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Abstract—Forecasting the behaviour of various wave 

parameters is crucial for the safety of maritime operations as 

well as for optimal operations of wave energy converter (WEC) 

sites. For coastal WEC sites, the wave parameters of interest are 

significant wave height (Hs) and peak wave period (Tp). 

Numerical and statistical modeling, along with machine and deep 

learning models, have been applied to predict these parameters 

for the short and long-term future. For near-future prediction of 

Hs and Tp, this study investigates the possibility of optimally 

training a Long Short-Term Memory (LSTM) model on 

historical values of Hs and Tp only. Additionally, the study 

investigates the minimum amount of training data required to 

predict these parameters with acceptable accuracy. The Root 

Mean Square Error (RMSE) measure is used to evaluate the 

prediction ability of the model. As a result, it is identified that 

LSTM can effectively predict Hs and Tp given their historical 

values only. For Hs, it is identified that a 4-year dataset, 20 

historical inputs, and a batch size of 256 produce the best results 

for three, six, twelve, and twenty-four-hour prediction windows 

at half-hourly step. It is also established that the future values of 

Tp can be optimally predicted using a 2-year dataset, 10 historical 

inputs, and a 128-batch size. However, due to the much dynamic 

nature of the peak wave period, it is discovered that the LSTM 

model yielded relatively low prediction accuracy as compared to 

Hs. 
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peak wave period; LSTM 

I. INTRODUCTION 

Ocean or sea waves carry a tremendous amount of kinetic 
energy and are considered an important source of renewable 
energy [1]. These waves have the highest energy density 
among available renewable energy sources [2]. Among the 
different types of ocean waves, it is the wind-generated wave 
that is almost always visible on the sea surface [3]. Maritime 
navigation, commercial, renewable power generation, and non-
commercial activities are thus subject to prevailing wind-wave 
conditions and their future forecast. To describe the nature of 
wind-waves, the complex association of various wave and 
weather parameters needs to be studied. Due to their stochastic 
nature, modelling and forecasting of wind-waves using 
deterministic equations is considered a challenging task [4]. 

Numerical wave modelling [5][6][7], statistical modelling 
[8] [9], as well as machine and deep learning methods 
[10][11][12][13] have been applied to study and forecast the 
nature of wind-waves for short-term and long-term time 

periods. Despite its wide application, it has been reported that 
numerical modelling requires high computation power and a 
large amount of data [14]. As an alternative, machine learning 
models that have outperformed statistical models [9] and 
execute faster than numerical wave models [15] can be used as 
a surrogate for numerical modelling [14]. 

In this study, a deep learning model, specifically long short-
term memory (LSTM), is evaluated to forecast the future 
values of two important wave parameters, i.e., significant wave 
height (Hs) and peak wave period (Tp) [16] for the near-shore 
WEC site. 

The paper is divided into the following sections: Section II 
reviews the literature on wave energy converter, and recent 
machine and deep learning studies on wave parameters 
prediction. In Section III, the problem statement is defined. 
Section IV describes the methodology by explaining the study 
area selection criteria, dataset preprocessing and arrangement 
steps, hardware and software setup, the LSTM model and its 
parameters, and evaluation criteria. Results and related 
discussion are presented in Section V. Finally, in Section VI, 
the conclusion and future work is discussed. 

II. LITERATURE REVIEW 

A. Wave Energy Converter 

A wave energy converter (WEC) generates electric energy 
by converting the kinetic energy of sea waves into mechanical 
energy, which subsequently runs the electric generators to 
generate electricity. Based on their design principles, a wave 
energy converter can be divided into three categories [17]: 

1) Attenuator: This type of WEC rides the waves in 

parallel to the predominant wave direction to generate energy. 

2) Point absorber: The point absorber WEC is a floating 

or submerged structure. It heaves up and down relative to the 

incident wavelength to generate energy. 

3) Terminator: The terminator WEC produces energy by 

physically intercepting a wave by having its principal axes 

parallel to the wave direction. 

The power generation efficiency of a WEC is highly 
dependent on prevailing wave conditions and mostly affected 
by significant wave height (Hs), peak energy wave period (Tp) 
and wave energy period (Te) [16]. The prediction of these 
parameters plays an important part in forecasting energy 
potential and generation, and as well as the operational safety 
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of the WEC site. In a recent study, it has been reported that the 
commercial deployment of WECs still remains low [18]. 
Hence, there is still a lot of room for research and development 
in various aspects of the WEC echo system, including wave 
parameter forecasting using alternative approaches such as 
machine and deep learning. 

B. Wind-Wave Parameters Forecasting using Machine 

Learning Models 

Recently, various machine learning techniques have been 
applied to forecast wind-wave parameters and sea weather. 
One of such studies conducted by Ali et. al. [19] forecasted 
half-hourly peak energy wave period (Tp) using the extreme 
learning machine (ELM), which is a training algorithm for 
single hidden layer feedforward neural network (SLFN). The 
study compared the results of ELM with five other deep 
learning and linear regression models, including recurrent 
neural network (LSTM). A six-year record of peak energy 
wave period was used to train and test the models. An 
interesting finding was presented, which indicates that for Tp 
forecasting, deep learning models (i.e., CNN and LSTM) 
didn’t perform well as compared to ELM. For example, in the 
North Moreton Bay region, the study reported that ELM 
produced a higher R value as compared to CNN and RNN (i.e., 
ELM = 0.963, CNN = 0.932, and RNN = 0.928). Similarly, the 
ELM model resulted in a lower RMSE value as compared to 
CNN and RNN (i.e., ELM = 0.52, CNN = 0.98, and RNN = 
1.24). This study has established that ELM is the better choice 
for half-hourly Tp forecasting. However, the study did not go 
beyond the half-hourly forecast of Tp and how LSTM might 
perform in such a case. Additionally, the study's scope was 
limited and didn’t consider forecasting another important wave 
parameter of interest, i.e., significant wave height. 

In the work presented by Fan, Xiao, and Dong [11], an 
LSTM network was proposed to predict near-future significant 
wave height. The study trained the proposed model on wave 
datasets acquired from ten different locations across the globe. 
Keeping in consideration the gradual development of wave 
height, six parameters were chosen as inputs to the LSTM 
model. These parameters were wind direction, wave height one 
hour ago, and wind speed at 1, 2, 3, and 4 hours ago. The study 
proposed a simple LSTM model with one hidden layer and one 
output layer. The results of the LSTM model were compared 
with five other machine and deep learning models. The study 
reported superior prediction performance when compared to 
the back propagation neural network, extreme learning 
machine, support vector machine, residual network, and 
random forest algorithm. The study suggests using one year of 
data for one-hour forecasting and two years of data for six-hour 
forecasting. Additionally, the study advocates the inclusion of 
wind speed data as a factor to improve the forecasting 
efficiency of significant wave height. However, this study has 
not considered prediction of an important parameter of interest, 
i.e., the peak wave period. 

A long-term (i.e., up to two years) significant wave height 
and peak wave period prediction method based on XGBoost 
and LSTM models was presented by Hu et. al. [15]. The study 
trained and tested the models on hourly data collected for Hs, 
Tp and surface wind over a span of 24 years. The surface wind 

parameters (i.e., speed and direction) were used as inputs for 
each model. The models then predicted Hs and Tp values over a 
span of two years. When compared to the numerical wave 
model WAVEWATCH III (WW3), the results showed that 
machine learning models exhibited an edge over numerical 
model in terms of faster execution. As compared to LSTM and 
WW3, the study reported lower Mean Absolute Percentage 
Error (MAPE) values for XGBoost for both target parameters. 
The study also reported that a tree-based model (i.e., XGBoost) 
came to saturation on the training data beyond 5 years. 
Additionally, it was found that the LSTM model yielded 
improved prediction performance on larger dataset. The study 
concludes that XGBoost is preferable if limited training data is 
available. 

Kim et. al. [13] proposed an interesting technique to predict 
ocean weather by converting 1D ocean data into a 2D image 
and applying convolutional LSTM (ConvLSTM) to predict 
eight ocean weather parameters after one week. The method 
uses the AutoEncoderis for its effectiveness in removing noise 
from data, thus optimizing the training process of ConvLSTM. 
The model took eight parameters as an input. Six of the 
parameters have 20-year of data, while the remaining two have 
4-year of data. The study predicted ocean weather for a 
window of one week with an average error of 6.7%. However, 
this study does not include significant wave height and peak 
energy wave period as target prediction parameters. 

It has been observed in these studies that 

1) Generally, datasets covering various wave and weather 

parameters across multiple years are used to train and test the 

models [19][15][13]. 

2) LSTM and its variants have shown superior forecasting 

accuracy across different time frames and on various sizes of 

training dataset [11] [15] [13]. 

Given the recent applications of LSTM in wave parameters 
forecasting problems, for a near-shore wave energy converter 
site, this study proposes to identify the wave parameters (i.e., 
Hs and Tp) prediction capability of an LSTM model using 
historical values of target parameters only. Hence, a problem 
statement is formulated and discussed in succeeding section. 

III. PROBLEM STATEMENT 

Sea surface waves, or wind-waves, are generally produced 
by the wind blowing over large stretches of water [3]. These 
waves carry a tremendous amount of kinetic energy, which can 
be converted into electricity by using a wave energy converter 
(WEC). Due to its stochastic nature, forecasting various 
parameters of wind-waves is a challenging task that requires 
high computational power and a large amount of time-series 
data. For wave energy converter sites, the wave parameters of 
interest are identified as being significant wave height (Hs), 
peak wave period (Tp), and wave energy period (Te) [16]. For 
near-coast wave energy converter sites, the parameters of 
interest are significant wave height (Hs) and peak wave period 
(Tp). Presented studies have shown that machine learning-
based prediction of these parameters (i.e., Hs and Tp) requires a 
large dataset consisting of various wave and weather 
parameters to train the model. Contrary to this approach, in this 
study, we attempt to answer the following research questions. 
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RQ1: For a near-shore wave energy converter site, can the 
stochastic nature of significant wave height and peak wave 
period be predicted using an LSTM model which is trained on 
their historical values only? 

RQ2: What is the minimum dataset size required to 
optimally train an LSTM model for the wave parameters (i.e., 
Hs and Tp) prediction problem? 

The following research objectives are hence defined. 

RO1: To develop, train and evaluate an LSTM model which 
predicts significant wave height and peak wave period given it 
is trained on their historical values only. 

RO2: To identify the minimal dataset size required to 
optimally train an LSTM-based model for wave parameters 
prediction. 

IV. METHODOLOGY 

A. Study Area 

The coastal areas of east Australia have a high potential for 
wave energy generation [19]. For this reason, this study has 
been designed on the data collected by a moored wave 
monitoring buoy (i.e., the Datawell 0.9m GPS Waverider 
buoy) deployed off the eastern coast of Australia at a latitude 
of 26° 33.960' S, and longitude of 53° 10.870' E. The location 
of the buoy is shown in Fig. 1. The buoy is approximately 8 km 
off the coast of Coolum Beach, Queensland, Australia, and the 
reported water depth at this site is 36 meters. The dataset is 
available under a Creative Commons Attribution 4.0 license 
and can be accessed at the Queensland Government’s open 
data portal (https://www.data.qld.gov.au/dataset/coastal-data-
system-waves-mooloolaba) [20]. 

B. Dataset Description 

To train and test the LSTM model, the wave parameters 
dataset from the years 2000 to 2014 was initially selected as a 
source dataset (Dsrc). The dataset has a temporal resolution of 
30 minutes and consists of 235,708 readings for six parameters, 
namely significant wave height (Hs), maximum wave height 
(Hmax), zero upcrossing wave period (Tz), peak energy wave 
period (Tp), peak direction related to true north (Pdir) and sea 
surface temperature (SST). However, upon initial investigation, 
it was found that Dsrc suffers from missing values in continuity 
(i.e., from March 2nd, 2009, till September 30th, 2009). In this 
case, as shown in Fig. 2., the application of data interpolation 
technique to such a long missing series resulted in undesirable 
values. Thus, a subset (Dsub) of Dsrc was identified for further 
investigation such that Dsub has a smaller number of missing 
data points in continuity. The features of Dsrc and Dsub are given 
in Table I. 

C. Data Preprocessing  

Since one of the objectives of this study is to investigate the 
forecasting of Hs and Tp based on their historical values only, 
thus as a first step, irrelevant parameters are dropped from the 
dataset (Dsub). 

 

Fig. 1. The Buoy's Location off the Coast of Coolum Beach. (Source: Google 

Maps). 

 

 

Fig. 2. Examples of Linear Trend in Interpolated Values due to the Large 

Number of Missing Data Points in Continuity. 

TABLE I. FEATURES OF BUOY DATASETS 

Dataset Location Latitude Longitude 
Water 

Depth 
Dataset Fields Time Period 

Data 

Instances 

Missing or Abnormal 

Values 

Dsrc 
Mooloolaba, 
Australia 

26° 33.960' 153° 10.870' 36 meters 
Date, Time, Hs, Hmax, 
Tz, Tp, Pdir, SST 

20-Apr-2000  
31-Dec-2014 

235,708 22,003 

Dsub 
Mooloolaba, 

Australia 
26° 33.960' 153° 10.870' 36 meters Date, Time, Hs, Tp 

1-Jan-2001 

31-Dec-2008 
136,481 3,774 
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In the second step, it is important to identify the magnitude 
of data anomalies and gaps at both temporal scale and 
parameter level. Thus, at the parameter level, a statistical 
analysis for data anomalies, such as negative or extremely large 
values, is conducted. The results of this investigation are 
presented in Table II, which indicates the absence of any such 
anomalies. 

TABLE II. SUMMARY OF THE DATASET (2001-2008) 

Measure Significant Wave Height Peak Wave Period 

Instances Count 136,481 136,481 

Mean 1.15 8.88 

Standard Deviation 0.49 2.50 

Minimum Value 0.22 2.05 

Maximum Value 5.88 19.22 

25% 0.81 7.02 

50% 1.05 8.74 

75% 1.39 10.55 

In the third step, to identify missing values on a temporal 
scale, a series at a half-hourly step size is generated for each 
day for 8 years starting from January 1st, 2001, to December 
31st, 2008. A date and time-based one-to-one mapping of 
values from Dsub is completed on the generated series. This step 
identified 3,774 missing values in Dsub. The magnitude of 
missing values was smaller than the magnitude of missing 
values in the dataset Dsrc. Interpolation is not applied to the 
segment in which a large series of missing data points is 
identified. For the rest of the data, the linear interpolation 
technique is applied to fill in the missing values. Some 
examples of the interpolated values are presented in Fig. 3. 

At this stage, as per recommendation of a previous study 
[11] and to answer RQ2, three datasets of 2,4 and 8-year data 
are created. These datasets are used to train, validate, and test 
the LSTM model. 

D. Hardware and Software Setup 

For the experiment, the LSTM model is written in the 
Python programming language using the Keras framework. For 
data processing, NumPy and the Pandas libraries are used. The 
programming environment is built on a Windows 10 Pro 
system running on an Intel (R) Core (TM) i7-9750H CPU at a 
clock speed of 2.60 GHZ. All experiments are executed on an 

NVIDIA GeForce RTX 2070 with a Max-Q Design GPU with 
8 GB of RAM. 

E. Long Short-Term Memory Model 

Long short-term memory (LSTM) is a variant of RNN that 
with the help of a forget gate solves the RNN’s problems of 
exploding and vanishing gradient [21]. In an LSTM, each time 
step is represented by an identical neural network cell, which 
by passing its non-linear activation to the next cell builds a 
system memory. This system memory is used to model time 
series data. In Fig. 4, the LSTM network cell is depicted. The 
equations for LSTM cell are given in equations 1-6. 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)            (1) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)            (2) 

𝑜𝑡 = 𝜎(𝑊𝑥0𝑥𝑡 + 𝑊ℎ0ℎ𝑡−1 + 𝑏0)            (3) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥𝑡 +  𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔)           (4) 

𝑐𝑡 =  𝑓𝑡⨂𝑐𝑡−1 + 𝑖𝑡⨂𝑔𝑡             (5) 

ℎ𝑡 =  𝑜𝑡  ⨂ tanh (𝑐𝑡)             (6) 

 

 

Fig. 3. Examples of Interpolation Results (Dataset 2001-2008). 

 

Fig. 4. Long Short-Term Memory Configuration. 
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Where, 𝜎 = sigmoid function, W = weight for each layer, xt 
= input in time step t, b = bias, tanh = hyperbolic tangent 
function, ⨂ = element-wise product, ct = main message passed 
between the steps, ft = forget gate, and ht = value passed to the 
next cell. 

An LSTM model is designed to predict half-hourly 
forecasts for significant wave height (Hs) and peak wave period 
(Tp) at four different forecast windows. The model takes 
historical values of Hs and Tp as input. The model has three 
layers (L1, L2, and L3). A dropout layer (D) is added after the 
L2 layer. For its better performance, Adaptive Moment 
Estimation (ADAM) is employed [13]. The parameters of the 
LSTM model are provided in Table III. 

TABLE III. LSMT MODEL PARAMETERS 

Parameters Value 

L1 32 

L2 16 

L3 8 

D 0.2 

Activation Functions Hyperbolic Tangent 

Optimizer  ADAM 

Learning Rate 0.001 

Patience  5 

F. Evaluation Criteria 

To evaluate the prediction efficiency of the model, the root 
mean square error (RMSE) measure is used. The formula to 
calculate RMSE is presented in equation 7. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)2𝑛

𝑖=1             (7) 

Where oi = observed value and pi = predicted value. 

V. RESULTS AND DISCUSSION 

To predict significant wave height and peak wave period 
for the WEC site, four experiments are designed for each 
dataset in which a combination of historical inputs (Hi) and 
batch sizes (BS) are used to train the LSTM model. The 
validation data split of 20% remains constant across 
experiments. The evaluated combinations are presented in 
Table IV. The model is tested on its half-hourly prediction 
accuracy at four near-future windows, i.e., three, six, twelve, 
and twenty-four hours, and their results, in the form of RMSE 
values, are presented in Table V. 

The RMSE values for the near-future prediction of 
significant wave height indicate that the model trained on 4 
years of data, 20 historical inputs, and a batch size of 256 
outperformed all other Hs prediction experiments. The RMSE 
values for the half-hourly 3, 6, 12, and 24-hour forecasts are 
0.0279, 0.0268, 0.0334, and 0.0327, respectively. It is also 
observed that the lowest RMSE values for half-hourly 3, 6, 12, 
and 24-hour forecasts are produced by model trained on either 
2 or 8-year of data. This indicates that the optimal prediction 
efficiency of the LSTM model is related to the dataset size, 
which in this case is 4 years. Hence, to predict the complex 
behaviour of Hs optimally, 4-year significant wave height 
historical data is sufficient. The best-performing prediction 
results for significant wave height are shown in Fig. 5(a). 

TABLE IV. EXPERIMENTAL COMBINATIONS 

Dataset Historical Inputs (Hi) Batch Size (BS) 
Forecast 

Windows 

2-year  

4-year  

8-year 

10 128 
3-hour 

6-hour 
12-hour 

24-hour 

10 256 

20 128 

20 256 

TABLE V. PREDICTION RESULTS (RMSE) 

   Significant Wave Height Peak Wave Period 

Datasets Hi BS 3H 6H 12H 24H 3H 6H 12H 24H 

2 Years 

 

10 128 0.0356 0.0417 0.0701 0.0693 0.1260 0.1713 0.2369 0.4094 

10 256 0.0338 0.0411 0.0720 0.0705 0.1653 0.1973 0.2569 0.4123 

20 128 0.0361 0.0401 0.0693 0.0690 0.2223 0.2574 0.2972 0.4157 

20 256 0.0374 0.0421 0.0696 0.0708 0.1901 0.2311 0.2777 0.4200 

4 Years 

10 128 0.0356 0.0315 0.0467 0.0444 0.9196 1.6406 1.6669 2.0899 

10 256 0.0306 0.0286 0.0461 0.0426 0.8620 1.7244 1.7385 2.0853 

20 128 0.0470 0.0427 0.0537 0.0499 0.8360 1.7622 1.7986 2.1027 

20 256 0.0279 0.0268 0.0334 0.0327 0.8545 1.8000 1.8334 2.1314 

8 Years 

10 128 0.0623 0.0546 0.0484 0.0463 0.2872 0.4008 1.1169 0.8585 

10 256 0.0595 0.0558 0.0534 0.0542 0.3865 0.4624 1.1541 0.9006 

20 128 0.0734 0.0624 0.0559 0.0518 0.3668 0.4501 1.1378 0.9234 

20 256 0.0582 0.0543 0.0516 0.0516 0.4556 0.5137 1.1858 0.9310 
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(a) 

  

  
(b) 

Fig. 5. Best Prediction Results for, (a) Significant Wave Height, (b) Peak Wave Period. 

For all near-future forecast windows, the forecast for the 
peak wave period is best produced by the smallest dataset and 
with the minimum historical inputs and batch size (i.e., 2-year 
dataset, Hi=10, BS=128). The RMSE values for half-hourly 3, 
6, 12, and 24-hour forecasts are 0.126, 0.1713, .2369, and 
0.4094, respectively. However, when compared to the model’s 
forecasting ability for significant wave height, these values 
remain high. This indicates that for Tp prediction, the model is 
not efficiently identifying the trend for a relatively much 
dynamic pattern of Tp. It is also observed that the model trained 
on a larger dataset, i.e., an 8-year dataset, performed well as 
compared to the model trained on a 4-year dataset. The worst 
performing RMSE values for Tp are generated by the model 
trained using 4-year data. Fig. 5(b) depicts the best-performing 
prediction results for the peak wave period. 

VI. CONCLUSION AND FUTURE WORK 

A wind wave is a type of ocean wave that is generally 
present on the sea surface and affects navigation, commercial, 
power generation, and non-commercial activities taking place 
in a maritime environment. Thus, the study of wind-wave state 

prediction plays a pivotal role in the planning, execution, and 
safety of these activities. 

In this study, from the point of view of a near-shore wave 
energy converter site, the effect of minimal training parameters 
and dataset size on the LSTM-based significant wave height 
and peak wave period prediction model is investigated. 

Three datasets with variable temporal length were prepared, 
and on each dataset, four experiments were conducted to 
investigate the prediction ability of LSTM based on the target 
parameter’s historical inputs and batch sizes. In addition, the 
study investigated the minimum dataset size required for the 
training of the LSTM model. 

It was found that for significant wave height, the LSTM 
model generated better results using a 4-year dataset, 20 
historical inputs, and a 256-batch size. It was also observed that 
for the peak wave period forecast, the model didn’t perform as 
well as compared to the significant wave height forecast. 
However, it was identified that a 2-year dataset with 10 
historical inputs and a 128-batch size yielded the best results 
for Tp prediction. Based on the presented results, the study 
concluded that future values of Hs and Tp can be predicted by 
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training an LSTM model on their historical values only. 
Additionally, the study also identified the minimum size of the 
dataset (4 years for Hs and 2 years for Tp) required to train and 
predict the future values of Hs and Tp. 

Development of a LSTM model which can forecast both Hs 
and Tp with a similar sized dataset and accuracy can be 
considered as future work of this study. 
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