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Abstract—The world population is going through a difficult
time due to the pandemic of COVID-19 while other disasters
prevail. However, a new environmental catastrophe is coming
because surgical masks and gloves are putting down anywhere,
leading to the massive spreading of COVID-19 and environmental
disasters. A significant number of masks and gloves are not
properly managed. They are scattered around us such as roads,
rivers, beaches, oceans and other places. Since these types of
waste are turned into microplastics and chemicals are deadly
harmful to the environment, human health and other species,
especially for the aquatic animals on this planet. During the
outbreaks of corona pandemic, surgical waste in the open place
or seawater can create a fatal contagious environment. Putting
them in a particular area can protect us from spreading infectious
diseases. This study proposed a system that can detect surgical
masks, gloves and infectious/biohazard symbols to put down
infectious waste in a specific place or a container. Among the
various types of surgical waste, this study prefers mask and gloves
since it is currently the most widely used element due to the
COVID-19. A novel dataset is created named MSG (Mask, Bio-
hazard Symbol and Gloves), containing 1153 images and their
corresponding annotations. Different versions of the You Only
Look Once (YOLO) are applied as the architecture of this study;
however, the YOLOX model outperforms.

Keywords—COVID-19; You Only Look Once (YOLO); surgical
waste; deep learning; image dataset; real-time detection

I. INTRODUCTION

Plastics have become a severe hazard to natural habitats
and human health. Moreover, some of them are recyclable e.g.
PET bottles. During the COVID-19 pandemic, surgical masks
and gloves have increased extensively to reduce coronavirus
spread. They are not reusable for being medical waste and
infectious. People throw masks and gloves everywhere as a
general waste due to the lack of planning and unconsciousness.
Therefore, it is our prime duty to manage them properly.
Otherwise, we will have to face extreme catastrophes. This
hazard will likely be accelerated because of excessive use
and exhaustion of plastic for example surgical masks, surgical
gloves, face shields and personal protective equipment (PPE).
A disposal system that can accurately identify masks, gloves,
and biohazard symbols may participate in managing such type
of terrible waste safely. This study preferred the biohazard
symbol because symbols are unique all over the world than
language. The outline is such that the system will identify
masks and gloves as waste and keep these waste in a par-
ticular place/container/waste bin where the biohazard symbol
is drawn. In this case, Computer Vision (CV) may help us a
lot. There are different object detection models available right

now. The YOLO models have the highest popularity because
of their speed and auspicious performance. Although, in recent
years many anchor-free object detection models [1] [2], Non-
maximum Suppression (NMS) free i.e. end to end models [3]
[4] [5] has been deployed. Training the model based on anchor
creates a problem at the time of initialization of anchors.
Rather, the anchor-free strategy does not face such types of
problems. YOLO family always tries to execute the latest
technology (e.g. YOLOV2 [6] anchor mechanism, YOLOV3 [7]
Residual Net) to enhance speed and optimized implementation
within a desirable time. Additionally, YOLO architecture has
two mechanism-based models, one is anchor-based and the
other is anchor-free training strategy. YOLOvV3, YOLOv4,
and YOLOVS depend on anchor technology, whereas YOLOX
relies on an anchor-free training mechanism. YOLOV3 is a
mainly used model for industrial purposes and still exists many
versions. YOLOV3 [7] focuses on layer-wise feature extraction
and does not pay any attention to the sequential impact
among the layers. Feature extraction performs using Darknet-
53. YOLOv3-spp is another version of YOLOv3, which uses
the spatial pyramid pooling (spp) module into the model and
produces better performance than the other. YOLOv4 [8] and
YOLOVS ! are two newly published architectures and both
of them show comparable performance in many applications.
There are different versions of YOLOVS based on the model
size such as small, medium, large and extra-large. The model
architecture for each version remains the same. However, the
only difference is the model depth and width. This theory
also applies to YOLOX’s different version. In this study,
the authors explore a novel dataset and apply different CV
models to determine which model yields the best performance
to achieve the goal. In particular, four models are presented
to identify surgical waste and biohazard symbols accurately.
Finally, one of them is selected as the proposed model.
Additionally, collecting relevant images, creating annotations
and preparing the dataset are also discussed. The remaining
sections of the paper are organized as follows: Section II
describes the literature review of surgical waste detection.
Dataset preparation and methods are discussed in Section III.
The model’s training process is expressed in Section IV. The
performance measurement of the architecture is illustrated in
Section V. Section VI represents the experimental result of
the architectures. Deliberation of this study and limitations are
enlightened in Section VII. Section VIII consists of concluding
remarks with the future direction.

Thttps://github.com/ultralytics/yolov5
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II. LITERATURE REVIEW

Scientists and Researchers have strongly advised us to wear
masks for preventing coronavirus. However, the widespread
use of these protective gear makes a terrible situation to the
environmental system due to human insensibility. Many people
consciously or unconsciously put down such dangerous waste
in our surroundings which may cause a severe health hazard
for any species on this glove. As a result, infectious waste
(surgical masks and gloves) increases day by day. In 2020,
about 150 million masks will go to the sea. Meanwhile, some
countries face problems with this type of waste. Approximately
the demand for surgical masks is 28 million per day all over
the world [9]. Furthermore, every day 1.6 million tons of waste
are generated due to the corona pandemic [10]. It is terrifying
that this horrible rubbish is scattered around us. Hence, there is
a possibility to spread coronavirus rather than resistance. Our
primary purpose is to develop a system to detect infectious
waste and infectious symbols as if it can detect and manage
such dangerous malicious material from our environment.
Object detection is a well-known research area. AquaVision
[11] represents an automatic detection system that can detect
waste bodies from the water. The authors try to use different
transfer learning models to conduct their work. Floating plastic
liter detection using Sentinel-2 imagery from space illustrated
in [12]. A system that can detect marine life and plastic waste
in underwater environment is shown in [13]. Different deep
learning methods e.g. Single Shot Detector (SSD), MobileNet
are used to detect aquatic animals and waste. In this study, we
have dealt with surgical waste detection, which has rarely been
done before. A disposal system that can identify waste from
the environment and biohazard symbol for keeping the waste
in a particular place. From this motivation, a novel dataset
is created and named after the MSG dataset to detect the
surgical mask, gloves and biohazard symbol. Surgical masks
and gloves are detected as waste and biohazard symbols to
detect place/container/waste bin to put these types of waste
there. Several CV models are trained and tested using the MSG
dataset to conduct this work as if more precise detection is
generated within an acceptable time. YOLO models (YOLOV3-
spp, YOLOv4, YOLOv5 and YOLOX) are selected as the
detection architecture.

III. MATERIALS AND METHODS
A. Dataset Preparation (MSG Dataset)

Realistic criteria are applied to the model at the training
and testing time to swear the model’s robustness. Among the
criteria are taken into account is:

1)  Real-time condition.

2)  Lighting variations.

3)  Multiclass.

4)  Underwater condition.

5)  Waste floating on the water.

The MSG dataset is built based on real-time images from
our surroundings including roads, beaches, water, maintenance
holes and so on. Several images of the dataset are synthetic.
Moreover, most of them are natural. Some images are taken
using the Samsung Galaxy A51 smartphone camera and the
rest of the images are taken from internet mining. Images
are chosen from close range and distance range to make the
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dataset a distance variant. The angle variation left, right, back
and top angle images are taken. The dataset comprises diverse
gesture conditions such as curling and kneeling. At the time
of image collection, this study tries to take different types of
colored masks and gloves. The color variation of the mask
is white, sky blue, pink, black and others. Different types of
masks are included surgical, N95, Cone-style, KN95 and so on.
Surgical gloves also have blue, white, black and pink colors.
Transparent gloves are included with more eagerness to make
the system as robust and reliable underwater as well as an
object floating on the water condition. According to the above
criteria, 1153 images are collected from different internet
sources and smartphones camera. Completing the collection of
the images, our next step is to annotate the collected images.
All the image annotations are handcrafted. The annotations
process are done in a graphical image annotation tool called
Labellmg [!4]. Three types of annotation classes are there:

e  Surgical mask as mask.
e  Surgical gloves as gloves.

e  Biohazard symbol as biohazard.

The dataset is available at https://github.com/Md-Ferdous/
Surgical-waste-dataset. The MSG dataset contains 1153 im-
ages and 1990 instances where 80% of them (923 images) are
selected as the training dataset, 8% (92 images) for validation
and the remaining 12% (138 images) for the test dataset. There
are three combinations of the MSG dataset keeping the same
amount of images into the training, testing and validation
set. A validation dataset is provided into the model for an
unbiased evaluation and fine-tuning during training. Moreover,
the validation process at the training time tells us about the
model’s training condition such as whether the model is going
on the right path? The test dataset is used to evaluate the
model’s performance. The testing dataset contains ambiguous
images for example a paper looks relative to a mask, a
plastic/polythene similar to gloves. Creating this ambiguity is
to see how well the model performs in real-world conditions.
Fig. 1 shows the number of images of every class. There
are 568 masked images and 251 images that contain both
masks and gloves instances. 10 images contain three classes
altogether. The rest is the same. The MSG dataset consists of
1133, 598 and 259 instances of mask, gloves and biohazard
symbols, respectively.

568 mask

Vi, 2577

181 5 152
biohazard gloves

Fig. 1. Number of Images of every Class.

Fig. 2, exhibits the number of instances in the training,
testing and validation set of a combination of the dataset.
The training set contains 831, 492 and 217 instances of mask,
gloves and biohazard symbols, respectively. The total number
of masks, gloves and biohazard symbols in the validation set
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are 117, 46 and 16. At last, the testing set consists of 184, 60
and 26 instances of the mask, gloves and biohazard symbol,
respectively.

14,7% | Mask
m - Gloves
96%
— — Bio-hazard
sen i
Validation s it |
4 BSA% 56.2%

v desan |

Fig. 2. Number of Instances in the Training, Testing and Validation Set.

B. Framework

A pictorial is shown in Fig. 3, which provides an overview
of how the objects are detected from an image. First, an image
is fed into the YOLO architecture; differential features are
extracted from the network’s backbone. Next, the backbone
network uses the extracted features and emits a feature pyramid
to the head network. After that, the head regresses the bound-
ing boxes and classifies objects. Output from the prediction
portion could be any combination of the desired three classes
(mask, gloves, biohazard). Moreover, a novel dataset is created
to detect and manage infectious waste from our surroundings.
Finally, different variations, angles, states and textured images
are selected from the real-time condition to accelerate the
system robustness.

Fig. 3. Framework.

C. Objective of Experiment

This study aims to detect surgical waste and bio-hazard
symbols correctly within a reasonable time interval. Therefore,
different types of YOLO architectures are examined to achieve
different objectives. Additionally, two types of YOLO models
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are chosen, one is anchor-based and the other is anchor-free
training mechanism. Three types of anchor-based and one
anchor-free object detection models are shown in Table L.

There are four different versions of YOLOvS5 (YOLOv5-
s, YOLOv5-m, YOLOv5-1 and YOLOvV5-x) and YOLOX
(YOLOX-s, YOLOX-m, YOLOX-1 and YOLOX-x) architec-
ture. Here s, m, 1 and x denote small, medium, large and
extra-large, respectively. According to the theory, a greater
model size has better accuracy than a smaller one. On the
other hand, a smaller model size is faster than a larger one.
It is a dilemma and the solution lies in the perspective or
application type you want to build. Therefore, it is essential to
evaluate all versions of the YOLOvS5 and YOLOX for giving
a comprehensive description of their performance. Another
notable subject is to see the performance between the anchor-
based and anchor-free detectors.

TABLE I. OBJECTIVE OF EXPERIMENTS

Training mect

Model
YOLOV3-spp
YOLOv4
YOLOVS5-s
YOLOvVS5-m
YOLOVS5-1
YOLOvVS5-x
YOLOX-s
YOLOX-m
YOLOX-1
YOLOX-x

Anchor-based

Anchor-free

D. YOLOX

1) Decoupled Head: In object detection, two egregious
tasks are performed in parallel, one is object classification
and the other is bounding box regression. These two tasks
share almost the same parameters [15] [16]. Hence, there
is an impingement between two tasks and it is a sensitive
issue in computer vision. Classification confidence is the
probabilities of class levels. At the same time, localization
confidence is inexistent. In repetitive regression or even non-
maximum suppression, correctly aligned bounding boxes are
misaligned. This issue was initially discovered by IoU-Net
[17]. They discovered that the characteristic that produces
a high classification score for object classification invariably
predicts a coarse bounding box. The IoU calculation between
ground truth and predicted bounding boxes might be a solution
to solve this problem. To forecast the IoU, they first add
head to the network as if it can emit the localization score.
Then, the final classification score is calculated by combin-
ing the localization confidence score and the classification
confidence score. This method does help to alleviate the
problem of dislocation. Based on this formula, two certain
branches, one for classification and the other for localization
i.e. double-headed network, was proposed in Double head
R-CNN [18] to untangle the head of siblings. In a double-
headed network, classification is performed using a fully
connected head network and box regression is performed
using another convolution head network [15]. Due to having
facilities in a double-headed network for object classification
and localization many one-stage and two-stage object detection
models follow dual-headed architecture [19] [20] [16] [18]. If
we divide YOLO families architecture, it has three portions:
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backbone, head, and prediction. Backbone (e.g. PAN [20] and
FPN [21]) continuously emit feature pyramids to the head. The
head classifies objects and localizes the bounding boxes using
this feature. Still (YOLOv3-spp, YOLOv4 and YOLOV5) no
YOLO family model used double-headed architecture where
YOLOX uses double-headed architecture. YOLOX [22] shows
that coupled heads may destroy the performance of object
detection. The YOLOX architecture is shown in Fig. 4.

2) Exceptional Data Enhancement: Many data augmenta-
tion techniques have been proposed in recent years mosaic is
one of them. Mosaic is an effective and efficient augmentation
technique proposed by a company named ultralytics in their
YOLOV32. For boosting the performance of the YOLOX
mosaic and MixUp augmentation strategies were applied in
[22]. The YOLOv4 [8], YOLOVS and other object detectors
[23] used the mosaic augmentation technique. MixUp [24] is
another augmentation strategy that is primarily designed for
the image classification task. Modifying it into BoF [23] it
is used for the training of objection detection tasks also. In
YOLOX, mosaic augmentation is accomplished. A random
affine transformation is performed where rotation is done on
both axis using a value in the range of -10 deg to +10
deg, translation is done a value between (0.4, 0.6), scaling
is attained on both axis within a value of (0.1, 2), the same
amount of shear is done on both axis by a value of (-2 to +2).
All values are taken from the author’s perspective.

3) Anchor-free Mechanism: Although anchor-based train-
ing mechanism is well known and famous for object detection
model, it has some handicaps. The drawback can be catego-
rized as follows:

1)  Selection: Before training an anchor-based model
needs to choose an optimal set of anchors for the
optimal performance. A clustering analysis needs to
be conducted on anchors to choose an optimal set.

2)  Complexity: Anchors may create complexity on de-
tection heads for prediction. Besides, it may increase
perplexity for the number of predictions for an image.

3) Memory inefficient: For edge computation, in terms
of total latency, this might constitute a bottleneck
for transferring a massive number of predictions
(anchors) across devices (e.g. NPU to CPU) [22].
Recently published YOLO family (YOLOV3-spp,
YOLOv4 and YOLOVS) follows the anchor-based
training mechanism.

Megvii company 3 released a version named YOLOX, which is
based on anchor-free training mechanism. Although YOLOv1
[25] may be the most common anchor-free detector. YOLOv1
predicts bounding boxes at points near the center of objects
rather than utilizing anchor boxes. This strategy was done to
achieve high performance. Furthermore, low recall problems
suffered from YOLOv]1. For this reason, YOLOv2 [6] went
back to the anchor-based mechanism. In the last two years,
Anchor-free detectors have grown at a breakneck pace e.g.
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clustering [6] and grid sensitive [29] requires less amount when
using an anchor-free system. Anchor-free detectors enhance
the model performance and simplify it especially at the training
and decoding phase.

4) Multi Positives: Another aspect of YOLOX is it selects
a center point and considers it as positive while ignoring the
other predictions, although there is a high probability of being
positive [22]. A 3x3 area is chosen around the center point,
which is called center sampling in FCOS [26].

IV. TRAINING PROCESS

The entire training and testing process is carried out on
the Google cloud platform. The entire training process can be
divided into three stages:

1)  Prefer a model for training and refashioning its cor-
responding configuration file as the target.

2)  Set initial parameters into the network using pre-
trained weights.

3) Start the learning process by setting the training
parameters. For training, the Stochastic Gradient De-
scent (SGD) approach was employed.

The learning rate is adopted using Irxbatchsize/64 [30].
The initial learning rate is set to 0.01 and it changes over
time according to the cosine learning rate schedule. The cosine
learning rate can be calculated using Equation 1. Generalized
Intersection over Union (GIoU) [31] is calculated for bounding
box regression loss is shown in Equation 2. The weight decay
is 0.0005 and the SGD momentum is 0.9. NMS threshold is
set to 0.65. The first five epochs were warm-up epochs. These
warm-up epochs help the network train gradually, making
a basic sense of the dataset. Training is done up to 180
epochs. Input image size was 640x640. YOLOX is trained
according to Megvii company’s GitHub repository in the
PyTorch environment. YOLOVS is also trained in the PyTorch
environment and trained according to the construction of a
company named Ultralytics.

era
Ir =05 x (1.0 + cos <pi x m)) )
total iteration

Intersection  G'N D

Tl = Union ~ GUD 2
| C\ Union |
GIloU = IoU — 7|C’| 3

Where G and D are the prediction and ground truth bounding
boxes respectively. C is the smallest convex object for G and
D. All models are trained in the PyTorch environment and
an SGD optimizer is used. Table II represents the training
hyperparameters.

TABLE II. TRAINING HYPERPARAMETERS

FCOS [26], CornerNet [2], object as points [l]. Another

type of anchorless detector is the [27] which is adopted on Initial ]

DenseBox [28]. The number of design parameters that require Model lear;’:’e"g Decay | Momentum | Batch size

heuristic tuning and the number of tricks such as anchor YOLOX 0.01 0.0005 0.9 32/16/12

YOLOvS 0.01 0.0005 0.9 R
Zhttps://github.com/ultralytics/yolov3 YOLOV3-spp 0.001 0.000484 0.937 32
3https://github.com/Megvii-BaseDetection/YOLOX YOLOv4 0.001 0.0005 09 2
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Fig. 4. Architecture of YOLOX.

V. EVALUATION METRICS

Intersection over Union (IoU) is shown in Fig. 5. Though
the IoU is used in non-maximum suppression, it can also
be used in evaluating a model as a performance met-
ric. When evaluating an object detection model, we try to
determine whether the predicted class is like the desired
class—simultaneously investigating the perfect alignment of
the bounding boxes that exist around the object into the
image. Using the ground truth bounding boxes (G) and pre-
dicted/detected bounding boxes (D), one can calculate the IoU.
The IoU calculation tells us how much the predicted bounding
boxes are related to the ground truth bounding boxes i.e. the
percentage of overlap between two bounding boxes. The bigger
the overlap area, the higher the IoU. Equation 2 [32] is used
to calculate the IoU between two the bounding boxes. True
Positive (TP), False Positive (FP) and False Negative (FN)
are calculated according to [33] [34] [35]. TP, FP and FN
are the confusion matrix criteria. Table III represents if the
model predicts true class and its IoU is greater than 50%,
then the detection would be considered as TP. Inversely, FP is
considered if the IoU is smaller than 50% and detection tell
the right class according to ground truth. FP detects a ground

truth class, but its bounding box position is not correct like
the ground truth box. FP yields an improper detection case. In
the case of FN, the system will not be able to detect any class
where ground truth boxes exist.

Intersection

Union

:I Ground truth (G)

Fig. 5. IoU Calculation Mechanism

Detection (D)

If the TP is omitted from the total positives, we will get the
FN. Therefore, the object confidence score is set to greater than
50% for calculating the TP, FP and FN. In object detection,
every position of an image will be True Negative (TN) without
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desired class. Hence, TN is not so important to measure the
performance of an object detection model.

TABLE III. CALCULATION PROCESS OF THE TP, FP AND FN

ToU (%) Class TP FP FN
>=50 true v X X
>=50 false X v X

<50 true/false X X v

Precision is a metric that depicts the capability of a model
to identify its relative objects correctly. It is the proportion
of positive predictions that are correct across all detections.
The recall is a metric that delineates the power of a model
to find all relevant examples. It is the proportion of positive
predictions subject to the entire ground truth. Precision and
recall are calculated as [33] [36]. This study evaluates the
model’s performance using the Average Precision (AP). AP
is a scheme to encapsulate the Precision-Recall (PR) curve.
Higher precision is clear evidence that a model is confident
when classifying examples among the detections. On the other
hand, higher recall is an indicator of the power of a model. It
tells us how many correct detections are performed among all
the ground truths. Moreover, precision and recall are primary
metrics of an object detection model. If a model has high
recall yet low precision is an obvious referential that the
model emits maximum positive example truly, but it has many
false positives i.e. classify many negative examples as positive.
On the contrary, low recall yet high precision indicates that
the model appropriately classifies positive examples; however,
it may contain only a few positive examples. Hence, it is
necessary to choose a threshold, as if both the precision and
recall will be maximized. The PR curve helps us to select
the appropriate threshold among the different threshold values.
Using the precision and recall value, the PR curve can be
plotted [33] [36]. AP is the Area Under the Curve (AUC)
of the PR curve. AP can be calculated using the Equation
4. According to Equation 4, n is the number of thresholds.
For every value of recall or precision, find the difference
between the current and next to recall value, then multiply
the difference with the Interpolated Precision (IP) value. I P
are the maximum precision value at a recall value R where
the corresponding recall value is greater than or equal to R.
At each threshold, AP is the weighted sum of all precision
where the recall value accelerates the weight.

k=n—1
AP = [R(k) — R(k+1)] x IP(k) “)
k=

[}

Different IoU marginal values are used to test the model in
object detection. Therefore, different IoU values yield different
performances. Furthermore, Mean Average Precision (mAP) is
another metric that is calculated using the AP’s of every class
shown in Equation 5 where n is the number of classes.

k=n

1
AP = — AP, 5
m nkg ) Q)

Evaluation metrics are calculated according to [33] [35]
[36]. This study tests the model in both cloud-based and
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local environments. The local environment with CPU is not
capable enough for training. We test the model in a local
environment with a CPU to see its performance on user label
equipment. The training phase is conducted on a cloud-based
platform. A 15GB sized Tesla T4 GPU is used for high
speed and performance for training and testing. Parameter
description of two platforms is given in Table IV. At the time
of speed calculation of the model, only the processing time is
considered except the loading time of an image. The bottom-
most speed is the mean of all testing images.

TABLE IV. PLATFORM PARAMETERS

Purpose Platform GPU GPU size CPU core RAM

Training 1oy | TeslaT4 | 15GB 2 12GB
and testing

Testing Local None None 4 32GB

VI. RESULTS

In the PR curve, precision and recall are plotted in Y-
axis and X-axis respectively. Moreover, detection ability would
be better when the precision is higher with the increase of
the recall value. Therefore, according to this theory, better
performance would be in the right up corner of the PR curve.
To check the robustness of the model, training and testing are
done using three different dataset combinations.

A. Anchor-based Method

The average precision of the three classes for the anchor-
based method is shown in Table V. YOLOv3-spp emits the
highest mAP of 85.37% among the other methods. YOLOV5-1
generates a better mAP of 84.78% among different versions
of YOLOVS. For a dataset combination, for mask objects,
149 are truly detected, 14 objects are false detection and 35
are undetected. For the gloves object, 52 gloves are detected
accurately, 9 are false and 8 are undetected. The number
of true positive, false positive, and false negative are 24,
1 and 2 for the biohazard symbol. Fig. 6 represents the
PR curves of several anchor-based methods for a dataset
combination. Well performed models PR curve is shown here.
Fig. 7 exhibits some qualitative measures of the anchor-based
methods. YOLOvV3-spp produces better generalization than the
other tested models. YOLOv4 depicts some under-detected and
false detection results. YOLOVS yields better generalization
even after having many false detection outputs than YOLOv4.

TABLE V. PERFORMANCE OF ANCHOR BASED MODEL

Model mask AP gloves AP biohazard AP mAP
YOLOV3-spp 79.21 85.05 91.85 85.37
YOLOv4 64.69 73.51 89.11 75.77
YOLOVS5-s 84.21 79.36 82.19 81.92
YOLOv5-m 83.29 80.42 84.45 82.72
YOLOVS5-1 86.84 77.69 89.81 84.78
YOLOV5-x 85.36 76.12 88.75 83.41
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B. Anchor-free Method

The YOLOX is trained and tested using three different
combinations of the dataset shown in Table VI. Averaging
of the mAP of each combination of datasets, the YOLO-I
architecture delivers the highest mAP than the other models.
For example, the ground truth of the mask, gloves and bio-
hazard symbol are 184, 60, and 26, respectively, in a dataset
combination. Accurate detection of masks, gloves and symbols
is 169, 55 and 26; false detection is 8, 6 and 0; under detected
objects are 15, 5 and 0, respectively for YOLOX-1. Due to easy
examples, the model generates 100.00% AP for bio-hazard
objects for a combination of the dataset.

TABLE VI. PERFORMANCE OF YOLOX IN THE DIFFERENT DATASET

COMBINATIONS
?1‘:11:::1 mask AP ‘ gloves AP ‘ b‘“l:'lfard ‘ AP ‘ u?ev‘f;lgfl,
YOLOX-s
1 85.99 81.60 100.00 | 89.20
2 93.00 92.25 93836 94.54 90.1
3 8857 8235 $8.00 86.30
YOLOX-m
1 89.30 8655 100.00 | 91.95
2 96.74 94.60 96.72 9536 91.38
3 8791 83.69 90.99 8753
YOLOXA
I 89.47 §7.05 100.00 | 92.17
2 95.64 96.23 96.72 96.20 92.49
3 92.15 ST.01 94.20 §9.12
YOLOXx
1 86.44 7975 100.00 | 88.73
2 95.64 93.97 95.03 94.88 90.86
3 90.56 8547 50,88 8897

Fig. 8 represents the PR curve of tested anchor-free ar-
chitecture of different versions for a dataset combination. Per
image inference time on both GPU and CPU versus mAP is
shown in Fig. 9, where it is clearly seen that CPU inference
time is greater than the GPU time. Models mAP differs a little
amount according to the model size. In GPU, the YOLOX-s
needs 0.06s time to infer an image, whereas YOLOX-x takes
0.12s time, two times more than YOLOX-s. On the other hand,
in CPU the YOLOX-s needs 0.70s time to infer an image,
whereas YOLOX-x takes 4.01s time, which is approximately
five times more than YOLOX-s. Hence, it is said that increas-
ing model size CPU requires more time to infer an image than
GPU. Additionally, GPU time maybe differ on the criteria
of the GPU architecture. Fig. 10 displays several qualitative
measures of anchor-free architecture—the different versions of
the YOLOX architecture yield approximately the same results.
The input combinations of the dataset are responsible for the
performance. In this case, remarkable improvement may hap-
pen for the different training and testing dataset combinations,
although their averaging produces the conventional results.
Since different dataset combinations have been used, YOLOX-1
architecture provides the highest individual mAP than others.
Additional testing is conducted using the test dataset of the
second combination because, among the three combinations,
these combination generates the highest mAP. Furthermore,
the test dataset of the second combination is divided into
two portions, one is relatively easy to guess and the other
is relatively hard to guess for the model. A relatively complex
sub-division is created using several criteria that are listed
below. These criteria are done from the author’s perspective.

1y
2)

4)
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Objects and the image background color are approx-

imately the same.

Excess or inadequate light into the images.
Complex image background compares to objects.
Occlusion and small objects into the images.

YOLOX-

S

154 =
©o o
5 =]

Precision
<o
o
o

—— biohazard 98.36%
gloves 92.25%
—— mask 93.00%

o
=]
«a

o
@
(==

.0 0.2 0.4 0.6 0.8 1.0
Recall
()
1.00
0.95
c
k=)
o
50.90
o
0.85{| — biohazard 96.72%
gloves 94.60%
—— mask 94.74%
0.8
%‘0 0.2 0.4 0.6 0.8 1.0

Recall

(b)

[=]
w0
(]

Precision
@
Qo
o

—— biohazard 96.72%
gloves 96.23%
—— mask 95.64%

o
=
«

o
o]
o

.0 0.2 0.4
Recall

(©

0.6 0.8 1.0

=]
w0
[l

Precision
<
©o
o

—— biohazard 95.03%
gloves 93.97%
—— mask 95.64%

I
=]
«

o
o]
(==

.0 0.2 0.4
Recall

(d

0.6 0.8 1.0

Fig. 8. Precision-recall Curve of the Anchor-free Model.
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Fig. 9. Inference Time of GPU vs mAP in (a) and CPU vs mAP in (b) of all
Version of the YOLOX.

Table VII displays the performance of YOLOX-1 models
for relatively easy and hard samples of the second combination
of test dataset where, for easy and challenging examples,
95.71% and 94.04% mAP are encountered, respectively. The
average precision of both the anchor-free and anchor-based
architecture is shown in Fig. 11, where anchor-free models
mAP is larger than anchor-based models.

TABLE VII. PERFORMANCE OF YOLOX-L FOR RELATIVELY EASY AND

HARD CASES
case mask AP | gloves AP | biohazard AP mAP
Relatively easy 97.91 94.79 100.00 91.57
Relatively hard 93.78 92.87 97.62 94.76

Vol. 13, No. 3, 2022

1) Where is the Milestone?: Fig. 12 shows several satis-
factory results. According to the Fig. 12, images are natural
and most wanted phenomena for waste. Fig. 12a, 12b, 12c,
12d and 12f objects are correctly detected even after complex
background; despite being small objects in Fig. 12e, 12g,
and 12i objects are well-identified; into the Fig. 12h are
some underwater images where obscurity, different lighting
condition may happen, still objects are recognized properly.

Fig. 10. Several Qualitative Measures of Anchor-free Methods.

2) Where is Incorrect Detection?: According to the dataset
combination, the FP rate is 4.34%, 10%, and 0.0% for masks,
gloves, and biohazards, respectively. FN occurs when the
model is unable to detect an object despite its presence in
the image. FN rate of mask, gloves, and biohazard class is
8.15%, 8.33%, and 0.0%, respectively. Fig. 13 shows some
false detection of the YOLOX-I model. FP detection occurs
when objects have crowded situations into the images. When
the objects are blurred, they are under-detected by the model in
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most cases. Fig. 13a additional gloves and masks are detected.
Crowed masks and gloves are there. In Fig. 13b contains small
and occluded gloves and mask objects perhaps for this reason
they are under detected, in Fig. 13c perhaps objects may not
be detected because there are exists some blurriness on the
gloves and mask.

findings
1)

2)

3)

(h) @)

Fig. 12. Satisfactory Result of YOLOX-1 Architecture.

() (b) (©)

Fig. 13. Incorrect Detection of YOLOX-1 Architecture.

VII. DISCUSSION

This study examined four different types of object detectors
from the YOLO family. The models are trained, tested, and
evaluated to attain different goals. The gist contribution and

are listed below:

A novel dataset is created to detect and manage
surgical waste (mask, gloves and biohazard symbol)
from our surroundings including roads, beaches, un-
derwater as well as floating on the water condition.
Experiment is conducted using two different train-
ing mechanisms, one is anchor-based and the other
is an anchor-free mechanism. Anchor-based mod-
els (YOLOv3-spp, YOLOv4 and YOLOVS5) highest
mAP 85.27% is lower than the anchor-free models
(YOLOX-1) mAP 92.49%. Among the anchor-based
model, YOLOv3-spp (mAP 85.27%) performs better
than others.

Additional exploration is performed using all versions
of the YOLOX to find TP, FP and FN. In most
cases, satisfactory results are yielded by the model.
False detection produces when objects are occluded,
blurred and crowded. False-negative (misdetection)
generates when objects are small and complex to
attain minimum feature selection.
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Additionally, several limitations exist in this study that can
be explored in future work. First, the dataset size may be
increased for system robustness. This study detects only three
types of classes; hence integrating more classes would be
a good exploration. The YOLO architectures are fast and
accurate in detecting objects from images. Additionally, YOLO
models have the sensitiveness of small objects. Therefore,
other anchor-free object detection models may be investigated
to evaluate the dataset.

VIII. CONCLUSION

Plastic waste is going to be a threat to humankind and
other species day by day. This type of waste is scattered
worldwide only for the unconsciousness of humankind. If the
proper steps are not taken, it will be dangerous for us in
the days ahead. Surgical waste is a kind of plastic waste.
Nowadays, the number of this type of waste is also increasing
alarmingly, which is responsible for serious health hazards. In
this study, authors try to create a novel dataset with surgical
waste (mask and gloves) and biohazard symbols to detect
such waste from our surroundings and appropriately manage
them in certain places. Two types of training mechanism-
based YOLO models are chosen to conduct this work. One is
anchor-based (YOLOv3-spp, YOLOv4 and YOLOvVS) and the
other is anchor-free (YOLOX) architecture. This study found
that anchor-free architecture performs better generalization
than anchor-based architectures. More clearly, YOLOX yields
the highest mAP of 92.49% and YOLOv3-spp generates the
highest mAP of 85.27%. Satisfactory performance comes up
even if there are some limitations. Dataset explorations would
be reasonable for future work. Applying the other anchor-free
architecture in this area will be a future direction.
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