the 
Random Forest approach outperformed both the neural 
network and the gradient boosting techniques. Table II shows 
the results. 

TABLE I. ACCURACY USING ALL FEATURES AT 200MS 

Metrix SVM KNN 

Gradie

nt 

Boost 

Rando

m 

Forest 

Logistic 

Regressio

n 

Neural 

Networ

k 

Inter-

Subject 

Accuracy 

0.456 0.446 0.572 0.668 0.508 0.590 

Average-

Subject 

Accuracy 

0.574 0.514 0.708 0.725 0.606 0.623 

Best-

Subject 

Accuracy 

0.678 0.613 0.769 0.802 0.700 0.800 

 

Fig. 9. Graph for accuracy using all features at 200ms 

TABLE II. ACCURACY WITH 10 FEATURES AT 200MS TIME WINDOW 

Metrix SVM KNN 
Random 

Forest 

Gradient 

Boost 

Logistic 

Regression 

Neural 

Network 

Inter-

Subject 

Accuracy 

0.466 0.477 0.681 0.511 0.488 0.575 

Average-

Subject 

Accuracy 

0.587 0.592 0.820 0.697 0.592 0.613 

Best-

Subject 

Accuracy 

0.678 0.613 0.906 0.820 0.690 0.866 

 

Fig. 10. Graph for Accuracy with 10 Features at 200ms Time Window. 
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Two types of classification were carried out: intra-subject 
and inter-subject. We used to leave out one subject cross-
validation for the second classification, where we trained the 
model using seven subjects’ data and validated it using a single 
subject’s data, then repeated it for all subjects. The average 
cross validation accuracy, ROC-AUC, and MCC of our model 
were used to assess its performance. The original and 
condensed datasets are also included in our results. Fig. 11 and 
12 show the average accuracy, the average AUC score, and the 
average MCC score for both intra-subject and inter-subject 
categorization. Our greatest results were achieved in a 200ms 
time frame. A total of 200ms of experimentation was placed 
throughout this time. All peak frequencies and its harmonics 
have been shown in the Fig. 13 for fast Fourier transform 
(FFT) method that has an important role in processing for the 
discrete signals. 

 

Fig. 11. Average Accuracy, ROC-AUC and MCC Scores for Inter-Subject 

Categorization. 

 

Fig. 12. Average Accuracy, ROC-AUC and MCC Scores for Intra-subject 

Categorization. 

 

Fig. 13. Peak Frequency and its Harmonics for FFT throughout all Nine 

Disciplines. 

V. CONCLUSION 

To help people with disabilities, brain-computer interfaces 
(BCI) have been developed. However, new uses for this 
technology have emerged, such as the expansion of human 
potential. This work presented novel system architecture for 
the BCI, and this article has shown to be easily configured and 
modular to access the different EEG signals. Locked-in 
individuals have no other way to communicate or exert control 
over their surroundings but through the use of a Brain-
Computer Interface (BCI). When conducting a BCI, 
electrocorticography (ECoG) gives superior resolution to non-
invasive methods. EEG signals, on the other hand, have a 
limited range of signal amplitude and bandwidth. ECoG can 
identify gamma activity more quickly than EEG because these 
high frequencies are more closely linked to specific sections of 
the motor, linguistic, and intellectual functions. Classification 
is done using a variety of machine learning algorithms. So, 
SVMs can be used to make generalizations that are good out of 
sample, if the parameters are specified correctly. This suggests 
that SVMs can be robust, even if the training sample has some 
bias, by selecting an acceptable generalization grade. 
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