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Abstract—Convolutional Neural Networks (CNNs) have been 

used to handle a wide range of computer vision problems, 

including image classification and object detection. Image 

classification refers to automatically classifying a huge number of 

images and various techniques have been developed for 

accomplishing this goal. The focus of this article is to enhance 

image classification accuracy implemented on CNN models by 

using the concept of transfer learning and progressive resizing 

with split and train strategy. Furthermore, the Parametric 

Rectified Linear Unit (PReLU) activation function, which 

generalizes the standard traditional rectified unit, has also been 

applied on dense layers of the model. PReLU enhances model 

fitting with almost little significant computational cost and low 

over-fitting hazard. A “Progressive 3-Layered Block 

Architecture" model is proposed in this paper which considers 

the fine-tuning of hyperparameters and optimizers of the Deep 

network to achieve state-of-the-art accuracy on benchmark 

datasets with fewer parameters. 

Keywords—CNN; transfer learning; progressive resizing; 

PReLU; deep network 

I. INTRODUCTION 

Image classification methods using convolution neural 
networks (CNNs) have recently achieved remarkable success 
in the field of computer vision, compared to other classic 
machine learning techniques [1-3]. Many Computer Vision 
tasks, such as image segmentation and object identification, 
can be simplified to image classification, thereby enhancing 
accuracy of classification can have a broad impact across a 
variety of application domains. The automatic feature 
extraction capability of the CNN network replaces the 
conventional feature extraction methods (e.g., SIFT, HOG, 
GIST), etc., as the deep learning network does not require 
hand-engineered feature design [4]. 

We have seen remarkable advancements in the image 
classification domain in the last several years, owing primarily 
to advances in two technical directions: creating more 
sophisticated network architectures and designing efficient 
techniques to handle overfitting. As neural networks become 
more complex (e.g., increased depth [1, 2], increased width [5, 
6], as well as the utilization of shorter strides [5, 6, 2], new 
non-linear activations emerge [7-12], and as more complex 
layer designs emerge [1, 13]), the ability of neural networks to 
fit training data is improving. On the other hand, effective 
regularization approaches [12,14-16], active data 
augmentation [1, 2, 17, 18], and large-scale data [19, 20] lead 
to greater generalization. Considering the factors which affect 

the performance of deep models, this paper proposes a 
"Progressive 3-Layered Block architecture" for image 
classification by implementing transfer learning and 
progressive resizing concept. Transfer learning technique not 
only reduces the problem of network overfitting but also 
reduces the training time and addresses the issue of 
insufficient training data in deep models [21]. Progressive 
Resizing is a technique for resizing all of the images in a 
sequential manner while training CNN models on lower to 
larger image sizes, which results in fine-tuning the final model 
as well as increasing the accuracy score. Furthermore, on the 
dense layers of the proposed model, we have employed the 
Parametric Rectified Linear Unit (PReLU) activation function 
[22], which generalizes the standard rectified unit. PReLU 
enhances model fitting at a low computational cost with little 
possibility of overfitting. The developed model is trained 
under optimized hyper-parameters and experimental 
evaluation is carried out on benchmark datasets.  The 
proposed model achieves higher accuracy and leads to better 
performance with fewer parameters as compared to previously 
developed models. 

The rest of the paper is organized as follows: Section II 
describes the theoretical background of the concepts used in 
developing the model. Section III presents the related research 
on image classification using deep learning models, focusing 
on three aspects viz. model development based on parameter 
efficiency, progressive training and improvement on datasets, 
optimization strategies and developmental platforms. 
Section IV deals with the proposed architecture and 
implementation setup. Section V reports the results obtained 
on benchmark dataset and Section VI presents concluding 
remarks. 

II. THEORETICAL BACKGROUND 

The theoretical background used in the proposed 
“Progressive 3-Layered Block and developmental platforms 
Architecture for image classification” is described in this 
section 

A. Transfer Learning 

Deep learning suffers from the problem of data 
dependence as it requires a massive amount of training data to 
understand the latent patterns in the data. Deep learning has a 
linear relationship between the model and the size of the data 
set.  It is not feasible in deep learning to train an entire 
Convolutional Neural Network (CNN) from the beginning as 
it is very challenging to obtain a large enough dataset. 
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Therefore, it is common to pre-train a CNN on a very large 
dataset like ImageNet and then reuse the CNN either as a 
starting point or as a feature extractor for the second target 
task. This technique has gained huge success in particularly 
the computer vision field because of its extraordinary setting 
[46]. Transfer learning addresses the problem of insufficient 
training data and training time but also it reduces the problem 
of network overfitting [21]. The proposed work implements 
the EfficientnetB5 as a pretrained model which has been 
trained on the popular imageNet dataset. 

EfficientNet is a recent CNN architecture developed by 
Google. EfficientNet sets new records for both accuracy and 
computational efficiency in image classification and it 
outperforms the present state of the art. Mingxing Tan and 
Quoc V. Le of the Google Research Brain team introduced the 
EfficientNet model in [54]. According to the paper, optimizing 
the depth, width, and resolution of networks helps to improve 
classification performance.The family of EfficientNet is 
scaled up in multiple block layers (from B0 to B7 through 
compound scaling formula i.e., all three dimensions such as 
depth, width and resolution are scaled up together to make it 
more accurate and effective, and there is an optimal balance 
between all the dimensions. Compared to other previously 
developed pretrained networks EfficientNet is more effective 
because it follows the compound scaling formula. Fig. 1 
depicts a visualization of the compound scaling method of 
EfficientNet [54]. 

A comparison of EfficientNet's performance on the 
ImageNet dataset with other sophisticated transfer learning 
models is also documented in the literature. The most recent 
version of EfficientNet, EfficientNet-B7, has been shown to 
have the highest accuracy of all with the fewest parameters as 
depicted in Fig. 1. 

B. Progressive Re-Scaling 

The notion of progressively re-scaling image datasets has 
been introduced into Deep Learning Networks to improve 
accuracy [33]. Super-resolution [47] and GAN training [48] 
have both leveraged progressive re-scaling approaches. 

 

Fig. 1. Recent Version of EfficientNet and their Accuracy and Parameters 

with respect to other Networks [54]. 

The progressive training of image data begins with low-
resolution images and incrementally changes the image 
resolution as training continues. In general Progressive Image 
resizing is a strategy for resizing the image dataset 
successively while the CNN models are trained on lower to 
larger image sizes as shown in Fig. 2. 

One way to apply this technique is to train a model on 
smaller image sizes, such as 128 by 128 pixels, and then use 
the weights of this model to train another model on larger 
images, and so forth. Larger models use layers and weights 
from earlier smaller models in their architecture, which allows 
them to fine-tune their models and improve their accuracy 
scores. To the human eye, resizing images from (64 x 64) to 
(128 x 128) is an insignificant change. However, to CNN 
models, it provides a whole new dataset to train on. 

Image size is vital in improving model accuracy, and 
several studies have been published in which researchers 
dynamically modify image sizes throughout training [34]. 
Three image sizes have been input into the system in the 
proposed “Progressive 3-Layered block Architecture”, while 
the regularization parameter has been considered to combat 
over-fitting of the deep model during training (Algorithm 2). 
The pipeline of progressive resizing of images in all three 
blocks of images is shown in Fig. 3. 

C. Parametric ReLU (PReLU) Approach 

The activation function of a neural network can be defined 
as in equation 1. 

 
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
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
             (1) 

Where yi, denotes the input to the nonlinear activation 
function f on the i

th
 channel, and ai is a coefficient which 

governs the negative part's slope. The subscript i in ai denotes 
that we enable nonlinear activation to vary across channels. 
When the value of the coefficient (ai = 0), the activation 
function is denoted as ReLU; and when ai is a learnable 
parameter, the (1) is referred to as Parametric ReLU (PReLU) 
[13]. A Parametric Rectified Linear Unit, or PReLU can be 
defined as an activation function that generalizes the 
traditional rectified unit by adding a slope for negative values 
as shown in Fig. 4. 

 

Fig. 2. Progressive resizing of Image. 

 

Fig. 3. Progressive resizing Pipeline. 
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Fig. 4. ReLU Vs PReLU((In PReLU the Coefficient is Not Constant in the 

Negative Part and is Adaptively Learned). 

Different layers may have different forms of nonlinearities. 
According to the literature, the PReLUs for the initial layers 
have more positive slopes while investigates with 
convolutional neural networks (CNNs), i.e., closer to linear. 
Because the initial layers' filters are Gabor-like filters like 
edge or texture detectors, this demonstrates a situation in 
which positive and negative filter responses are respected. 

In contrast, the authors find deeper layers have smaller 
coefficients, suggesting the model becomes more 
discriminative at later layers (while it wants to retain more 
information in earlier layers). 

III. RELATED WORK 

There has been a lot of research work in the literature to 
improve deep learning models for image classification. In 
recent years, with the growth of deep learning, in the realm of 
image classification, various deep architectures, including 
CNNs, R-CNN, Caps Net, ResNet, etc., have been introduced 
through which deep-level features can be obtained [23,24]. 
This section presents the related work on image classification 
using deep learning into three aspects viz. model development 
based on parameter efficiency, progressive training and 
improvement on data-set, optimization techniques and 
developmental platforms. 

A. Model Development based on Parameter Efficiency 

In recent years, Convolutional Neural Networks (CNNs) 
have considerably improved performance on a variety of 
computer vision applications. [1-3]. Many studies, including 
DenseNet [25] and EfficientNet [26], concentrate on 
parameter efficiency, with the goal of achieving higher 
accuracy with fewer parameters. In the present day, the 
variations of ResNet such as EffNet-L2 (SAM (Sharpness 
Aware Minimization)), PyramidNet (SAM) [27] BiT-L 
(ResNet), BiT-M (ResNet) [28], TResNet-L-V2 [29], etc. with 
their improvements have gained huge success in the image 
classification domain over various benchmark datasets. 

B. Progressive Training and Improvement on Dataset 

Progressive training relies on dynamically changing the 
setting of the network during training. Some new techniques 
such as transfer learning [30], adversarial learning [31], and 
language models [32] have recently gained popularity. 
Introducing Progressive rescaling of image data in a deep 
learning network is one of the major factors which can 
improve accuracy of the model [33]. Image size is a vital 
component for CNN models accuracy, and several studies 
have been published in which throughout training, researchers 
dynamically change the image size to improve model 
performance. However, accuracy and training speed both are 

influenced by progressive rescaling of image data and related 
works such as   Mix & Match [34] has been found in the 
literature on resizing of image data where similar 
regularization is applied to all image sizes resulting in a 
decrease in model accuracy. There is another work on 
regularization where both training speed and accuracy can be 
improved by adjusting regularization in an adaptive manner 
[26]. 

C. Optimization Techniques and Developmental Platforms 

Increasing the number of layers in a network raises the 
network's complexity, necessitating the use of optimization 
techniques. SGD, Adam [35], AdaGard [36] and AdaDelta 
[37] are some of the different optimization strategies 
implemented in the deep architectures such as CNN model 
along with hyperparameter optimization [38], of the deep 
network which is vital for better performance as well as 
network optimization. The advancement of deep learning 
techniques with GPU processing in combination with a vast 
dataset enables researchers to solve research issues across 
different application domains. Many popular frameworks for 
deep learning applications viz. Tensorflow, Caffe, Torch, 
Theano, CNTK, and libraries like Pydrive, Cuda, OpenCL, 
OpenCV, OpenMP, Keras, etc. allow the development of deep 
learning applications rapidly [39] [40] [41]. Image 
categorization [42] and object detection [43] are examples of 
applications where neural architecture search (NAS) has been 
applied in network architecture optimization.  NAS initiatives 
in the past have primarily focused on increasing the efficiency 
of FLOPs [44, 45]. 

This paper aims to improve model accuracy, training 
speed, and parameter efficiency significantly over the state of 
the art by taking into account the aforementioned factors. 

IV. PROPOSED ARCHITECTURE 

The proposed “Progressive 3-Layered Block Architecture” 
model for image classification is presented here. The model 
has three phases as shown in Fig. 5, the model uses the pre 
trained architecture of EfficientNet5 as a transfer learning 
model and constructs the model by adding layers with the 
concept of compound scaling. The proposed architecture 
applies the PReLU activation in the dense layers which 
adaptively learns the parameter from the data. As in (1), the 
controlling coefficient ai controls the slope of the negative 
part by adaptively learning the parameters. The total amount 
of additional parameters introduced by PReLU is negligible 
while considering the total weights. In the proposed 
“Progressive 3-Layered Block Architecture”, progressive 
rescaling technique on images has been implemented to 
improve the accuracy while considering the regularization 
parameter along with image size. As an improvement on the 
progressive learning, the split and train strategy has been 
implemented which speeds up training along with improved 
resizing dataset. 

The “Progressive 3-Layered Block Architecture” contains 
three phases: 

Phase I: In the phase I, we build a base model for 64X64 
image size: 
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Step 1: Load the pre-trained model 

Step 2: Load image dataset for training 

Step 3: Set the parameters and add layers implementing 
compound scaling 

Step 4: Set PReLU activation for model layers 

Algorithm 1(PReLU activation on model layers) 

Step i: Initialize the value of PReLU (ai) for equation 1, where   

ai is the controlling coefficient. 

Step ii: Update the value of ai for one layer as in equation 2,  

      

  
 

 
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             (2)

   

Where,  is the objective function and 
 if y




  is the gradient 

that has been propagated from a deeper layer. 

Step iii: The summation 
iy runs all the positions of the 

feature map to   update     the value of all the layers. 

Step iv: Adopt momentum as in equation 3 while updating ai 

  
i i

i

a a
a





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
                           (3) 

           Where  denotes momentum and  denotes learning 

rate. 

 

Step v: Repeat step (1-4) for all the layers. 

  

Step 5:  The network takes a set of training images as 

input, performs feed forward propagation 

(convolution, PReLU, and pooling operations, as 

well as forward propagation in the Fully Connected 

layer), and calculates the output probabilities for each 

class.. 

Step 6:  Calculate the output layer’s total error by, 

Total Error= ∑ ½ (target probability- output   

probability)
 2
 

Step 7: The CNN model goes through several 

convolutions and pooling phases during training and 

updates the weights with a backpropagation 

algorithm to minimize the output error. 

Finally, save the model weights of the first phase. 

 

Phase II: Build a model for 128x128 image size where the 

output of the first block is the input of the second block. The 

progressive resizing on images is performed considering 

adaptive regularization. 

 

Algorithm 2 (Progressive rescaling on images considering 

regularization) 

             Step i: Initialize image size S0, set regularization 0

k , 

where k is dropout. 

Step ii: Set target image size St, set regularization

 k

t . 

Step iii: Total model training has N steps and P 

stages 

  Where, for every stage 1 ≤ i ≤ P,  

  Now, for i=0 to P-1 do 

Size of the input image: 

 Si ← S0 + (St – S0. 
1

i

P 
 

Regularization parameter:  

Ri ←  k

i  =  0

k + ( k

t  − 0

k ) · 
1

i

P 
 

Train the model for 
N

P
 steps with Si and Ri. 

End for  

 

Now, train the model by following the steps of Phase I and 

save the model weight of the Phase II. 

 

Phase III:  The third block loads the weights of block 2 as an 

input and builds a model for image size 224X224 by repeating 

all the steps of Phase I and Phase II 

 

Fig. 5. The “Progressive 3-Layered Block Architecture” for Image Classification. 
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V. DATASET AND EXPERIMENTAL SETUP 

A. Dataset 

To ensure the robustness of the proposed “Progressive 3-
Layered Block Architecture”, the network is trained and 
evaluated on three publicly available datasets: CIFAR-10, 
CIFAR100, and CALTECH 101. The datasets were randomly 
split into 90:10 (CIFAR-10), (CIFAR100) and 80:10:10 
(CALTECH101) proportions for training and validation 
respectively. The CIFAR-10 dataset comprises 60,000 color 
images from diverse objects with and categorized into 10 
classes (airplane, bird, dog, frog, deer, dog, horse, ship, and 
truck, automobile) for a total of 6000 images per class [49] 
Fig. 6. During the training of the proposed method, the 
datasets were automatically split into 50000 training images 
and 10000 test images. CIFAR100 is similar to CIFAR10, 
with the exception that it has 100 classes, each with 600 
images. Each class has 500 training images and 100 testing 
images. The CIFAR-100's 100 categories are divided into 20 
super classes. Fei-Fei Li et. al gathered the CALTECH101 
dataset in September 2003. 

It is made up of images of objects from 101 different 
classes, as well as one backdrop clutter class. Each class has 
approximately 40 to 800 images, for a total of approximately 
9000 photographs.Images come in a variety of sizes, with 
common edge lengths ranging from 200 to 300 pixels. The 
detail of datasets used for the experiment is presented in 
Table I. 

 

Fig. 6. Data Set of CIFAR10 and CALTECH1. 

TABLE I. DETAILS OF DATASETS FOR EXPERIMENT 

Name of the 

Dataset 

Training 

Images 
Validation Images Classes 

CIFAR-10 [49] 50,000 10,000 10 

CIFAR-100 [49] 50,000 10,000 100 

CALTECH101 60,000 15,000 101 

B. Implementation Setup 

The network architecture is implemented in Python using 
Keras [50], a deep learning framework, with TensorFlow [51] 
as the backend. The experiments for image classification are 
conducted using model and data-parallelism. The setup 
includes a GPU environment running the Linux operating 
system which comprises over 2,000 CPU cores, 1.5TB 
memory, and GPU accelerators (NVIDIA Tesla V100 32GB) 
using Google collab pro version. By using the GPU 
configuration platform, a pretrained network has been 
implemented on ImageNet and the network has been re-
trained on the CIFAR10, CIFAR100, and CALTECH101 
dataset using fine-tuning approaches. Moreover, an adaptive 
learning schedule has been considered where each iteration of 
the learning process uses 150 epochs with a decreasing 
learning rate schedule of 5% for every 10 epochs. 

VI. RESULT AND DISCUSSION 

The experimental setup and outcomes of the proposed 
network model on benchmark data sets are presented in this 
section. This section compares and contrasts recent deep 
model progress with the proposed model of “Progressive 3-
Layered Block Architecture” for Image Classification. 

Accuracy and error rate is calculated to compare various 
models [55]. Models attaining the lowest error rate and the 
highest possible accuracy are usually the most desirable. 

The accuracy and the error rate is defined as follows: 

 

 

TN, FN, TP, FP are the number of true negatives and false 
negatives, true positives and false positives respectively. 

A. The PReLU Setup and Comparison Experiment 

An improved accuracy of PReLU over ReLU is observed 
in the “Progressive 3-Layered Block Architecture'' for Image 
Classification over benchmark datasets. The training 
implementation gained 96.15% accuracy and 96.47% accuracy 
on CIFAR10 and CIFAR100 using 10 view testing 
respectively. The model has been trained with ReLUs in all 
layers by implementing progressive training on different 
blocks without loading the weight of the previous block which 
gains average 3% accuracy in all three blocks. Later the model 
is trained by replacing all ReLUs with PReLUs and also 
performs progressive training by loading weights from the 
previous block. Table II details the result obtained where 
PReLU gains 3.2% accuracy over ReLU in CIFAR10, 3.73% 
accuracy gain over ReLU in CIFAR100 and 2.67% accuracy 
gain over ReLU in CALTECH101. The better value for each 
dataset is denoted in boldface. 

TP TN
Accuracy

TP TN FP FN




  

FP FN
Error

TP TN FP FN



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TABLE II. THE PERFORMANCE COMPARISON OF PRELU AND 

RELU ON THREE BENCHMARK DATASETS 

Datasets 
Activation 

Function 

Image size(Progressive 

scaling 

Performance 

Metric 

(Accuracy) 

CIFAR 10 

ReLU 

64 X 64 79.70 

128 X 128 83.96 

224 X 224 93.66 

PReLU 

64 X 64 81.26 

128 X 128 87.26 

224 X 224 96.15 

CIFAR 100 

ReLU 

64 X 64 54.90 

128 X 128 86.69 

224 X 224 92.99 

PReLU 

64 X 64 59.78 

128 X 128 88.44 

224 X 224 96.47 

CALTECH101 

ReLU 

64 X64 63.31 

128 X 128 85.91 

224 X 224 93.95 

PReLU 

64 X 64 64.88 

128 X 128 86.94 

224 X 224 95.39 

Table II presents the performance comparison of PReLU 
and ReLU on three benchmark datasets where 
experimentation is carried out considering the three image 
sizes viz., 64x64, 128x128, and 224x224. Since 
implementation of Parametric Rectified Linear Unit (PReLU) 
activation function on model layers generalizes the classic 
rectified unit and enhances model fitting with almost no 
additional computing cost and no risk of overfitting, it shows 
better performance on all the datasets with rescaled images. In 
CIFAR10 the model obtained 96.15% accuracy compared to 
ReLU (93.66%) in 224x224 image data. In CIFAR100 and 
CALTECH101, the model obtained 96.47% and 95.39% 
accuracy respectively on PReLU which was higher than ReLU 
at 92.99% and 93.95 % in both the cases.  Fig. 7. further 
compares the training and validation curve of this approach 
where ReLU is 93.66% and PReLU is 95.17% on 50 epochs 
on CIFAR10 dataset. These results suggest that the 
“Progressive 3-Layered Block Architecture” for Image 
Classification model generalized well in all three datasets 
while implementing PReLU with a progressive approach. 

B. Progressive Learning Setup and Experiment 

The size of the image has a significant impact on the 
effectiveness of training and accuracy improvement of Deep 
Neural Networks (DNN). This experimentation considers 
three parameters while training the network with resized 
images as presented in Table III. 

 

Fig. 7. Accuracy Plot of PReLU over ReLU on CIFAR 10 (a) Loss and Accuracy Plots of ReLU on CIFAR10 where ReLU is 93.66 (b) Loss and Accuracy Plots 

of PReLU on CIFAR10 where PReLU is 95.17 on 50 Epoch. 
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TABLE III. PROGRESSIVE RESCALING SETUP PARAMETERS 

Parameters 

First training 

stage 

Second  training 

stage 

Third  training 

stage 

Min Max Min Max Min Max 

Image Size 64 244 64 244 64 244 

RandAugm-ent 5 10 5 15 5 20 

Dropout rate 0.1 0.3 0.2 0.5 0.1 0.5 

In literature, it is found that the accuracy of deep models 
depends on the regularization parameters of the model while 
implementing progressive rescaling on image data, it is 
recommended to adjust the regularization parameters for 
better accuracy instead of keeping fixed regularizations. In 
[43] it is mentioned that, to combat overfitting in large 
models, stronger regularization is required: EfficientNet-B7, 
for example, employs larger dropout rates and stronger data 
augmentations than EfficientNet-B0. In the present 
experimentation, Dropout [15] and RandAugment [52] 
regularization has been considered with progressive training 
of images for three training stages for different image sizes. 

This experimentation presents the performance over three 
benchmark datasets with the experimental setup presented as 
in Table III where for each stage 100 epoch is set. 

Through Table IV, we observe that the accuracy is 79.28% 
in CIFAR10 while the image size is 64X64 with weaker 
regularization (RandAugment =5, Dropout 0.1) and on the 
other hand the accuracy is increased to 93.17 after the third 
training stage with bigger image size and stronger 
regularization. For CIFAR100 and CALTECH101 datasets, 
we observe that the accuracy increases as well to 93.99 and 
92.72% respectively with a larger image size and stronger 
regularization parameters. The progressive rescaling of the 
dataset improves the model's accuracy as well as its training 
time. 

From the experiments conducted it is observed that, in a 
high-accuracy regime, scaling up data size is more effective 
than merely scaling up a model size, where it can be 
concluded that, for instance, when the accuracy of CIFAR100 
is beyond 96.47, it is quite challenging to further increase its 
accuracy by simply increasing model size and so in other 
image datasets used in this experiment. Fig. 8, further 
illustrates the training and validation accuracy of CIFAR10 
and CIFAR100 on progressive rescaling setting where we 
observed that the model obtained 96.15% accuracy on 
CIFAR10 and 96.47% accuracy on CIAFR100 after certain set 
of training on each stage while implementing progressive 
rescaling setting. 

TABLE IV. PROGRESSIVE LEARNING FOR DIFFERENT IMAGE SIZES AND 

THEIR ACCURACY WHILE CONSIDERING REGULARIZATION PARAMETERS IN 

CIFAR10, CIFAR100 AND CALTECH101 

Dataset Image size 
RandAug-

ment 

Dropout 

rate 
Accuracy 

CIFAR10 
64 5 0.1 79.28 

224 20 0.5 93.17 

CIFAR100 
64 5 0.1 57.89 

224 20 0.5 93.99 

CALTECH 

101 

64 5 0.1 62.19 

224 20 0.5 92.72 

 

Fig. 8. Plotting the Training and Validation Accuracy of CIFAR10 and 

CIFAR100. 

C. Performance Comparison 

This section presents the comparative results on ImageNet, 
and the performance comparison of the proposed “Progressive 
3-Layered Block Architecture” with other models on CIFAR-
10, CIFAR-100, and CALTECH 101. 

The proposed model uses the pre-trained transfer learning 
model Efficientnet-B5 trained on ImageNet, ILSVRC2012 
and fine-tuned with the same ImageNet setting as in [53].  A 
smaller batch size of 512, and small initial learning rate of 
0.001 with cosine decay has been used. Table V demonstrates 
the performance comparison of the proposed "Progressive 3-
Layered Block architecture" with other models where the top-
1 Accuracy is 86.52 %. 2.49%, 2.52 % and 3.51% 
improvement compared to EfficientNet (2019), ResNet-RS 
(2021), and DeiT/ViT (2021) respectively. At the same time, 
the proposed model has fewer FLOPs and fewer parameters 
compared to other models, which implies that scaling up 
image size seems more effective than increasing model size by 
adding layers over the considered datasets. 

Table VI presents the performance comparison of the 
proposed model with other models on all three datasets. 

The “Progressive 3-Layard Block architecture" model for 
image classification combines the progressive rescaling setting 
with transfer learning technique and PReLU activation where 
better optimizers and fine-tuning of hyperparameters improve 
the model accuracy. The model is trained for 65 hrs.’ 70 hrs.’, 
and 71 hrs.’ respectively for all three datasets which are 
comparatively less than other benchmark models in the 
literature. The accuracy on CIFAR10 is 98.79%, CIFAR100 is 
96.47% and CALTECH101 is 95.39% for 224X224 images 
while loading the previous weight of images during training 
and follows the split and training strategy while training. Fig. 
9. further compares the loss and accuracy of CIFAR100 and 
CALTECH101 where the accuracy is 96.47 % and 95.39% 
respectively on 224x224 images where the proposed model 
outperforms the accuracy of CIFAR100 and CALTECH101 
with other benchmark models. 

TABLE V. PERFORMANCE COMPARISON AND RESULTS OF THE PROPOSED 

MODEL IN TERMS OF ACCURACY, PARAMETERS, AND FLOPS ON IMAGENET 

Name of 

the 

Network 

EfficientNet 

2019 

ResNet-RS 

2021 

DeiT/ViT 

(2021) 

Progressive 

3-Layered 

Block 

Architecture 

Top 1 

Accuracy 
84.3% 84.0 % 83.1% 86.52% 

Parameters 43 M 164 M 86 M 36 M 

FLOPs 19 B 64 B 56 B 20 B 
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TABLE VI. PERFORMANCE COMPARISON AND RESULTS ON CIFAR10, CIFARR100 AND CALTECH101 

Datasets Network Models Accuracy PARAM Flops Training time(Hours) 

CIFAR 10 

AlexNet (Doan Cong Danh  2019) 89.67% 27.31M --- 144 

BiT-L(ResNet)Kolesnikov, A et al., 2019 98.91 928 --- ---- 

EfficientNet-B7 (Tan & Le 2019) 98.9 64 M 38B 139 

EffNet-L2(SAM) 99.70 0.575114 --  

Progressive 3-Layered Block Architecture 98.79 36 M 20 B 65 

CIFAR100 

AlexNet(KP) Akrout, M et.,al 2019 66.78 61 M ----- 146 

BiT-L(ResNet)Kolesnikov, A et al., 2019 93.51  ------  

EfficientNet-B7 (Tan & Le 2019) 91.7 64M 38B 138 

EffNet-L2(SAM) Foret, P et al., 2020 96.08 56 M   

Progressive 3-Layered Block Architecture 96.47 36 M 20 B 70 

CALTECH101 

Alexnet -----  ------  

ResNet34 95 60.5 M ----  

EfficientNet-B7  
(Tan & Le 2019) 

93.0 64 M 38 B 139 

EffNet-L2 (SAM) Foret, P et al., 2020 94.32 56 M   

Progressive 3-Layered Block Architecture 95.39 36 M 20 B 71 

 
(a) CIFAR100 (96.47% 

 
(b) CALTECH101 (95.39) 

Fig. 9. Plotting the Loss and Accuracy Plot of CIFAR100 and CALTECH101 on 224x224 Images. 

https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/sharpness-aware-minimization-for-efficiently-1
https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/sharpness-aware-minimization-for-efficiently-1
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/sharpness-aware-minimization-for-efficiently-1
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VII. CONCLUSION AND FUTURE WORK 

Accuracy improvement in image classification has a wide 
ranging impact on various application domains and deep 
convolution neural networks (CNNs) have gained remarkable 
success in this area. This paper proposed a “Progressive 3-
Layered Block Architecture” for image classification by 
implementing transfer learning and progressive resizing 
concept. The proposed architecture applies the PReLU 
activation in the dense layers which adaptively learns the 
parameters from the data. The efficiency of the proposed 
architecture is established by its superior performance, low 
execution time and fewer parameters compared to other 
models in literature. We evaluate the model in tensorflow 
environment using three benchmark datasets viz.CIFAR10, 
CIFAR100 and CALTECH101. The evaluation of proposed 
“Progressive 3- Layered Block Architecture” is carried out in 
three different experimental setup viz.PReLU setup, 
progressive rescaling setup and performance comparison with 
other CNN models.  At the same time, our proposed model 
has fewer FLOPs and fewer parameters compared to other 
models. From the results obtained it may be concluded that 
enhancement in learning strategies, adopting standard 
activation functions, fine-tuning of hyper-parameters and 
optimizers and scaling up image size is more effective than 
increasing model size by adding layers in high accuracy 
regime. With increased performance, less execution time, and 
fewer parameters, the suggested architecture outperforms the 
competition in all three benchmark datasets. However, more 
testing on multiple datasets with different image sizes and 
training samples is required for general applicability. 
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